Search Results

Documents authored by Thomasse, Stephan



Thomasse, Stephan

Document
Temporalizing Digraphs via Linear-Size Balanced Bi-Trees

Authors: Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In a directed graph D on vertex set v₁,… ,v_n, a forward arc is an arc v_iv_j where i < j. A pair v_i,v_j is forward connected if there is a directed path from v_i to v_j consisting of forward arcs. In the Forward Connected Pairs Problem (FCPP), the input is a strongly connected digraph D, and the output is the maximum number of forward connected pairs in some vertex enumeration of D. We show that FCPP is in APX, as one can efficiently enumerate the vertices of D in order to achieve a quadratic number of forward connected pairs. For this, we construct a linear size balanced bi-tree T (an out-branching and an in-branching with same size and same root which are vertex disjoint in the sense that they share no vertex apart from their common root). The existence of such a T was left as an open problem (Brunelli, Crescenzi, Viennot, Networks 2023) motivated by the study of temporal paths in temporal networks. More precisely, T can be constructed in quadratic time (in the number of vertices) and has size at least n/3. The algorithm involves a particular depth-first search tree (Left-DFS) of independent interest, and shows that every strongly connected directed graph has a balanced separator which is a circuit. Remarkably, in the request version RFCPP of FCPP, where the input is a strong digraph D and a set of requests R consisting of pairs {x_i,y_i}, there is no constant c > 0 such that one can always find an enumeration realizing c.|R| forward connected pairs {x_i,y_i} (in either direction).

Cite as

Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot. Temporalizing Digraphs via Linear-Size Balanced Bi-Trees. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.STACS.2024.13,
  author =	{Bessy, St\'{e}phane and Thomass\'{e}, St\'{e}phan and Viennot, Laurent},
  title =	{{Temporalizing Digraphs via Linear-Size Balanced Bi-Trees}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.13},
  URN =		{urn:nbn:de:0030-drops-197235},
  doi =		{10.4230/LIPIcs.STACS.2024.13},
  annote =	{Keywords: digraph, temporal graph, temporalization, bi-tree, #1\{in-branching, out-branching, in-tree, out-tree\}, forward connected pairs, left-maximal DFS}
}
Document
Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄

Authors: Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Dallard, Milanič, and Štorgel [arXiv '22] ask if, for every class excluding a fixed planar graph H as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when H is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when H is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the t-vertex cycle, C_t [Gartland et al., STOC '21], and the disjoint union of t triangles, tC₃ [Bonamy et al., SODA '23]. We give, for every integer t, a polynomial-time algorithm running in n^O(t⁵) when H is the friendship graph K₁ + tK₂ (t disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in n^{O(t² log n) + f(t)}, with f a single-exponential function, when H is tC₃ ⊎ C₄ (the disjoint union of t triangles and a 4-vertex cycle). The former generalizes the algorithm readily obtained from Alekseev’s structural result on graphs excluding tK₂ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.’s result.

Cite as

Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek. Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ESA.2023.23,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Geniet, Colin and Thomass\'{e}, St\'{e}phan and Wesolek, Alexandra},
  title =	{{Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.23},
  URN =		{urn:nbn:de:0030-drops-186769},
  doi =		{10.4230/LIPIcs.ESA.2023.23},
  annote =	{Keywords: Maximum Independent Set, forbidden induced minors, quasipolynomial-time algorithms}
}
Document
Lossy Kernelization for (Implicit) Hitting Set Problems

Authors: Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We re-visit the complexity of polynomial time pre-processing (kernelization) for the d-Hitting Set problem. This is one of the most classic problems in Parameterized Complexity by itself, and, furthermore, it encompasses several other of the most well-studied problems in this field, such as Vertex Cover, Feedback Vertex Set in Tournaments (FVST) and Cluster Vertex Deletion (CVD). In fact, d-Hitting Set encompasses any deletion problem to a hereditary property that can be characterized by a finite set of forbidden induced subgraphs. With respect to bit size, the kernelization complexity of d-Hitting Set is essentially settled: there exists a kernel with 𝒪(k^d) bits (𝒪(k^d) sets and 𝒪(k^{d-1}) elements) and this it tight by the result of Dell and van Melkebeek [STOC 2010, JACM 2014]. Still, the question of whether there exists a kernel for d-Hitting Set with fewer elements has remained one of the most major open problems in Kernelization. In this paper, we first show that if we allow the kernelization to be lossy with a qualitatively better loss than the best possible approximation ratio of polynomial time approximation algorithms, then one can obtain kernels where the number of elements is linear for every fixed d. Further, based on this, we present our main result: we show that there exist approximate Turing kernelizations for d-Hitting Set that even beat the established bit-size lower bounds for exact kernelizations - in fact, we use a constant number of oracle calls, each with "near linear" (𝒪(k^{1+ε})) bit size, that is, almost the best one could hope for. Lastly, for two special cases of implicit 3-Hitting set, namely, FVST and CVD, we obtain the "best of both worlds" type of results - (1+ε)-approximate kernelizations with a linear number of vertices. In terms of size, this substantially improves the exact kernels of Fomin et al. [SODA 2018, TALG 2019], with simpler arguments.

Cite as

Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi. Lossy Kernelization for (Implicit) Hitting Set Problems. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2023.49,
  author =	{Fomin, Fedor V. and Le, Tien-Nam and Lokshtanov, Daniel and Saurabh, Saket and Thomass\'{e}, St\'{e}phan and Zehavi, Meirav},
  title =	{{Lossy Kernelization for (Implicit) Hitting Set Problems}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.49},
  URN =		{urn:nbn:de:0030-drops-187020},
  doi =		{10.4230/LIPIcs.ESA.2023.49},
  annote =	{Keywords: Hitting Set, Lossy Kernelization}
}
Document
First Order Logic and Twin-Width in Tournaments

Authors: Colin Geniet and Stéphan Thomassé

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We characterise the classes of tournaments with tractable first-order model checking. For every hereditary class of tournaments T, first-order model checking either is fixed parameter tractable, or is AW[*]-hard. This dichotomy coincides with the fact that T has either bounded or unbounded twin-width, and that the growth of T is either at most exponential or at least factorial. From the model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded twin-width. Twin-width is also characterised by three infinite families of obstructions: T has bounded twin-width if and only if it excludes at least one tournament from each family. This generalises results of Bonnet et al. on ordered graphs. The key for these results is a polynomial time algorithm which takes as input a tournament T and computes a linear order < on V(T) such that the twin-width of the birelation (T, <) is at most some function of the twin-width of T. Since approximating twin-width can be done in FPT time for an ordered structure (T, <), this provides a FPT approximation of twin-width for tournaments.

Cite as

Colin Geniet and Stéphan Thomassé. First Order Logic and Twin-Width in Tournaments. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{geniet_et_al:LIPIcs.ESA.2023.53,
  author =	{Geniet, Colin and Thomass\'{e}, St\'{e}phan},
  title =	{{First Order Logic and Twin-Width in Tournaments}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{53:1--53:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.53},
  URN =		{urn:nbn:de:0030-drops-187061},
  doi =		{10.4230/LIPIcs.ESA.2023.53},
  annote =	{Keywords: Tournaments, twin-width, first-order logic, model checking, NIP, small classes}
}
Document
Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication

Authors: Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We continue developing the theory around the twin-width of totally ordered binary structures (or equivalently, matrices over a finite alphabet), initiated in the previous paper of the series. We first introduce the notion of parity and linear minors of a matrix, which consists of iteratively replacing consecutive rows or consecutive columns with a linear combination of them. We show that a matrix class (i.e., a set of matrices closed under taking submatrices) has bounded twin-width if and only if its linear-minor closure does not contain all matrices. We observe that the fixed-parameter tractable (FPT) algorithm for first-order model checking on structures given with an O(1)-sequence (certificate of bounded twin-width) and the fact that first-order transductions of bounded twin-width classes have bounded twin-width, both established in Twin-width I, extend to first-order logic with modular counting quantifiers. We make explicit a win-win argument obtained as a by-product of Twin-width IV, and somewhat similar to bidimensionality, that we call rank-bidimensionality. This generalizes the seminal work of Guillemot and Marx [SODA '14], which builds on the Marcus-Tardos theorem [JCTA '04]. It works on general matrices (not only on classes of bounded twin-width) and, for example, yields FPT algorithms deciding if a small matrix is a parity or a linear minor of another matrix given in input, or exactly computing the grid or mixed number of a given matrix (i.e., the maximum integer k such that the row set and the column set of the matrix can be partitioned into k intervals, with each of the k² defined cells containing a non-zero entry, or two distinct rows and two distinct columns, respectively). Armed with the above-mentioned extension to modular counting, we show that the twin-width of the product of two conformal matrices A, B (i.e., whose dimensions are such that AB is defined) over a finite field is bounded by a function of the twin-width of A, of B, and of the size of the field. Furthermore, if A and B are n × n matrices of twin-width d over F_q, we show that AB can be computed in time O_{d,q}(n² log n). We finally present an ad hoc algorithm to efficiently multiply two matrices of bounded twin-width, with a single-exponential dependence in the twin-width bound. More precisely, pipelined to observations and results of Pilipczuk et al. [STACS '22], we obtain the following. If the inputs are given in a compact tree-like form (witnessing twin-width at most d), called twin-decomposition of width d, then two n × n matrices A, B over F₂ can be multiplied in time 4^{d+o(d)}n, in the sense that a twin-decomposition of their product AB, with width 2^{d+o(d)}, is output within that time, and each entry of AB can be queried in time O_d(log log n). Furthermore, for every ε > 0, the query time can be brought to constant time O(1/ε) if the running time is increased to near-linear 4^{d+o(d)}n^{1+ε}. Notably, the running time is sublinear (essentially square root) in the number of (non-zero) entries.

Cite as

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé. Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.STACS.2023.15,
  author =	{Bonnet, \'{E}douard and Giocanti, Ugo and Ossona de Mendez, Patrice and Thomass\'{e}, St\'{e}phan},
  title =	{{Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.15},
  URN =		{urn:nbn:de:0030-drops-176675},
  doi =		{10.4230/LIPIcs.STACS.2023.15},
  annote =	{Keywords: Twin-width, matrices, parity and linear minors, model theory, linear algebra, matrix multiplication, algorithms, computational complexity}
}
Document
Twin-Width VIII: Delineation and Win-Wins

Authors: Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We introduce the notion of delineation. A graph class C is said delineated by twin-width (or simply, delineated) if for every hereditary closure D of a subclass of C, it holds that D has bounded twin-width if and only if D is monadically dependent. An effective strengthening of delineation for a class C implies that tractable FO model checking on C is perfectly understood: On hereditary closures of subclasses D of C, FO model checking on D is fixed-parameter tractable (FPT) exactly when D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that K_{t,t}-free segment graphs, and axis-parallel H_t-free unit segment graphs have bounded twin-width, where H_t is the half-graph or ladder of height t. In contrast, axis-parallel H₄-free two-lengthed segment graphs have unbounded twin-width. We leave as an open question whether unit segment graphs are delineated. More broadly, we explore which structures (large bicliques, half-graphs, or independent sets) are responsible for making the twin-width large on the main classes of intersection and visibility graphs. Our new results, combined with the FPT algorithm for first-order model checking on graphs given with O(1)-sequences [BKTW, JACM '22], give rise to a variety of algorithmic win-win arguments. They all fall in the same framework: If p is an FO definable graph parameter that effectively functionally upperbounds twin-width on a class C, then p(G) ⩾ k can be decided in FPT time f(k) ⋅ |V(G)|^O(1). For instance, we readily derive FPT algorithms for k-Ladder on visibility graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This showcases that the theory of twin-width can serve outside of classes of bounded twin-width.

Cite as

Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé. Twin-Width VIII: Delineation and Win-Wins. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2022.9,
  author =	{Bonnet, \'{E}douard and Chakraborty, Dibyayan and Kim, Eun Jung and K\"{o}hler, Noleen and Lopes, Raul and Thomass\'{e}, St\'{e}phan},
  title =	{{Twin-Width VIII: Delineation and Win-Wins}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.9},
  URN =		{urn:nbn:de:0030-drops-173650},
  doi =		{10.4230/LIPIcs.IPEC.2022.9},
  annote =	{Keywords: Twin-width, intersection graphs, visibility graphs, monadic dependence and stability, first-order model checking}
}
Document
Invited Talk
A Brief Tour in Twin-Width (Invited Talk)

Authors: Stéphan Thomassé

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
This is an introduction to the notion of twin-width, with emphasis on how it interacts with first-order model checking and enumerative combinatorics. Even though approximating twin-width remains a challenge in general graphs, it is now well understood for ordered graphs, where bounded twin-width coincides with many other complexity gaps. For instance classes of graphs with linear FO-model checking, small classes, or NIP classes are exactly bounded twin-width classes. Some other applications of twin-width are also presented.

Cite as

Stéphan Thomassé. A Brief Tour in Twin-Width (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 6:1-6:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{thomasse:LIPIcs.ICALP.2022.6,
  author =	{Thomass\'{e}, St\'{e}phan},
  title =	{{A Brief Tour in Twin-Width}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{6:1--6:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.6},
  URN =		{urn:nbn:de:0030-drops-163473},
  doi =		{10.4230/LIPIcs.ICALP.2022.6},
  annote =	{Keywords: Twin-width, matrices, ordered graphs, enumerative combinatorics, model theory, algorithms, computational complexity, Ramsey theory}
}
Document
Twin-Width and Polynomial Kernels

Authors: Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
We study the existence of polynomial kernels for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. It was previously observed in [Bonnet et al., ICALP'21] that the problem k-Independent Set allows no polynomial kernel on graph of bounded twin-width by a very simple argument, which extends to several other problems such as k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching. In this work, we examine the k-Dominating Set and variants of k-Vertex Cover for the existence of polynomial kernels. As a main result, we show that k-Dominating Set does not admit a polynomial kernel on graphs of twin-width at most 4 under a standard complexity-theoretic assumption. The reduction is intricate, especially due to the effort to bring the twin-width down to 4, and it can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set with a slightly worse bound on the twin-width. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. These kernels rely on that graphs of bounded twin-width have Vapnik-Chervonenkis (VC) density 1, that is, for any vertex set X, the number of distinct neighborhoods in X is at most c⋅|X|, where c is a constant depending only on the twin-width. Interestingly the kernel applies to any graph class of VC density 1, and does not require a witness sequence. We also present a more intricate O(k^{1.5}) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most graph optimization/decision problems can be solved in polynomial time on graphs of twin-width at most 1.

Cite as

Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-Width and Polynomial Kernels. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2021.10,
  author =	{Bonnet, \'{E}douard and Kim, Eun Jung and Reinald, Amadeus and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Twin-Width and Polynomial Kernels}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.10},
  URN =		{urn:nbn:de:0030-drops-153932},
  doi =		{10.4230/LIPIcs.IPEC.2021.10},
  annote =	{Keywords: Twin-width, kernelization, lower bounds, Dominating Set}
}
Document
Track A: Algorithms, Complexity and Games
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring

Authors: Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order model checking can be solved in time f(d,k)n for n-vertex graphs given with a witness that the twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet et al., FOCS '20]. The inevitable price to pay for such a general result is that f is a tower of exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need not be impractical. We present 2^{O(k)}n-time algorithms for k-Independent Set, r-Scattered Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism, and Induced Subgraph Isomorphism, in the slightly worse running time 2^{O(k log k)}n. Up to logarithmic factors in the exponent, all these running times are optimal, unless the Exponential Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a dynamic programming scheme following the sequence of contractions forward. We then show a second algorithmic use of the contraction sequence, by starting at its end and rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-width classes, and does so with a very concise proof. It readily yields a constant approximation for Max Independent Set on K_t-free graphs of bounded twin-width, and a 2^{O(OPT)}-approximation for Min Coloring on bounded twin-width graphs. We further observe that a constant approximation for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number) would actually imply a PTAS. The third algorithmic use of twin-width builds on the second one. Playing the contraction sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and hence All-Pairs Shortest Paths in time O(n log n) and time O(n² log n), respectively. In sharp contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width graphs, unless the Strong Exponential Time Hypothesis fails. The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions [Bonnet et al., SODA '21], a branching and more robust witness of low twin-width. We present constant-approximation algorithms for Min Dominating Set and related problems, on bounded twin-width graphs, by showing that the integrality gap is constant. This is done by going down the versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a greedy approach yields the desired approximation.

Cite as

Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 35:1-35:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ICALP.2021.35,
  author =	{Bonnet, \'{E}douard and Geniet, Colin and Kim, Eun Jung and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Twin-width III: Max Independent Set, Min Dominating Set, and Coloring}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{35:1--35:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.35},
  URN =		{urn:nbn:de:0030-drops-141044},
  doi =		{10.4230/LIPIcs.ICALP.2021.35},
  annote =	{Keywords: Twin-width, Max Independent Set, Min Dominating Set, Coloring, Parameterized Algorithms, Approximation Algorithms, Exact Algorithms}
}
Document
An Algorithmic Weakening of the Erdős-Hajnal Conjecture

Authors: Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We study the approximability of the Maximum Independent Set (MIS) problem in H-free graphs (that is, graphs which do not admit H as an induced subgraph). As one motivation we investigate the following conjecture: for every fixed graph H, there exists a constant δ > 0 such that MIS can be n^{1-δ}-approximated in H-free graphs, where n denotes the number of vertices of the input graph. We first prove that a constructive version of the celebrated Erdős-Hajnal conjecture implies ours. We then prove that the set of graphs H satisfying our conjecture is closed under the so-called graph substitution. This, together with the known polynomial-time algorithms for MIS in H-free graphs (e.g. P₆-free and fork-free graphs), implies that our conjecture holds for many graphs H for which the Erdős-Hajnal conjecture is still open. We then focus on improving the constant δ for some graph classes: we prove that the classical Local Search algorithm provides an OPT^{1-1/t}-approximation in K_{t, t}-free graphs (hence a √{OPT}-approximation in C₄-free graphs), and, while there is a simple √n-approximation in triangle-free graphs, it cannot be improved to n^{1/4-ε} for any ε > 0 unless NP ⊆ BPP. More generally, we show that there is a constant c such that MIS in graphs of girth γ cannot be n^{c/(γ)}-approximated. Up to a constant factor in the exponent, this matches the ratio of a known approximation algorithm by Monien and Speckenmeyer, and by Murphy. To the best of our knowledge, this is the first strong (i.e., Ω(n^δ) for some δ > 0) inapproximability result for Maximum Independent Set in a proper hereditary class.

Cite as

Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant. An Algorithmic Weakening of the Erdős-Hajnal Conjecture. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ESA.2020.23,
  author =	{Bonnet, \'{E}douard and Thomass\'{e}, St\'{e}phan and Tran, Xuan Thang and Watrigant, R\'{e}mi},
  title =	{{An Algorithmic Weakening of the Erd\H{o}s-Hajnal Conjecture}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.23},
  URN =		{urn:nbn:de:0030-drops-128894},
  doi =		{10.4230/LIPIcs.ESA.2020.23},
  annote =	{Keywords: Approximation, Maximum Independent Set, H-free Graphs, Erd\H{o}s-Hajnal conjecture}
}
Document
The Independent Set Problem Is FPT for Even-Hole-Free Graphs

Authors: Edin Husić, Stéphan Thomassé, and Nicolas Trotignon

Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)


Abstract
The class of even-hole-free graphs is very similar to the class of perfect graphs, and was indeed a cornerstone in the tools leading to the proof of the Strong Perfect Graph Theorem. However, the complexity of computing a maximum independent set (MIS) is a long-standing open question in even-hole-free graphs. From the hardness point of view, MIS is W[1]-hard in the class of graphs without induced 4-cycle (when parameterized by the solution size). Halfway of these, we show in this paper that MIS is FPT when parameterized by the solution size in the class of even-hole-free graphs. The main idea is to apply twice the well-known technique of augmenting graphs to extend some initial independent set.

Cite as

Edin Husić, Stéphan Thomassé, and Nicolas Trotignon. The Independent Set Problem Is FPT for Even-Hole-Free Graphs. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 21:1-21:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{husic_et_al:LIPIcs.IPEC.2019.21,
  author =	{Husi\'{c}, Edin and Thomass\'{e}, St\'{e}phan and Trotignon, Nicolas},
  title =	{{The Independent Set Problem Is FPT for Even-Hole-Free Graphs}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{21:1--21:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Jansen, Bart M. P. and Telle, Jan Arne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.21},
  URN =		{urn:nbn:de:0030-drops-114826},
  doi =		{10.4230/LIPIcs.IPEC.2019.21},
  annote =	{Keywords: independent set, FPT algorithm, even-hole-free graph, augmenting graph}
}
Document
When Maximum Stable Set Can Be Solved in FPT Time

Authors: Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Maximum Independent Set (MIS for short) is in general graphs the paradigmatic W[1]-hard problem. In stark contrast, polynomial-time algorithms are known when the inputs are restricted to structured graph classes such as, for instance, perfect graphs (which includes bipartite graphs, chordal graphs, co-graphs, etc.) or claw-free graphs. In this paper, we introduce some variants of co-graphs with parameterized noise, that is, graphs that can be made into disjoint unions or complete sums by the removal of a certain number of vertices and the addition/deletion of a certain number of edges per incident vertex, both controlled by the parameter. We give a series of FPT Turing-reductions on these classes and use them to make some progress on the parameterized complexity of MIS in H-free graphs. We show that for every fixed t >=slant 1, MIS is FPT in P(1,t,t,t)-free graphs, where P(1,t,t,t) is the graph obtained by substituting all the vertices of a four-vertex path but one end of the path by cliques of size t. We also provide randomized FPT algorithms in dart-free graphs and in cricket-free graphs. This settles the FPT/W[1]-hard dichotomy for five-vertex graphs H.

Cite as

Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant. When Maximum Stable Set Can Be Solved in FPT Time. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ISAAC.2019.49,
  author =	{Bonnet, \'{E}douard and Bousquet, Nicolas and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{When Maximum Stable Set Can Be Solved in FPT Time}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{49:1--49:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.49},
  URN =		{urn:nbn:de:0030-drops-115458},
  doi =		{10.4230/LIPIcs.ISAAC.2019.49},
  annote =	{Keywords: Parameterized Algorithms, Independent Set, H-Free Graphs}
}
Document
Parameterized Complexity of Independent Set in H-Free Graphs

Authors: Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)


Abstract
In this paper, we investigate the complexity of Maximum Independent Set (MIS) in the class of H-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that the problem remains NP-hard for most graphs H, we study its fixed-parameter tractability and make progress towards a dichotomy between FPT and W[1]-hard cases. We first show that MIS remains W[1]-hard in graphs forbidding simultaneously K_{1, 4}, any finite set of cycles of length at least 4, and any finite set of trees with at least two branching vertices. In particular, this answers an open question of Dabrowski et al. concerning C_4-free graphs. Then we extend the polynomial algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H is a disjoint union of cliques. We also provide a framework for solving several other cases, which is a generalization of the concept of iterative expansion accompanied by the extraction of a particular structure using Ramsey's theorem. Iterative expansion is a maximization version of the so-called iterative compression. We believe that our framework can be of independent interest for solving other similar graph problems. Finally, we present positive and negative results on the existence of polynomial (Turing) kernels for several graphs H.

Cite as

Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant. Parameterized Complexity of Independent Set in H-Free Graphs. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 17:1-17:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2018.17,
  author =	{Bonnet, \'{E}douard and Bousquet, Nicolas and Charbit, Pierre and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Parameterized Complexity of Independent Set in H-Free Graphs}},
  booktitle =	{13th International Symposium on Parameterized and Exact Computation (IPEC 2018)},
  pages =	{17:1--17:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-084-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{115},
  editor =	{Paul, Christophe and Pilipczuk, Michal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.17},
  URN =		{urn:nbn:de:0030-drops-102183},
  doi =		{10.4230/LIPIcs.IPEC.2018.17},
  annote =	{Keywords: Parameterized Algorithms, Independent Set, H-Free Graphs}
}
Document
On the Complexity of Partial Derivatives

Authors: Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte, and Stéphan Thomassé

Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)


Abstract
The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the dimension of its space of partial derivatives? We show that this problem is #P-hard and we ask whether it belongs to #P. We analyze the "trace method", recently used in combinatorics and in algebraic complexity to lower bound the rank of certain matrices. We show that this method provides a polynomial-time computable lower bound on the dimension of the span of partial derivatives, and from this method we derive closed-form lower bounds. We leave as an open problem the existence of an approximation algorithm with reasonable performance guarantees.

Cite as

Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte, and Stéphan Thomassé. On the Complexity of Partial Derivatives. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 37:1-37:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{garciamarco_et_al:LIPIcs.STACS.2017.37,
  author =	{Garcia-Marco, Ignacio and Koiran, Pascal and Pecatte, Timoth\'{e}e and Thomass\'{e}, St\'{e}phan},
  title =	{{On the Complexity of Partial Derivatives}},
  booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
  pages =	{37:1--37:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-028-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{66},
  editor =	{Vollmer, Heribert and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.37},
  URN =		{urn:nbn:de:0030-drops-69964},
  doi =		{10.4230/LIPIcs.STACS.2017.37},
  annote =	{Keywords: counting complexity, simplicial complex, lower bounds, arithmetic circuits}
}
Document
Simultaneously Satisfying Linear Equations Over F_2: MaxLin2 and Max-r-Lin2 Parameterized Above Average

Authors: Robert Crowston, Michael Fellows, Gregory Gutin, Mark Jones, Frances Rosamond, Stéphan Thomassé, and Anders Yeo

Published in: LIPIcs, Volume 13, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)


Abstract
In the parameterized problem MaxLin2-AA[$k$], we are given a system with variables x_1,...,x_n consisting of equations of the form Product_{i in I}x_i = b, where x_i,b in {-1, 1} and I is a nonempty subset of {1,...,n}, each equation has a positive integral weight, and we are to decide whether it is possible to simultaneously satisfy equations of total weight at least W/2+k, where W is the total weight of all equations and k is the parameter (if k=0, the possibility is assured). We show that MaxLin2-AA[k] has a kernel with at most O(k^2 log k) variables and can be solved in time 2^{O(k log k)}(nm)^{O(1)}. This solves an open problem of Mahajan et al. (2006). The problem Max-r-Lin2-AA[k,r] is the same as MaxLin2-AA[k] with two differences: each equation has at most r variables and r is the second parameter. We prove a theorem on Max-$r$-Lin2-AA[k,r] which implies that Max-r-Lin2-AA[k,r] has a kernel with at most (2k-1)r variables, improving a number of results including one by Kim and Williams (2010). The theorem also implies a lower bound on the maximum of a function f that maps {-1,1}^n to the set of reals and whose Fourier expansion (which is a multilinear polynomial) is of degree r. We show applicability of the lower bound by giving a new proof of the Edwards-Erdös bound (each connected graph on n vertices and m edges has a bipartite subgraph with at least m/2 +(n-1)/4 edges) and obtaining a generalization.

Cite as

Robert Crowston, Michael Fellows, Gregory Gutin, Mark Jones, Frances Rosamond, Stéphan Thomassé, and Anders Yeo. Simultaneously Satisfying Linear Equations Over F_2: MaxLin2 and Max-r-Lin2 Parameterized Above Average. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 229-240, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{crowston_et_al:LIPIcs.FSTTCS.2011.229,
  author =	{Crowston, Robert and Fellows, Michael and Gutin, Gregory and Jones, Mark and Rosamond, Frances and Thomass\'{e}, St\'{e}phan and Yeo, Anders},
  title =	{{Simultaneously Satisfying Linear Equations Over F\underline2: MaxLin2 and Max-r-Lin2 Parameterized Above Average}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)},
  pages =	{229--240},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-34-7},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{13},
  editor =	{Chakraborty, Supratik and Kumar, Amit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2011.229},
  URN =		{urn:nbn:de:0030-drops-33416},
  doi =		{10.4230/LIPIcs.FSTTCS.2011.229},
  annote =	{Keywords: MaxLin, fixed-parameter tractability, kernelization, pseudo-boolean functions}
}
Document
Kernels for Feedback Arc Set In Tournaments

Authors: Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
A tournament $T = (V,A)$ is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on $n$ vertices and an integer parameter $k$, the {\sc Feedback Arc Set} problem asks whether thegiven digraph has a set of $k$ arcs whose removal results in an acyclicdigraph. The {\sc Feedback Arc Set} problem restricted to tournaments is knownas the {\sc $k$-Feedback Arc Set in Tournaments ($k$-FAST)} problem. In thispaper we obtain a linear vertex kernel for \FAST{}. That is, we give apolynomial time algorithm which given an input instance $T$ to \FAST{} obtains an equivalent instance $T'$ on $O(k)$ vertices. In fact, given any fixed $\epsilon > 0$, the kernelized instance has at most $(2 + \epsilon)k$ vertices.Our result improves the previous known bound of $O(k^2)$ on the kernel size for\FAST{}. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for \FAST.

Cite as

Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for Feedback Arc Set In Tournaments. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 37-47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.FSTTCS.2009.2305,
  author =	{Bessy, St\'{e}phane and Fomin, Fedor V. and Gaspers, Serge and Paul, Christophe and Perez, Anthony and Saurabh, Saket and Thomass\'{e}, St\'{e}phan},
  title =	{{Kernels for Feedback Arc Set In Tournaments}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{37--47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2305},
  URN =		{urn:nbn:de:0030-drops-23055},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2305},
  annote =	{Keywords: Parameterized complexity, kernels, tournaments}
}
Document
A Polynomial Kernel for Multicut in Trees

Authors: Nicolas Bousquet, Jean Daligault, Stephan Thomasse, and Anders Yeo

Published in: LIPIcs, Volume 3, 26th International Symposium on Theoretical Aspects of Computer Science (2009)


Abstract
The {\sc Multicut In Trees} problem consists in deciding, given a tree, a set of requests (i.e. paths in the tree) and an integer $k$, whether there exists a set of $k$ edges cutting all the requests. This problem was shown to be FPT by Guo and Niedermeyer (2005). They also provided an exponential kernel. They asked whether this problem has a polynomial kernel. This question was also raised by Fellows (2006). We show that {\sc Multicut In Trees} has a polynomial kernel.

Cite as

Nicolas Bousquet, Jean Daligault, Stephan Thomasse, and Anders Yeo. A Polynomial Kernel for Multicut in Trees. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 183-194, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2009.1824,
  author =	{Bousquet, Nicolas and Daligault, Jean and Thomasse, Stephan and Yeo, Anders},
  title =	{{A Polynomial Kernel for Multicut in Trees}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{183--194},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Albers, Susanne and Marion, Jean-Yves},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2009.1824},
  URN =		{urn:nbn:de:0030-drops-18247},
  doi =		{10.4230/LIPIcs.STACS.2009.1824},
  annote =	{Keywords: }
}

Thomassé, Stéphan

Document
Temporalizing Digraphs via Linear-Size Balanced Bi-Trees

Authors: Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In a directed graph D on vertex set v₁,… ,v_n, a forward arc is an arc v_iv_j where i < j. A pair v_i,v_j is forward connected if there is a directed path from v_i to v_j consisting of forward arcs. In the Forward Connected Pairs Problem (FCPP), the input is a strongly connected digraph D, and the output is the maximum number of forward connected pairs in some vertex enumeration of D. We show that FCPP is in APX, as one can efficiently enumerate the vertices of D in order to achieve a quadratic number of forward connected pairs. For this, we construct a linear size balanced bi-tree T (an out-branching and an in-branching with same size and same root which are vertex disjoint in the sense that they share no vertex apart from their common root). The existence of such a T was left as an open problem (Brunelli, Crescenzi, Viennot, Networks 2023) motivated by the study of temporal paths in temporal networks. More precisely, T can be constructed in quadratic time (in the number of vertices) and has size at least n/3. The algorithm involves a particular depth-first search tree (Left-DFS) of independent interest, and shows that every strongly connected directed graph has a balanced separator which is a circuit. Remarkably, in the request version RFCPP of FCPP, where the input is a strong digraph D and a set of requests R consisting of pairs {x_i,y_i}, there is no constant c > 0 such that one can always find an enumeration realizing c.|R| forward connected pairs {x_i,y_i} (in either direction).

Cite as

Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot. Temporalizing Digraphs via Linear-Size Balanced Bi-Trees. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.STACS.2024.13,
  author =	{Bessy, St\'{e}phane and Thomass\'{e}, St\'{e}phan and Viennot, Laurent},
  title =	{{Temporalizing Digraphs via Linear-Size Balanced Bi-Trees}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.13},
  URN =		{urn:nbn:de:0030-drops-197235},
  doi =		{10.4230/LIPIcs.STACS.2024.13},
  annote =	{Keywords: digraph, temporal graph, temporalization, bi-tree, #1\{in-branching, out-branching, in-tree, out-tree\}, forward connected pairs, left-maximal DFS}
}
Document
Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄

Authors: Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Dallard, Milanič, and Štorgel [arXiv '22] ask if, for every class excluding a fixed planar graph H as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when H is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when H is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the t-vertex cycle, C_t [Gartland et al., STOC '21], and the disjoint union of t triangles, tC₃ [Bonamy et al., SODA '23]. We give, for every integer t, a polynomial-time algorithm running in n^O(t⁵) when H is the friendship graph K₁ + tK₂ (t disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in n^{O(t² log n) + f(t)}, with f a single-exponential function, when H is tC₃ ⊎ C₄ (the disjoint union of t triangles and a 4-vertex cycle). The former generalizes the algorithm readily obtained from Alekseev’s structural result on graphs excluding tK₂ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.’s result.

Cite as

Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek. Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ESA.2023.23,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Geniet, Colin and Thomass\'{e}, St\'{e}phan and Wesolek, Alexandra},
  title =	{{Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.23},
  URN =		{urn:nbn:de:0030-drops-186769},
  doi =		{10.4230/LIPIcs.ESA.2023.23},
  annote =	{Keywords: Maximum Independent Set, forbidden induced minors, quasipolynomial-time algorithms}
}
Document
Lossy Kernelization for (Implicit) Hitting Set Problems

Authors: Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We re-visit the complexity of polynomial time pre-processing (kernelization) for the d-Hitting Set problem. This is one of the most classic problems in Parameterized Complexity by itself, and, furthermore, it encompasses several other of the most well-studied problems in this field, such as Vertex Cover, Feedback Vertex Set in Tournaments (FVST) and Cluster Vertex Deletion (CVD). In fact, d-Hitting Set encompasses any deletion problem to a hereditary property that can be characterized by a finite set of forbidden induced subgraphs. With respect to bit size, the kernelization complexity of d-Hitting Set is essentially settled: there exists a kernel with 𝒪(k^d) bits (𝒪(k^d) sets and 𝒪(k^{d-1}) elements) and this it tight by the result of Dell and van Melkebeek [STOC 2010, JACM 2014]. Still, the question of whether there exists a kernel for d-Hitting Set with fewer elements has remained one of the most major open problems in Kernelization. In this paper, we first show that if we allow the kernelization to be lossy with a qualitatively better loss than the best possible approximation ratio of polynomial time approximation algorithms, then one can obtain kernels where the number of elements is linear for every fixed d. Further, based on this, we present our main result: we show that there exist approximate Turing kernelizations for d-Hitting Set that even beat the established bit-size lower bounds for exact kernelizations - in fact, we use a constant number of oracle calls, each with "near linear" (𝒪(k^{1+ε})) bit size, that is, almost the best one could hope for. Lastly, for two special cases of implicit 3-Hitting set, namely, FVST and CVD, we obtain the "best of both worlds" type of results - (1+ε)-approximate kernelizations with a linear number of vertices. In terms of size, this substantially improves the exact kernels of Fomin et al. [SODA 2018, TALG 2019], with simpler arguments.

Cite as

Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi. Lossy Kernelization for (Implicit) Hitting Set Problems. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2023.49,
  author =	{Fomin, Fedor V. and Le, Tien-Nam and Lokshtanov, Daniel and Saurabh, Saket and Thomass\'{e}, St\'{e}phan and Zehavi, Meirav},
  title =	{{Lossy Kernelization for (Implicit) Hitting Set Problems}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.49},
  URN =		{urn:nbn:de:0030-drops-187020},
  doi =		{10.4230/LIPIcs.ESA.2023.49},
  annote =	{Keywords: Hitting Set, Lossy Kernelization}
}
Document
First Order Logic and Twin-Width in Tournaments

Authors: Colin Geniet and Stéphan Thomassé

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We characterise the classes of tournaments with tractable first-order model checking. For every hereditary class of tournaments T, first-order model checking either is fixed parameter tractable, or is AW[*]-hard. This dichotomy coincides with the fact that T has either bounded or unbounded twin-width, and that the growth of T is either at most exponential or at least factorial. From the model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded twin-width. Twin-width is also characterised by three infinite families of obstructions: T has bounded twin-width if and only if it excludes at least one tournament from each family. This generalises results of Bonnet et al. on ordered graphs. The key for these results is a polynomial time algorithm which takes as input a tournament T and computes a linear order < on V(T) such that the twin-width of the birelation (T, <) is at most some function of the twin-width of T. Since approximating twin-width can be done in FPT time for an ordered structure (T, <), this provides a FPT approximation of twin-width for tournaments.

Cite as

Colin Geniet and Stéphan Thomassé. First Order Logic and Twin-Width in Tournaments. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{geniet_et_al:LIPIcs.ESA.2023.53,
  author =	{Geniet, Colin and Thomass\'{e}, St\'{e}phan},
  title =	{{First Order Logic and Twin-Width in Tournaments}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{53:1--53:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.53},
  URN =		{urn:nbn:de:0030-drops-187061},
  doi =		{10.4230/LIPIcs.ESA.2023.53},
  annote =	{Keywords: Tournaments, twin-width, first-order logic, model checking, NIP, small classes}
}
Document
Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication

Authors: Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We continue developing the theory around the twin-width of totally ordered binary structures (or equivalently, matrices over a finite alphabet), initiated in the previous paper of the series. We first introduce the notion of parity and linear minors of a matrix, which consists of iteratively replacing consecutive rows or consecutive columns with a linear combination of them. We show that a matrix class (i.e., a set of matrices closed under taking submatrices) has bounded twin-width if and only if its linear-minor closure does not contain all matrices. We observe that the fixed-parameter tractable (FPT) algorithm for first-order model checking on structures given with an O(1)-sequence (certificate of bounded twin-width) and the fact that first-order transductions of bounded twin-width classes have bounded twin-width, both established in Twin-width I, extend to first-order logic with modular counting quantifiers. We make explicit a win-win argument obtained as a by-product of Twin-width IV, and somewhat similar to bidimensionality, that we call rank-bidimensionality. This generalizes the seminal work of Guillemot and Marx [SODA '14], which builds on the Marcus-Tardos theorem [JCTA '04]. It works on general matrices (not only on classes of bounded twin-width) and, for example, yields FPT algorithms deciding if a small matrix is a parity or a linear minor of another matrix given in input, or exactly computing the grid or mixed number of a given matrix (i.e., the maximum integer k such that the row set and the column set of the matrix can be partitioned into k intervals, with each of the k² defined cells containing a non-zero entry, or two distinct rows and two distinct columns, respectively). Armed with the above-mentioned extension to modular counting, we show that the twin-width of the product of two conformal matrices A, B (i.e., whose dimensions are such that AB is defined) over a finite field is bounded by a function of the twin-width of A, of B, and of the size of the field. Furthermore, if A and B are n × n matrices of twin-width d over F_q, we show that AB can be computed in time O_{d,q}(n² log n). We finally present an ad hoc algorithm to efficiently multiply two matrices of bounded twin-width, with a single-exponential dependence in the twin-width bound. More precisely, pipelined to observations and results of Pilipczuk et al. [STACS '22], we obtain the following. If the inputs are given in a compact tree-like form (witnessing twin-width at most d), called twin-decomposition of width d, then two n × n matrices A, B over F₂ can be multiplied in time 4^{d+o(d)}n, in the sense that a twin-decomposition of their product AB, with width 2^{d+o(d)}, is output within that time, and each entry of AB can be queried in time O_d(log log n). Furthermore, for every ε > 0, the query time can be brought to constant time O(1/ε) if the running time is increased to near-linear 4^{d+o(d)}n^{1+ε}. Notably, the running time is sublinear (essentially square root) in the number of (non-zero) entries.

Cite as

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé. Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.STACS.2023.15,
  author =	{Bonnet, \'{E}douard and Giocanti, Ugo and Ossona de Mendez, Patrice and Thomass\'{e}, St\'{e}phan},
  title =	{{Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.15},
  URN =		{urn:nbn:de:0030-drops-176675},
  doi =		{10.4230/LIPIcs.STACS.2023.15},
  annote =	{Keywords: Twin-width, matrices, parity and linear minors, model theory, linear algebra, matrix multiplication, algorithms, computational complexity}
}
Document
Twin-Width VIII: Delineation and Win-Wins

Authors: Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We introduce the notion of delineation. A graph class C is said delineated by twin-width (or simply, delineated) if for every hereditary closure D of a subclass of C, it holds that D has bounded twin-width if and only if D is monadically dependent. An effective strengthening of delineation for a class C implies that tractable FO model checking on C is perfectly understood: On hereditary closures of subclasses D of C, FO model checking on D is fixed-parameter tractable (FPT) exactly when D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that K_{t,t}-free segment graphs, and axis-parallel H_t-free unit segment graphs have bounded twin-width, where H_t is the half-graph or ladder of height t. In contrast, axis-parallel H₄-free two-lengthed segment graphs have unbounded twin-width. We leave as an open question whether unit segment graphs are delineated. More broadly, we explore which structures (large bicliques, half-graphs, or independent sets) are responsible for making the twin-width large on the main classes of intersection and visibility graphs. Our new results, combined with the FPT algorithm for first-order model checking on graphs given with O(1)-sequences [BKTW, JACM '22], give rise to a variety of algorithmic win-win arguments. They all fall in the same framework: If p is an FO definable graph parameter that effectively functionally upperbounds twin-width on a class C, then p(G) ⩾ k can be decided in FPT time f(k) ⋅ |V(G)|^O(1). For instance, we readily derive FPT algorithms for k-Ladder on visibility graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This showcases that the theory of twin-width can serve outside of classes of bounded twin-width.

Cite as

Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé. Twin-Width VIII: Delineation and Win-Wins. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2022.9,
  author =	{Bonnet, \'{E}douard and Chakraborty, Dibyayan and Kim, Eun Jung and K\"{o}hler, Noleen and Lopes, Raul and Thomass\'{e}, St\'{e}phan},
  title =	{{Twin-Width VIII: Delineation and Win-Wins}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.9},
  URN =		{urn:nbn:de:0030-drops-173650},
  doi =		{10.4230/LIPIcs.IPEC.2022.9},
  annote =	{Keywords: Twin-width, intersection graphs, visibility graphs, monadic dependence and stability, first-order model checking}
}
Document
Invited Talk
A Brief Tour in Twin-Width (Invited Talk)

Authors: Stéphan Thomassé

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
This is an introduction to the notion of twin-width, with emphasis on how it interacts with first-order model checking and enumerative combinatorics. Even though approximating twin-width remains a challenge in general graphs, it is now well understood for ordered graphs, where bounded twin-width coincides with many other complexity gaps. For instance classes of graphs with linear FO-model checking, small classes, or NIP classes are exactly bounded twin-width classes. Some other applications of twin-width are also presented.

Cite as

Stéphan Thomassé. A Brief Tour in Twin-Width (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 6:1-6:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{thomasse:LIPIcs.ICALP.2022.6,
  author =	{Thomass\'{e}, St\'{e}phan},
  title =	{{A Brief Tour in Twin-Width}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{6:1--6:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.6},
  URN =		{urn:nbn:de:0030-drops-163473},
  doi =		{10.4230/LIPIcs.ICALP.2022.6},
  annote =	{Keywords: Twin-width, matrices, ordered graphs, enumerative combinatorics, model theory, algorithms, computational complexity, Ramsey theory}
}
Document
Twin-Width and Polynomial Kernels

Authors: Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
We study the existence of polynomial kernels for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. It was previously observed in [Bonnet et al., ICALP'21] that the problem k-Independent Set allows no polynomial kernel on graph of bounded twin-width by a very simple argument, which extends to several other problems such as k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching. In this work, we examine the k-Dominating Set and variants of k-Vertex Cover for the existence of polynomial kernels. As a main result, we show that k-Dominating Set does not admit a polynomial kernel on graphs of twin-width at most 4 under a standard complexity-theoretic assumption. The reduction is intricate, especially due to the effort to bring the twin-width down to 4, and it can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set with a slightly worse bound on the twin-width. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. These kernels rely on that graphs of bounded twin-width have Vapnik-Chervonenkis (VC) density 1, that is, for any vertex set X, the number of distinct neighborhoods in X is at most c⋅|X|, where c is a constant depending only on the twin-width. Interestingly the kernel applies to any graph class of VC density 1, and does not require a witness sequence. We also present a more intricate O(k^{1.5}) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most graph optimization/decision problems can be solved in polynomial time on graphs of twin-width at most 1.

Cite as

Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-Width and Polynomial Kernels. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2021.10,
  author =	{Bonnet, \'{E}douard and Kim, Eun Jung and Reinald, Amadeus and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Twin-Width and Polynomial Kernels}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.10},
  URN =		{urn:nbn:de:0030-drops-153932},
  doi =		{10.4230/LIPIcs.IPEC.2021.10},
  annote =	{Keywords: Twin-width, kernelization, lower bounds, Dominating Set}
}
Document
Track A: Algorithms, Complexity and Games
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring

Authors: Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order model checking can be solved in time f(d,k)n for n-vertex graphs given with a witness that the twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet et al., FOCS '20]. The inevitable price to pay for such a general result is that f is a tower of exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need not be impractical. We present 2^{O(k)}n-time algorithms for k-Independent Set, r-Scattered Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism, and Induced Subgraph Isomorphism, in the slightly worse running time 2^{O(k log k)}n. Up to logarithmic factors in the exponent, all these running times are optimal, unless the Exponential Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a dynamic programming scheme following the sequence of contractions forward. We then show a second algorithmic use of the contraction sequence, by starting at its end and rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-width classes, and does so with a very concise proof. It readily yields a constant approximation for Max Independent Set on K_t-free graphs of bounded twin-width, and a 2^{O(OPT)}-approximation for Min Coloring on bounded twin-width graphs. We further observe that a constant approximation for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number) would actually imply a PTAS. The third algorithmic use of twin-width builds on the second one. Playing the contraction sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and hence All-Pairs Shortest Paths in time O(n log n) and time O(n² log n), respectively. In sharp contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width graphs, unless the Strong Exponential Time Hypothesis fails. The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions [Bonnet et al., SODA '21], a branching and more robust witness of low twin-width. We present constant-approximation algorithms for Min Dominating Set and related problems, on bounded twin-width graphs, by showing that the integrality gap is constant. This is done by going down the versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a greedy approach yields the desired approximation.

Cite as

Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 35:1-35:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ICALP.2021.35,
  author =	{Bonnet, \'{E}douard and Geniet, Colin and Kim, Eun Jung and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Twin-width III: Max Independent Set, Min Dominating Set, and Coloring}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{35:1--35:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.35},
  URN =		{urn:nbn:de:0030-drops-141044},
  doi =		{10.4230/LIPIcs.ICALP.2021.35},
  annote =	{Keywords: Twin-width, Max Independent Set, Min Dominating Set, Coloring, Parameterized Algorithms, Approximation Algorithms, Exact Algorithms}
}
Document
An Algorithmic Weakening of the Erdős-Hajnal Conjecture

Authors: Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We study the approximability of the Maximum Independent Set (MIS) problem in H-free graphs (that is, graphs which do not admit H as an induced subgraph). As one motivation we investigate the following conjecture: for every fixed graph H, there exists a constant δ > 0 such that MIS can be n^{1-δ}-approximated in H-free graphs, where n denotes the number of vertices of the input graph. We first prove that a constructive version of the celebrated Erdős-Hajnal conjecture implies ours. We then prove that the set of graphs H satisfying our conjecture is closed under the so-called graph substitution. This, together with the known polynomial-time algorithms for MIS in H-free graphs (e.g. P₆-free and fork-free graphs), implies that our conjecture holds for many graphs H for which the Erdős-Hajnal conjecture is still open. We then focus on improving the constant δ for some graph classes: we prove that the classical Local Search algorithm provides an OPT^{1-1/t}-approximation in K_{t, t}-free graphs (hence a √{OPT}-approximation in C₄-free graphs), and, while there is a simple √n-approximation in triangle-free graphs, it cannot be improved to n^{1/4-ε} for any ε > 0 unless NP ⊆ BPP. More generally, we show that there is a constant c such that MIS in graphs of girth γ cannot be n^{c/(γ)}-approximated. Up to a constant factor in the exponent, this matches the ratio of a known approximation algorithm by Monien and Speckenmeyer, and by Murphy. To the best of our knowledge, this is the first strong (i.e., Ω(n^δ) for some δ > 0) inapproximability result for Maximum Independent Set in a proper hereditary class.

Cite as

Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant. An Algorithmic Weakening of the Erdős-Hajnal Conjecture. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ESA.2020.23,
  author =	{Bonnet, \'{E}douard and Thomass\'{e}, St\'{e}phan and Tran, Xuan Thang and Watrigant, R\'{e}mi},
  title =	{{An Algorithmic Weakening of the Erd\H{o}s-Hajnal Conjecture}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.23},
  URN =		{urn:nbn:de:0030-drops-128894},
  doi =		{10.4230/LIPIcs.ESA.2020.23},
  annote =	{Keywords: Approximation, Maximum Independent Set, H-free Graphs, Erd\H{o}s-Hajnal conjecture}
}
Document
The Independent Set Problem Is FPT for Even-Hole-Free Graphs

Authors: Edin Husić, Stéphan Thomassé, and Nicolas Trotignon

Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)


Abstract
The class of even-hole-free graphs is very similar to the class of perfect graphs, and was indeed a cornerstone in the tools leading to the proof of the Strong Perfect Graph Theorem. However, the complexity of computing a maximum independent set (MIS) is a long-standing open question in even-hole-free graphs. From the hardness point of view, MIS is W[1]-hard in the class of graphs without induced 4-cycle (when parameterized by the solution size). Halfway of these, we show in this paper that MIS is FPT when parameterized by the solution size in the class of even-hole-free graphs. The main idea is to apply twice the well-known technique of augmenting graphs to extend some initial independent set.

Cite as

Edin Husić, Stéphan Thomassé, and Nicolas Trotignon. The Independent Set Problem Is FPT for Even-Hole-Free Graphs. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 21:1-21:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{husic_et_al:LIPIcs.IPEC.2019.21,
  author =	{Husi\'{c}, Edin and Thomass\'{e}, St\'{e}phan and Trotignon, Nicolas},
  title =	{{The Independent Set Problem Is FPT for Even-Hole-Free Graphs}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{21:1--21:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Jansen, Bart M. P. and Telle, Jan Arne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.21},
  URN =		{urn:nbn:de:0030-drops-114826},
  doi =		{10.4230/LIPIcs.IPEC.2019.21},
  annote =	{Keywords: independent set, FPT algorithm, even-hole-free graph, augmenting graph}
}
Document
When Maximum Stable Set Can Be Solved in FPT Time

Authors: Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Maximum Independent Set (MIS for short) is in general graphs the paradigmatic W[1]-hard problem. In stark contrast, polynomial-time algorithms are known when the inputs are restricted to structured graph classes such as, for instance, perfect graphs (which includes bipartite graphs, chordal graphs, co-graphs, etc.) or claw-free graphs. In this paper, we introduce some variants of co-graphs with parameterized noise, that is, graphs that can be made into disjoint unions or complete sums by the removal of a certain number of vertices and the addition/deletion of a certain number of edges per incident vertex, both controlled by the parameter. We give a series of FPT Turing-reductions on these classes and use them to make some progress on the parameterized complexity of MIS in H-free graphs. We show that for every fixed t >=slant 1, MIS is FPT in P(1,t,t,t)-free graphs, where P(1,t,t,t) is the graph obtained by substituting all the vertices of a four-vertex path but one end of the path by cliques of size t. We also provide randomized FPT algorithms in dart-free graphs and in cricket-free graphs. This settles the FPT/W[1]-hard dichotomy for five-vertex graphs H.

Cite as

Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant. When Maximum Stable Set Can Be Solved in FPT Time. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ISAAC.2019.49,
  author =	{Bonnet, \'{E}douard and Bousquet, Nicolas and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{When Maximum Stable Set Can Be Solved in FPT Time}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{49:1--49:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.49},
  URN =		{urn:nbn:de:0030-drops-115458},
  doi =		{10.4230/LIPIcs.ISAAC.2019.49},
  annote =	{Keywords: Parameterized Algorithms, Independent Set, H-Free Graphs}
}
Document
Parameterized Complexity of Independent Set in H-Free Graphs

Authors: Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)


Abstract
In this paper, we investigate the complexity of Maximum Independent Set (MIS) in the class of H-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that the problem remains NP-hard for most graphs H, we study its fixed-parameter tractability and make progress towards a dichotomy between FPT and W[1]-hard cases. We first show that MIS remains W[1]-hard in graphs forbidding simultaneously K_{1, 4}, any finite set of cycles of length at least 4, and any finite set of trees with at least two branching vertices. In particular, this answers an open question of Dabrowski et al. concerning C_4-free graphs. Then we extend the polynomial algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H is a disjoint union of cliques. We also provide a framework for solving several other cases, which is a generalization of the concept of iterative expansion accompanied by the extraction of a particular structure using Ramsey's theorem. Iterative expansion is a maximization version of the so-called iterative compression. We believe that our framework can be of independent interest for solving other similar graph problems. Finally, we present positive and negative results on the existence of polynomial (Turing) kernels for several graphs H.

Cite as

Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant. Parameterized Complexity of Independent Set in H-Free Graphs. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 17:1-17:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2018.17,
  author =	{Bonnet, \'{E}douard and Bousquet, Nicolas and Charbit, Pierre and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Parameterized Complexity of Independent Set in H-Free Graphs}},
  booktitle =	{13th International Symposium on Parameterized and Exact Computation (IPEC 2018)},
  pages =	{17:1--17:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-084-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{115},
  editor =	{Paul, Christophe and Pilipczuk, Michal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.17},
  URN =		{urn:nbn:de:0030-drops-102183},
  doi =		{10.4230/LIPIcs.IPEC.2018.17},
  annote =	{Keywords: Parameterized Algorithms, Independent Set, H-Free Graphs}
}
Document
On the Complexity of Partial Derivatives

Authors: Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte, and Stéphan Thomassé

Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)


Abstract
The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the dimension of its space of partial derivatives? We show that this problem is #P-hard and we ask whether it belongs to #P. We analyze the "trace method", recently used in combinatorics and in algebraic complexity to lower bound the rank of certain matrices. We show that this method provides a polynomial-time computable lower bound on the dimension of the span of partial derivatives, and from this method we derive closed-form lower bounds. We leave as an open problem the existence of an approximation algorithm with reasonable performance guarantees.

Cite as

Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte, and Stéphan Thomassé. On the Complexity of Partial Derivatives. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 37:1-37:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{garciamarco_et_al:LIPIcs.STACS.2017.37,
  author =	{Garcia-Marco, Ignacio and Koiran, Pascal and Pecatte, Timoth\'{e}e and Thomass\'{e}, St\'{e}phan},
  title =	{{On the Complexity of Partial Derivatives}},
  booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
  pages =	{37:1--37:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-028-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{66},
  editor =	{Vollmer, Heribert and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.37},
  URN =		{urn:nbn:de:0030-drops-69964},
  doi =		{10.4230/LIPIcs.STACS.2017.37},
  annote =	{Keywords: counting complexity, simplicial complex, lower bounds, arithmetic circuits}
}
Document
Simultaneously Satisfying Linear Equations Over F_2: MaxLin2 and Max-r-Lin2 Parameterized Above Average

Authors: Robert Crowston, Michael Fellows, Gregory Gutin, Mark Jones, Frances Rosamond, Stéphan Thomassé, and Anders Yeo

Published in: LIPIcs, Volume 13, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)


Abstract
In the parameterized problem MaxLin2-AA[$k$], we are given a system with variables x_1,...,x_n consisting of equations of the form Product_{i in I}x_i = b, where x_i,b in {-1, 1} and I is a nonempty subset of {1,...,n}, each equation has a positive integral weight, and we are to decide whether it is possible to simultaneously satisfy equations of total weight at least W/2+k, where W is the total weight of all equations and k is the parameter (if k=0, the possibility is assured). We show that MaxLin2-AA[k] has a kernel with at most O(k^2 log k) variables and can be solved in time 2^{O(k log k)}(nm)^{O(1)}. This solves an open problem of Mahajan et al. (2006). The problem Max-r-Lin2-AA[k,r] is the same as MaxLin2-AA[k] with two differences: each equation has at most r variables and r is the second parameter. We prove a theorem on Max-$r$-Lin2-AA[k,r] which implies that Max-r-Lin2-AA[k,r] has a kernel with at most (2k-1)r variables, improving a number of results including one by Kim and Williams (2010). The theorem also implies a lower bound on the maximum of a function f that maps {-1,1}^n to the set of reals and whose Fourier expansion (which is a multilinear polynomial) is of degree r. We show applicability of the lower bound by giving a new proof of the Edwards-Erdös bound (each connected graph on n vertices and m edges has a bipartite subgraph with at least m/2 +(n-1)/4 edges) and obtaining a generalization.

Cite as

Robert Crowston, Michael Fellows, Gregory Gutin, Mark Jones, Frances Rosamond, Stéphan Thomassé, and Anders Yeo. Simultaneously Satisfying Linear Equations Over F_2: MaxLin2 and Max-r-Lin2 Parameterized Above Average. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 229-240, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{crowston_et_al:LIPIcs.FSTTCS.2011.229,
  author =	{Crowston, Robert and Fellows, Michael and Gutin, Gregory and Jones, Mark and Rosamond, Frances and Thomass\'{e}, St\'{e}phan and Yeo, Anders},
  title =	{{Simultaneously Satisfying Linear Equations Over F\underline2: MaxLin2 and Max-r-Lin2 Parameterized Above Average}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)},
  pages =	{229--240},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-34-7},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{13},
  editor =	{Chakraborty, Supratik and Kumar, Amit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2011.229},
  URN =		{urn:nbn:de:0030-drops-33416},
  doi =		{10.4230/LIPIcs.FSTTCS.2011.229},
  annote =	{Keywords: MaxLin, fixed-parameter tractability, kernelization, pseudo-boolean functions}
}
Document
Kernels for Feedback Arc Set In Tournaments

Authors: Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
A tournament $T = (V,A)$ is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on $n$ vertices and an integer parameter $k$, the {\sc Feedback Arc Set} problem asks whether thegiven digraph has a set of $k$ arcs whose removal results in an acyclicdigraph. The {\sc Feedback Arc Set} problem restricted to tournaments is knownas the {\sc $k$-Feedback Arc Set in Tournaments ($k$-FAST)} problem. In thispaper we obtain a linear vertex kernel for \FAST{}. That is, we give apolynomial time algorithm which given an input instance $T$ to \FAST{} obtains an equivalent instance $T'$ on $O(k)$ vertices. In fact, given any fixed $\epsilon > 0$, the kernelized instance has at most $(2 + \epsilon)k$ vertices.Our result improves the previous known bound of $O(k^2)$ on the kernel size for\FAST{}. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for \FAST.

Cite as

Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for Feedback Arc Set In Tournaments. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 37-47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.FSTTCS.2009.2305,
  author =	{Bessy, St\'{e}phane and Fomin, Fedor V. and Gaspers, Serge and Paul, Christophe and Perez, Anthony and Saurabh, Saket and Thomass\'{e}, St\'{e}phan},
  title =	{{Kernels for Feedback Arc Set In Tournaments}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{37--47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2305},
  URN =		{urn:nbn:de:0030-drops-23055},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2305},
  annote =	{Keywords: Parameterized complexity, kernels, tournaments}
}
Document
A Polynomial Kernel for Multicut in Trees

Authors: Nicolas Bousquet, Jean Daligault, Stephan Thomasse, and Anders Yeo

Published in: LIPIcs, Volume 3, 26th International Symposium on Theoretical Aspects of Computer Science (2009)


Abstract
The {\sc Multicut In Trees} problem consists in deciding, given a tree, a set of requests (i.e. paths in the tree) and an integer $k$, whether there exists a set of $k$ edges cutting all the requests. This problem was shown to be FPT by Guo and Niedermeyer (2005). They also provided an exponential kernel. They asked whether this problem has a polynomial kernel. This question was also raised by Fellows (2006). We show that {\sc Multicut In Trees} has a polynomial kernel.

Cite as

Nicolas Bousquet, Jean Daligault, Stephan Thomasse, and Anders Yeo. A Polynomial Kernel for Multicut in Trees. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 183-194, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2009.1824,
  author =	{Bousquet, Nicolas and Daligault, Jean and Thomasse, Stephan and Yeo, Anders},
  title =	{{A Polynomial Kernel for Multicut in Trees}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{183--194},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Albers, Susanne and Marion, Jean-Yves},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2009.1824},
  URN =		{urn:nbn:de:0030-drops-18247},
  doi =		{10.4230/LIPIcs.STACS.2009.1824},
  annote =	{Keywords: }
}

Stéphan, Thomassé

Document
Invited Talk
Graph coloring, communication complexity and the stubborn problem (Invited Talk)

Authors: Nicolas Bousquet, Aurélie Lagoutte, and Thomassé Stéphan

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We discuss three equivalent forms of the same problem arising in communication complexity, constraint satisfaction problems, and graph coloring. Some partial results are discussed.

Cite as

Nicolas Bousquet, Aurélie Lagoutte, and Thomassé Stéphan. Graph coloring, communication complexity and the stubborn problem (Invited Talk). In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 3-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2013.3,
  author =	{Bousquet, Nicolas and Lagoutte, Aur\'{e}lie and St\'{e}phan, Thomass\'{e}},
  title =	{{Graph coloring, communication complexity and the stubborn problem}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{3--4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.3},
  URN =		{urn:nbn:de:0030-drops-39158},
  doi =		{10.4230/LIPIcs.STACS.2013.3},
  annote =	{Keywords: stubborn problem, graph coloring, Clique-Stable set separation, Alon-Saks-Seymour conjecture, bipartite packing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail