12 Search Results for "Weber, Tobias"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

Authors: Hanna Lachnitt, Mathias Fleury, Haniel Barbosa, Jibiana Jakpor, Bruno Andreotti, Andrew Reynolds, Hans-Jörg Schurr, Clark Barrett, and Cesare Tinelli

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Sledgehammer is a tool that increases the level of automation in the Isabelle/HOL proof assistant by asking external automatic theorem provers (ATPs), including SMT solvers, to prove the current goal. When the external ATP succeeds it must provide enough evidence that the goal holds for Isabelle to be able to reprove it internally based on that evidence. In particular, Isabelle can do this by replaying fine-grained proof certificates from proof-producing SMT solvers as long as they are expressed in the Alethe format, which until now was supported only by the veriT SMT solver. We report on our experience adding proof reconstruction support for the cvc5 SMT solver in Isabelle by extending cvc5 to produce proofs in the Alethe format and then adapting Isabelle to reconstruct those proofs. We discuss several difficulties and pitfalls we encountered and describe a set of tools and techniques we developed to improve the process. A notable outcome of this effort is that Isabelle can now be used as an independent proof checker for SMT problems written in the SMT-LIB standard. We evaluate cvc5’s integration on a set of SMT-LIB benchmarks originating from Isabelle as well as on a set of Isabelle proofs. Our results confirm that this integration complements and improves Sledgehammer’s capabilities.

Cite as

Hanna Lachnitt, Mathias Fleury, Haniel Barbosa, Jibiana Jakpor, Bruno Andreotti, Andrew Reynolds, Hans-Jörg Schurr, Clark Barrett, and Cesare Tinelli. Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lachnitt_et_al:LIPIcs.ITP.2025.26,
  author =	{Lachnitt, Hanna and Fleury, Mathias and Barbosa, Haniel and Jakpor, Jibiana and Andreotti, Bruno and Reynolds, Andrew and Schurr, Hans-J\"{o}rg and Barrett, Clark and Tinelli, Cesare},
  title =	{{Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.26},
  URN =		{urn:nbn:de:0030-drops-246243},
  doi =		{10.4230/LIPIcs.ITP.2025.26},
  annote =	{Keywords: interactive theorem proving, proof assistants, Isabelle/HOL, SMT, certification, proof certificates, proof reconstruction, proof automation}
}
Document
Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model

Authors: Hippolyte Hilgers, Jean Vanderdonckt, and Radu-Daniel Vatavu

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
The operational complexities of space missions require reliable, context-aware technical assistance for astronauts, especially when technical expertise is not available onboard and communication with Earth is delayed or limited. In this context, Large Language Models present a promising opportunity to augment human capabilities. To this end, we present Harmony, a model designed to provide astronauts with real-time technical assistance, fostering human-AI collaboration during analog missions. We report empirical results from an experiment involving seven analog astronauts that evaluated their user experience with Harmony in both a conventional environment and an isolated, confined, and extreme physical setting at the Mars Desert Research Station over four sessions, and discuss how the Mars analog environment impacted their experience. Our findings reveal the extent to which human-AI interactions evolve across various user experience dimensions and suggest how Harmony can be further adapted to suit extreme environments, with a focus on SpaceCHI.

Cite as

Hippolyte Hilgers, Jean Vanderdonckt, and Radu-Daniel Vatavu. Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hilgers_et_al:OASIcs.SpaceCHI.2025.1,
  author =	{Hilgers, Hippolyte and Vanderdonckt, Jean and Vatavu, Radu-Daniel},
  title =	{{Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{1:1--1:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.1},
  URN =		{urn:nbn:de:0030-drops-239912},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.1},
  annote =	{Keywords: Extreme user experience, Human-AI interaction, Isolated-confined-extreme environment, Interaction design, Large Language Models, Mars Desert Research Station, Space mission, Technical assistance, Technical documentation, User experience}
}
Document
Advancing Intelligent Personal Assistants for Human Spaceflight

Authors: Leonie Bensch, Oliver Bensch, and Tommy Nilsson

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
The Artemis program and upcoming missions to Mars mark a new era of human space exploration that will require new tools to support astronaut autonomy in the absence of real-time communication with Earth. This paper investigates the role of voice-based intelligent personal assistants (IPAs) in future crewed space missions. Through semi-structured interviews with astronauts (n=3) and spaceflight experts (n=12), we identify key user-centered design requirements for IPAs in this uniquely constrained and safety-critical environment. Our thematic analysis reveals core requirements for flexibility, reliability, offline capability, and multimodal interaction. Drawing on these findings, we outline design guidelines for next-generation IPAs and discuss how technologies such as retrieval-augmented generation (RAG), knowledge graphs, and augmented reality should be combined to support flexible, reliable, and multimodal IPAs for future human spaceflight missions.

Cite as

Leonie Bensch, Oliver Bensch, and Tommy Nilsson. Advancing Intelligent Personal Assistants for Human Spaceflight. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bensch_et_al:OASIcs.SpaceCHI.2025.18,
  author =	{Bensch, Leonie and Bensch, Oliver and Nilsson, Tommy},
  title =	{{Advancing Intelligent Personal Assistants for Human Spaceflight}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{18:1--18:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.18},
  URN =		{urn:nbn:de:0030-drops-240082},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.18},
  annote =	{Keywords: Conversational Assistant, Intelligent Personal Assistant, Artificial Intelligence, Astronaut, Human Spaceflight, Generative Pre-Trained Transformer (GPT), Retrieval Augmented Generation (RAG), Knowledge Graphs, Augmented Reality, Voice Assistant, Long Duration Spaceflight}
}
Document
Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks

Authors: David Andrew Green

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
The Artemis programme seeks to develop and test concepts, hardware and approaches to support long term habitation of the Lunar surface, and future missions to Mars. In preparation for the Artemis missions determination of tasks to be performed, the functional requirements of such tasks and as mission duration extends whether physiological deconditioning becomes functionally significant, compromising the crew member’s ability to perform critical tasks on the surface, and/or upon return to earth [MoLo-LUNA – leveraging the Molo programme (and several other activities) - could become a key supporting activity for LUNA incl. validation of the Puppeteer offloading system itself via creation of a complementary MoLo-LUNA-LAB. Furthermore, the MoLo-LUNA programme could become a key facilitator of simulator suit instrumentation/definition, broader astronaut training activities and mission architecture development – including Artemis mission simulations. By employing a Puppeteer system external to the LUNA chamber hall it will optimise utilisation and cost-effectiveness of LUNA, and as such represents a critical service to future LUNA stakeholders. Furthermore, MoLo-LUNA would generate a unique data set that can be leveraged to predict de-conditioning on the Lunar surface - and thereby optimise functionality, and minimise mission risk – including informing the need for, and prescription of exercise countermeasures on the Lunar Surface and in transit. Thus, MoLo-LUNA offers a unique opportunity to place LUNA, and ESA as a key ongoing provider of evidence to define, optimise and support crew Artemis surface missions.

Cite as

David Andrew Green. Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 26:1-26:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{green:OASIcs.SpaceCHI.2025.26,
  author =	{Green, David Andrew},
  title =	{{Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{26:1--26:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.26},
  URN =		{urn:nbn:de:0030-drops-240166},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.26},
  annote =	{Keywords: Locomotion, hypogravity, modelling, Lunar}
}
Document
DiVerG: Scalable Distance Index for Validation of Paired-End Alignments in Sequence Graphs

Authors: Ali Ghaffaari, Alexander Schönhuth, and Tobias Marschall

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Determining the distance between two loci within a genomic region is a recurrent operation in various tasks in computational genomics. A notable example of this task arises in paired-end read mapping as a form of validation of distances between multiple alignments. While straightforward for a single genome, graph-based reference structures render the operation considerably more involved. Given the sheer number of such queries in a typical read mapping experiment, an efficient algorithm for answering distance queries is crucial. In this paper, we introduce DiVerG, a compact data structure as well as a fast and scalable algorithm, for constructing distance indexes for general sequence graphs on multi-core CPU and many-core GPU architectures. DiVerG is based on PairG [Jain et al., 2019], but overcomes the limitations of PairG by exploiting the extensive potential for improvements in terms of scalability and space efficiency. As a consequence, DiVerG can process substantially larger datasets, such as whole human genomes, which are unmanageable by PairG. DiVerG offers faster index construction time and consistently faster query time with gains proportional to the size of the underlying compact data structure. We demonstrate that our method performs favorably on multiple real datasets at various scales. DiVerG achieves superior performance over PairG; e.g. resulting to 2.5-4x speed-up in query time, 44-340x smaller index size, and 3-50x faster construction time for the genome graph of the MHC region, as a particularly variable region of the human genome. The implementation is available at: https://github.com/cartoonist/diverg

Cite as

Ali Ghaffaari, Alexander Schönhuth, and Tobias Marschall. DiVerG: Scalable Distance Index for Validation of Paired-End Alignments in Sequence Graphs. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ghaffaari_et_al:LIPIcs.WABI.2025.10,
  author =	{Ghaffaari, Ali and Sch\"{o}nhuth, Alexander and Marschall, Tobias},
  title =	{{DiVerG: Scalable Distance Index for Validation of Paired-End Alignments in Sequence Graphs}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.10},
  URN =		{urn:nbn:de:0030-drops-239369},
  doi =		{10.4230/LIPIcs.WABI.2025.10},
  annote =	{Keywords: Sequence graph, distance index, read mapping, sparse matrix}
}
Document
Dolphyin: A Combinatorial Algorithm for Identifying 1-Dollo Phylogenies in Cancer

Authors: Daniel W. Feng and Mohammed El-Kebir

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Several recent cancer phylogeny inference methods have used the k-Dollo evolutionary model for single-nucleotide variants. Specifically, in this problem one is given an m × n binary matrix B and seeks a rooted tree T with m leaves that correspond to the m rows of B, and each node of T is labeled by a binary state for each of the n characters subject to the restriction that each character is gained at most once (0-to-1 transition) and subsequently lost at most k times (1-to-0 transitions). The 1-Dollo variant, also known as the persistent perfect phylogeny where one is restricted to at most k = 1 losses per character, has been studied extensively, but its hardness remains an open question. Here, we prove that the 1-Dollo Linear Phylogeny (1DLP) problem, where we additionally require the resulting 1-Dollo phylogeny T to be linear, is equivalent to verifying whether the input matrix B adheres to the Consecutive Ones Property (C1P), which can be solved in polynomial time. Due to the equivalence, several known NP-hardness results for relevant variants of C1P carry over to 1DLP, including the minimization of false negatives (0-to-1 modifications to the input matrix B) or the allowance of 2 gains and 2 losses. We furthermore show how we can recursively decompose any, not necessarily linear, 1-Dollo phylogeny T into several 1-Dollo linear phylogenies, connected by matching branching points. We extend this characterization to matrices B that admit 1-Dollo phylogenies, giving necessary and sufficient conditions for the existence of a novel decomposition of B into several submatrices and corresponding branching points. This decomposition forms the basis of Dolphyin, a new exponential-time algorithm for inferring 1-Dollo phylogenies that efficiently leverages the determination of linear 1-Dollo phylogenies as a subroutine. Dolphyin can also be applied to input matrices B with false negatives. We demonstrate that Dolphyin is runtime-competitive with a previous integer linear programming based algorithm SPhyR on simulated datasets. We additionally analyze simulated datasets with false negative errors and find that in the median case, Dolphyin infers 1-Dollo phylogenies with inferred error rates at or below the ground truth rate. Finally, we apply Dolphyin to 99 acute myeloid leukemia single-cell sequencing datasets, finding that the majority of the cancers can be explained by 1-Dollo phylogenies with false negative error rates in line with the used sequencing technology. Availability. Dolphyin is available at: https://github.com/elkebir-group/Dolphyin.

Cite as

Daniel W. Feng and Mohammed El-Kebir. Dolphyin: A Combinatorial Algorithm for Identifying 1-Dollo Phylogenies in Cancer. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.WABI.2025.9,
  author =	{Feng, Daniel W. and El-Kebir, Mohammed},
  title =	{{Dolphyin: A Combinatorial Algorithm for Identifying 1-Dollo Phylogenies in Cancer}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.9},
  URN =		{urn:nbn:de:0030-drops-239356},
  doi =		{10.4230/LIPIcs.WABI.2025.9},
  annote =	{Keywords: Intra-tumor heterogeneity, persistent perfect phylogeny, consecutive ones property, combinatorics}
}
Document
Task-To-Processor Assignment for Real-Time Mixed-Critical Networked Systems Using Inductive Logic Programming

Authors: Marcus Gualtieri, Christian Juette, and Dakshina Dasari

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
Task-to-processor assignment is an essential aspect of configuring real-time, distributed systems, since an improper assignment can adversely affect latency. Model-based, heuristic, and data-driven approaches have been proposed to solve the task-to-processor assignment problem. However, model-based and heuristic approaches require revision if the system changes, and data-driven approaches require training on a lot of data and setting nonintuitive hyper-parameters. We explore a hybrid approach which takes both a system description and data: we use inductive logic programming in an active learning algorithm to search for assignments which satisfy a real-time requirement. By using both domain knowledge and data, the system finds solutions quickly, and changes are not required when using the tool on different systems. Furthermore, the output is a human-readable description of a set of predicted satisfactory assignments. Readable solution sets are useful for analyzing the system, since we can easily compare solution sets across different setups. We evaluate our approach on real systems with mixed-critical network flows. We show that task-to-processor assignment can significantly influence latency by comparing optimal fixed assignments to the default Linux scheduler. We show that our approach finds assignments that are within 10% of optimal with up to 10× fewer system tests, compared to random search. Our algorithm also performs favorably to load balancing and neural network baselines.

Cite as

Marcus Gualtieri, Christian Juette, and Dakshina Dasari. Task-To-Processor Assignment for Real-Time Mixed-Critical Networked Systems Using Inductive Logic Programming. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 14:1-14:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gualtieri_et_al:LIPIcs.ECRTS.2025.14,
  author =	{Gualtieri, Marcus and Juette, Christian and Dasari, Dakshina},
  title =	{{Task-To-Processor Assignment for Real-Time Mixed-Critical Networked Systems Using Inductive Logic Programming}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{14:1--14:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.14},
  URN =		{urn:nbn:de:0030-drops-235925},
  doi =		{10.4230/LIPIcs.ECRTS.2025.14},
  annote =	{Keywords: Real-Time Distributed Systems, Auto-Configuration, Task-to-Processor Mapping, Inductive Logic Programming, Active Learning}
}
Document
Track A: Algorithms, Complexity and Games
ARRIVAL: Recursive Framework & 𝓁₁-Contraction

Authors: Sebastian Haslebacher

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
ARRIVAL is the problem of deciding which out of two possible destinations will be reached first by a token that moves deterministically along the edges of a directed graph, according to so-called switching rules. It is known to lie in NP ∩ CoNP, but not known to lie in 𝖯. The state-of-the-art algorithm due to Gärtner et al. (ICALP `21) runs in time 2^{𝒪(√n log n)} on an n-vertex graph. We prove that ARRIVAL can be solved in time 2^{𝒪(k log² n)} on n-vertex graphs of treewidth k. Our algorithm is derived by adapting a simple recursive algorithm for a generalization of ARRIVAL called G-ARRIVAL. This simple recursive algorithm acts as a framework from which we can also rederive the subexponential upper bound of Gärtner et al. Our second result is a reduction from G-ARRIVAL to the problem of finding an approximate fixed point of an 𝓁₁-contracting function f : [0, 1]ⁿ → [0, 1]ⁿ. Finding such fixed points is a well-studied problem in the case of the 𝓁₂-metric and the 𝓁_∞-metric, but little is known about the 𝓁₁-case. Both of our results highlight parallels between ARRIVAL and the Simple Stochastic Games (SSG) problem. Concretely, Chatterjee et al. (SODA `23) gave an algorithm for SSG parameterized by treewidth that achieves a similar bound as we do for ARRIVAL, and SSG is known to reduce to 𝓁_∞-contraction.

Cite as

Sebastian Haslebacher. ARRIVAL: Recursive Framework & 𝓁₁-Contraction. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 95:1-95:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{haslebacher:LIPIcs.ICALP.2025.95,
  author =	{Haslebacher, Sebastian},
  title =	{{ARRIVAL: Recursive Framework \& 𝓁₁-Contraction}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{95:1--95:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.95},
  URN =		{urn:nbn:de:0030-drops-234723},
  doi =		{10.4230/LIPIcs.ICALP.2025.95},
  annote =	{Keywords: ARRIVAL, G-ARRIVAL, Deterministic Random Walk, Rotor-Routing, 𝓁₁-Contraction, Banach Fixed Point}
}
Document
Vision
Knowledge Engineering Using Large Language Models

Authors: Bradley P. Allen, Lise Stork, and Paul Groth

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.

Cite as

Bradley P. Allen, Lise Stork, and Paul Groth. Knowledge Engineering Using Large Language Models. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.1.1.3,
  author =	{Allen, Bradley P. and Stork, Lise and Groth, Paul},
  title =	{{Knowledge Engineering Using Large Language Models}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:19},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.3},
  URN =		{urn:nbn:de:0030-drops-194777},
  doi =		{10.4230/TGDK.1.1.3},
  annote =	{Keywords: knowledge engineering, large language models}
}
Document
Crazy New Idea
Mind the Gap: Language Data, Their Producers, and the Scientific Process (Crazy New Idea)

Authors: Tobias Weber

Published in: OASIcs, Volume 93, 3rd Conference on Language, Data and Knowledge (LDK 2021)


Abstract
This paper discusses the role of low-resource languages in NLP through the lens of different stakeholders. It argues that the current "consumerist approach" to language data reinforces a vicious circle which increases the technological exclusion of minority communities. Researchers' decisions directly affect these processes to the detriment of minorities and practitioners engaging in language work in these communities. In line with the conference topic, the paper concludes with strategies and prerequisites for creating a positive feedback loop in our research benefiting language work within the next decade.

Cite as

Tobias Weber. Mind the Gap: Language Data, Their Producers, and the Scientific Process (Crazy New Idea). In 3rd Conference on Language, Data and Knowledge (LDK 2021). Open Access Series in Informatics (OASIcs), Volume 93, pp. 6:1-6:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{weber:OASIcs.LDK.2021.6,
  author =	{Weber, Tobias},
  title =	{{Mind the Gap: Language Data, Their Producers, and the Scientific Process}},
  booktitle =	{3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages =	{6:1--6:9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-199-3},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{93},
  editor =	{Gromann, Dagmar and S\'{e}rasset, Gilles and Declerck, Thierry and McCrae, John P. and Gracia, Jorge and Bosque-Gil, Julia and Bobillo, Fernando and Heinisch, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2021.6},
  URN =		{urn:nbn:de:0030-drops-145424},
  doi =		{10.4230/OASIcs.LDK.2021.6},
  annote =	{Keywords: minority languages, data integration, sociology of technology, documentary linguistics, exclusion}
}
Document
Extended Abstract
Can Computational Meta-Documentary Linguistics Provide for Accountability and Offer an Alternative to "Reproducibility" in Linguistics?

Authors: Tobias Weber

Published in: OASIcs, Volume 70, 2nd Conference on Language, Data and Knowledge (LDK 2019)


Abstract
As an answer to the need for accountability in linguistics, computational methodology and big data approaches offer an interesting perspective to the field of meta-documentary linguistics. The focus of this paper lies on the scientific process of citing published data and the insights this gives to the workings of a discipline. The proposed methodology shall aid to bring out the narratives of linguistic research within the literature. This can be seen as an alternative, philological approach to documentary linguistics.

Cite as

Tobias Weber. Can Computational Meta-Documentary Linguistics Provide for Accountability and Offer an Alternative to "Reproducibility" in Linguistics?. In 2nd Conference on Language, Data and Knowledge (LDK 2019). Open Access Series in Informatics (OASIcs), Volume 70, pp. 26:1-26:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{weber:OASIcs.LDK.2019.26,
  author =	{Weber, Tobias},
  title =	{{Can Computational Meta-Documentary Linguistics Provide for Accountability and Offer an Alternative to "Reproducibility" in Linguistics?}},
  booktitle =	{2nd Conference on Language, Data and Knowledge (LDK 2019)},
  pages =	{26:1--26:8},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-105-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{70},
  editor =	{Eskevich, Maria and de Melo, Gerard and F\"{a}th, Christian and McCrae, John P. and Buitelaar, Paul and Chiarcos, Christian and Klimek, Bettina and Dojchinovski, Milan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2019.26},
  URN =		{urn:nbn:de:0030-drops-103900},
  doi =		{10.4230/OASIcs.LDK.2019.26},
  annote =	{Keywords: Language Documentation, meta-documentary Linguistics, Citation, Methodology, Digital Humanities, Philology, Intertextuality}
}
  • Refine by Type
  • 12 Document/PDF
  • 9 Document/HTML

  • Refine by Publication Year
  • 9 2025
  • 1 2023
  • 1 2021
  • 1 2019

  • Refine by Author
  • 2 Weber, Tobias
  • 1 Allen, Bradley P.
  • 1 Andreotti, Bruno
  • 1 Barbosa, Haniel
  • 1 Barrett, Clark
  • Show More...

  • Refine by Series/Journal
  • 5 LIPIcs
  • 5 OASIcs
  • 2 TGDK

  • Refine by Classification
  • 2 Applied computing → Computational genomics
  • 2 Computing methodologies → Natural language processing
  • 1 Applied computing
  • 1 Applied computing → Aerospace
  • 1 Applied computing → Anthropology
  • Show More...

  • Refine by Keyword
  • 1 ARRIVAL
  • 1 Active Learning
  • 1 Artificial Intelligence
  • 1 Astronaut
  • 1 Augmented Reality
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail