Document

**Published in:** LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)

A temporal graph is a graph whose edges only appear at certain points in time. Reachability in these graphs is defined in terms of paths that traverse the edges in chronological order (temporal paths). This form of reachability is neither symmetric nor transitive, the latter having important consequences on the computational complexity of even basic questions, such as computing temporal connected components. In this paper, we introduce several parameters that capture how far a temporal graph 𝒢 is from being transitive, namely, vertex-deletion distance to transitivity and arc-modification distance to transitivity, both being applied to the reachability graph of 𝒢. We illustrate the impact of these parameters on the temporal connected component problem, obtaining several tractability results in terms of fixed-parameter tractability and polynomial kernels. Significantly, these results are obtained without restrictions of the underlying graph, the snapshots, or the lifetime of the input graph. As such, our results isolate the impact of non-transitivity and confirm the key role that it plays in the hardness of temporal graph problems.

Arnaud Casteigts, Nils Morawietz, and Petra Wolf. Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{casteigts_et_al:LIPIcs.MFCS.2024.36, author = {Casteigts, Arnaud and Morawietz, Nils and Wolf, Petra}, title = {{Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs}}, booktitle = {49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)}, pages = {36:1--36:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-335-5}, ISSN = {1868-8969}, year = {2024}, volume = {306}, editor = {Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.36}, URN = {urn:nbn:de:0030-drops-205923}, doi = {10.4230/LIPIcs.MFCS.2024.36}, annote = {Keywords: Temporal graphs, Parameterized complexity, Reachability, Transitivity} }

Document

**Published in:** LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)

Given a finite set 𝒜 of square matrices and a square matrix B, all of the same dimension, the membership problem asks if B belongs to the monoid ℳ(𝒜) generated by 𝒜. The rank one problem asks if there is a matrix of rank one in ℳ(𝒜). We study the membership and the rank one problems in the case where all matrices are upper triangular matrices over the Boolean semiring. We characterize the computational complexity of these problems, and identify their PSPACE-complete and NP-complete special cases.
We then consider, for a set 𝒜 of matrices from the same class, the problem of finding in ℳ(𝒜) a matrix of minimum rank with no zero rows. We show that the minimum rank of such matrix can be computed in linear time.We also characterize the space complexity of this problem depending on the size of 𝒜, and apply all these results to the ergodicity problem asking if ℳ(𝒜) contains a matrix with a column consisting of all ones. Finally, we show that our results give better upper bounds for the case where each row of every matrix in 𝒜 contains at most one non-zero entry than for the general case.

Andrew Ryzhikov and Petra Wolf. Monoids of Upper Triangular Matrices over the Boolean Semiring. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 81:1-81:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{ryzhikov_et_al:LIPIcs.MFCS.2024.81, author = {Ryzhikov, Andrew and Wolf, Petra}, title = {{Monoids of Upper Triangular Matrices over the Boolean Semiring}}, booktitle = {49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)}, pages = {81:1--81:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-335-5}, ISSN = {1868-8969}, year = {2024}, volume = {306}, editor = {Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.81}, URN = {urn:nbn:de:0030-drops-206377}, doi = {10.4230/LIPIcs.MFCS.2024.81}, annote = {Keywords: matrix monoids, membership, rank, ergodicity, partially ordered automata} }

Document

**Published in:** LIPIcs, Volume 292, 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024)

In the periodic temporal graph realization problem introduced by Klobas et al. [SAND '24] one is given a period Δ and an n× n matrix D of desired fastest travel times, and the task is to decide if there is a simple periodic temporal graph with period Δ such that the fastest travel time between any pair of vertices matches the one specified by D. We generalize the problem from simple temporal graphs to temporal graphs where each edge can appear up to 𝓁 times in each period, for some given integer 𝓁. For the resulting problem Multi-Label Periodic TGR, we show that it is fixed-parameter tractable for parameter n and for parameter vc+Δ, where vc is the vertex cover number of the underlying graph. We also show the existence of a polynomial kernel for parameter nu+d_max, where nu is the number of non-universal vertices of the underlying graph and d_max is the largest entry of D. Furthermore, we show that the problem is NP-hard for each 𝓁 ≥ 5, even if the underlying graph is a tree, a case that was known to be solvable in polynomial time if the task is to construct a simple periodic temporal graph, that is, if 𝓁 = 1.

Thomas Erlebach, Nils Morawietz, and Petra Wolf. Parameterized Algorithms for Multi-Label Periodic Temporal Graph Realization. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 292, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{erlebach_et_al:LIPIcs.SAND.2024.12, author = {Erlebach, Thomas and Morawietz, Nils and Wolf, Petra}, title = {{Parameterized Algorithms for Multi-Label Periodic Temporal Graph Realization}}, booktitle = {3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024)}, pages = {12:1--12:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-315-7}, ISSN = {1868-8969}, year = {2024}, volume = {292}, editor = {Casteigts, Arnaud and Kuhn, Fabian}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2024.12}, URN = {urn:nbn:de:0030-drops-198909}, doi = {10.4230/LIPIcs.SAND.2024.12}, annote = {Keywords: Fixed-Parameter Tractability, Almost-Clique, Kernelization, Dynamic Network, Temporal Graph} }

Document

**Published in:** LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)

We study the kernelization of exploration problems on temporal graphs. A temporal graph consists of a finite sequence of snapshot graphs 𝒢 = (G₁, G₂, … , G_L) that share a common vertex set but might have different edge sets. The non-strict temporal exploration problem (NS-TEXP for short) introduced by Erlebach and Spooner, asks if a single agent can visit all vertices of a given temporal graph where the edges traversed by the agent are present in non-strict monotonous time steps, i.e., the agent can move along the edges of a snapshot graph with infinite speed. The exploration must at the latest be completed in the last snapshot graph. The optimization variant of this problem is the k-arb NS-TEXP problem, where the agent’s task is to visit at least k vertices of the temporal graph. We show that under standard computational complexity assumptions, neither of the problems NS-TEXP nor k-arb NS-TEXP allow for polynomial kernels in the standard parameters: number of vertices n, lifetime L, number of vertices to visit k, and maximal number of connected components per time step γ; as well as in the combined parameters L+k, L + γ, and k+γ. On the way to establishing these lower bounds, we answer a couple of questions left open by Erlebach and Spooner.
We also initiate the study of structural kernelization by identifying a new parameter of a temporal graph p(𝒢) = ∑_{i=1}^L (|E(G_i)|) - |V(G)| + 1. Informally, this parameter measures how dynamic the temporal graph is. Our main algorithmic result is the construction of a polynomial (in p(𝒢)) kernel for the more general Weighted k-arb NS-TEXP problem, where weights are assigned to the vertices and the task is to find a temporal walk of weight at least k.

Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf. Kernelizing Temporal Exploration Problems. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.IPEC.2023.1, author = {Arrighi, Emmanuel and Fomin, Fedor V. and Golovach, Petr A. and Wolf, Petra}, title = {{Kernelizing Temporal Exploration Problems}}, booktitle = {18th International Symposium on Parameterized and Exact Computation (IPEC 2023)}, pages = {1:1--1:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-305-8}, ISSN = {1868-8969}, year = {2023}, volume = {285}, editor = {Misra, Neeldhara and Wahlstr\"{o}m, Magnus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.1}, URN = {urn:nbn:de:0030-drops-194201}, doi = {10.4230/LIPIcs.IPEC.2023.1}, annote = {Keywords: Temporal graph, temporal exploration, computational complexity, kernel} }

Document

**Published in:** LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)

Cluster Editing, also known as correlation clustering, is a well-studied graph modification problem. In this problem, one is given a graph and allowed to perform up to k edge additions and deletions to transform it into a cluster graph, i.e., a graph consisting of a disjoint union of cliques. However, in real-world networks, clusters are often overlapping. For example, in social networks, a person might belong to several communities - e.g. those corresponding to work, school, or neighborhood. Another strong motivation comes from language networks where trying to cluster words with similar usage can be confounded by homonyms, that is, words with multiple meanings like "bat". The recently introduced operation of vertex splitting is one natural approach to incorporating such overlap into Cluster Editing. First used in the context of graph drawing, this operation allows a vertex v to be replaced by two vertices whose combined neighborhood is the neighborhood of v (and thus v can belong to more than one cluster). The problem of transforming a graph into a cluster graph using at most k edge additions, edge deletions, or vertex splits is called Cluster Editing with Vertex Splitting and is known to admit a polynomial kernel with respect to k and an O(9^{k²} + n + m)-time (parameterized) algorithm. However, it was not known whether the problem is NP-hard, a question which was originally asked by Abu-Khzam et al. [Combinatorial Optimization, 2018]. We answer this in the affirmative. We further give an improved algorithm running in O(2^{7klog k} + n + m) time.

Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra Wolf. Cluster Editing with Overlapping Communities. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.IPEC.2023.2, author = {Arrighi, Emmanuel and Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Sullivan, Blair D. and Wolf, Petra}, title = {{Cluster Editing with Overlapping Communities}}, booktitle = {18th International Symposium on Parameterized and Exact Computation (IPEC 2023)}, pages = {2:1--2:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-305-8}, ISSN = {1868-8969}, year = {2023}, volume = {285}, editor = {Misra, Neeldhara and Wahlstr\"{o}m, Magnus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.2}, URN = {urn:nbn:de:0030-drops-194218}, doi = {10.4230/LIPIcs.IPEC.2023.2}, annote = {Keywords: graph modification, correlation clustering, vertex splitting, NP-hardness, parameterized algorithm} }

Document

PACE Solver Description

**Published in:** LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)

The graph parameter twin-width was recently introduced by Bonnet et al. Twin-width is a parameter that measures a graph’s similarity to a cograph, which is a graph that can be reduced to a single vertex by repeatedly contracting twins. This brief description introduces Zygosity, a heuristic for computing a low-width contraction sequence that achieved second place in the 2023 edition of Parameterized Algorithms and Computational Experiments Challenge (PACE). Zygosity starts by repeatedly contracting twins. Then, any attached trees are contracted down to a single pendant vertex. The remaining graph is then contracted using a randomized greedy algorithm.

Emmanuel Arrighi, Pål Grønås Drange, Kenneth Langedal, Farhad Vadiee, Martin Vatshelle, and Petra Wolf. PACE Solver Description: Zygosity. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 39:1-39:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.IPEC.2023.39, author = {Arrighi, Emmanuel and Drange, P\r{a}l Gr{\o}n\r{a}s and Langedal, Kenneth and Vadiee, Farhad and Vatshelle, Martin and Wolf, Petra}, title = {{PACE Solver Description: Zygosity}}, booktitle = {18th International Symposium on Parameterized and Exact Computation (IPEC 2023)}, pages = {39:1--39:3}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-305-8}, ISSN = {1868-8969}, year = {2023}, volume = {285}, editor = {Misra, Neeldhara and Wahlstr\"{o}m, Magnus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.39}, URN = {urn:nbn:de:0030-drops-194583}, doi = {10.4230/LIPIcs.IPEC.2023.39}, annote = {Keywords: Twin-width, randomized greedy algorithm} }

Document

**Published in:** LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)

In the Intersection Non-emptiness problem, we are given a list of finite automata A_1, A_2,… , A_m over a common alphabet Σ as input, and the goal is to determine whether some string w ∈ Σ^* lies in the intersection of the languages accepted by the automata in the list. We analyze the complexity of the Intersection Non-emptiness problem under the promise that all input automata accept a language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem is already NP-complete when all input automata accept languages of the levels B_0 or B_{1/2} and already PSPACE-hard when all automata accept a language from the level B_1. Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC^0 when restricted to level L_0; complete for L or NL, depending on the input representation, when restricted to languages in the level L_{1/2}; NP-complete when the input is given as DFAs accepting a language in L_1 or L_{3/2}; and finally, PSPACE-complete when the input automata accept languages in level L_2 or higher. Moreover, we show that the proof technique used to show containment in NP for DFAs accepting languages in L_1 or L_{3/2} does not generalize to the context of NFAs. To prove this, we identify a family of languages that provide an exponential separation between the state complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this is the first superpolynomial separation between these two models of computation.

Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus de Oliveira Oliveira, and Petra Wolf. On the Complexity of Intersection Non-emptiness for Star-Free Language Classes. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.FSTTCS.2021.34, author = {Arrighi, Emmanuel and Fernau, Henning and Hoffmann, Stefan and Holzer, Markus and Jecker, Isma\"{e}l and de Oliveira Oliveira, Mateus and Wolf, Petra}, title = {{On the Complexity of Intersection Non-emptiness for Star-Free Language Classes}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {34:1--34:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.34}, URN = {urn:nbn:de:0030-drops-155456}, doi = {10.4230/LIPIcs.FSTTCS.2021.34}, annote = {Keywords: Intersection Non-emptiness Problem, Star-Free Languages, Straubing-Th\'{e}rien Hierarchy, dot-depth Hierarchy, Commutative Languages, Complexity} }

Document

**Published in:** LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)

In this work, we consider the following order reconfiguration problem: Given a graph G together with linear orders ω and ω' of the vertices of G, can one transform ω into ω' by a sequence of swaps of adjacent elements in such a way that at each time step the resulting linear order has cutwidth (pathwidth) at most k? We show that this problem always has an affirmative answer when the input linear orders ω and ω' have cutwidth (pathwidth) at most k/2. Using this result, we establish a connection between two apparently unrelated problems: the reachability problem for two-letter string rewriting systems and the graph isomorphism problem for graphs of bounded cutwidth. This opens an avenue for the study of the famous graph isomorphism problem using techniques from term rewriting theory.

Emmanuel Arrighi, Henning Fernau, Mateus de Oliveira Oliveira, and Petra Wolf. Order Reconfiguration Under Width Constraints. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.MFCS.2021.8, author = {Arrighi, Emmanuel and Fernau, Henning and de Oliveira Oliveira, Mateus and Wolf, Petra}, title = {{Order Reconfiguration Under Width Constraints}}, booktitle = {46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)}, pages = {8:1--8:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-201-3}, ISSN = {1868-8969}, year = {2021}, volume = {202}, editor = {Bonchi, Filippo and Puglisi, Simon J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.8}, URN = {urn:nbn:de:0030-drops-144486}, doi = {10.4230/LIPIcs.MFCS.2021.8}, annote = {Keywords: Parameterized Complexity, Order Reconfiguration, String Rewriting Systems} }

Document

**Published in:** LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)

We consider the cops and robbers game variant consisting of one cop and one robber on time-varying graphs (TVG). The considered TVGs are edge periodic graphs, i.e., for each edge, a binary string s_e determines in which time step the edge is present, namely the edge e is present in time step t if and only if the string s_e contains a 1 at position t mod |s_e|. This periodicity allows for a compact representation of an infinite TVG. We prove that even for very simple underlying graphs, i.e., directed and undirected cycles the problem whether a cop-winning strategy exists is NP-hard and W[1]-hard parameterized by the number of vertices. Our second main result are matching lower bounds for the ratio between the length of the underlying cycle and the least common multiple (lcm) of the lengths of binary strings describing edge-periodicies over which the graph is robber-winning. Our third main result improves the previously known EXPTIME upper bound for Periodic Cop & Robber on general edge periodic graphs to PSPACE-membership.

Nils Morawietz and Petra Wolf. A Timecop’s Chase Around the Table. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 77:1-77:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{morawietz_et_al:LIPIcs.MFCS.2021.77, author = {Morawietz, Nils and Wolf, Petra}, title = {{A Timecop’s Chase Around the Table}}, booktitle = {46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)}, pages = {77:1--77:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-201-3}, ISSN = {1868-8969}, year = {2021}, volume = {202}, editor = {Bonchi, Filippo and Puglisi, Simon J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.77}, URN = {urn:nbn:de:0030-drops-145176}, doi = {10.4230/LIPIcs.MFCS.2021.77}, annote = {Keywords: Time variable graph, Edge periodic cycle, Game of cops and robbers, Computational complexity} }

Document

**Published in:** LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)

A deterministic finite automaton (DFA) 𝒜 is composite if its language L(𝒜) can be decomposed into an intersection ⋂_{i = 1}^k L(𝒜_i) of languages of smaller DFAs. Otherwise, 𝒜 is prime. This notion of primality was introduced by Kupferman and Mosheiff in 2013, and while they proved that we can decide whether a DFA is composite, the precise complexity of this problem is still open, with a doubly-exponential gap between the upper and lower bounds. In this work, we focus on permutation DFAs, i.e., those for which the transition monoid is a group. We provide an NP algorithm to decide whether a permutation DFA is composite, and show that the difficulty of this problem comes from the number of non-accepting states of the instance: we give a fixed-parameter tractable algorithm with the number of rejecting states as the parameter. Moreover, we investigate the class of commutative permutation DFAs. Their structural properties allow us to decide compositionality in NL, and even in LOGSPACE if the alphabet size is fixed. Despite this low complexity, we show that complex behaviors still arise in this class: we provide a family of composite DFAs each requiring polynomially many factors with respect to its size. We also consider the variant of the problem that asks whether a DFA is k-factor composite, that is, decomposable into k smaller DFAs, for some given integer k ∈ ℕ. We show that, for commutative permutation DFAs, restricting the number of factors makes the decision computationally harder, and yields a problem with tight bounds: it is NP-complete. Finally, we show that in general, this problem is in PSPACE, and it is in LOGSPACE for DFAs with a singleton alphabet.

Ismaël Jecker, Nicolas Mazzocchi, and Petra Wolf. Decomposing Permutation Automata. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 18:1-18:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{jecker_et_al:LIPIcs.CONCUR.2021.18, author = {Jecker, Isma\"{e}l and Mazzocchi, Nicolas and Wolf, Petra}, title = {{Decomposing Permutation Automata}}, booktitle = {32nd International Conference on Concurrency Theory (CONCUR 2021)}, pages = {18:1--18:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-203-7}, ISSN = {1868-8969}, year = {2021}, volume = {203}, editor = {Haddad, Serge and Varacca, Daniele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.18}, URN = {urn:nbn:de:0030-drops-143956}, doi = {10.4230/LIPIcs.CONCUR.2021.18}, annote = {Keywords: Deterministic finite automata (DFA), Permutation automata, Commutative languages, Decomposition, Regular Languages, Primality} }

Document

**Published in:** LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)

We are studying a weighted version of a linear extension problem, given some finite partial order ρ, called Completion of an Ordering. While this problem is NP-complete, we show that it lies in FPT when parameterized by the interval width of ρ. This ordering problem can be used to model several ordering problems stemming from diverse application areas, such as graph drawing, computational social choice, or computer memory management. Each application yields a special ρ. We also relate the interval width of ρ to parameterizations such as maximum range that have been introduced earlier in these applications, sometimes improving on parameterized algorithms that have been developed for these parameterizations before. This approach also gives some practical sub-exponential time algorithms for ordering problems.

Emmanuel Arrighi, Henning Fernau, Mateus de Oliveira Oliveira, and Petra Wolf. Width Notions for Ordering-Related Problems. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.FSTTCS.2020.9, author = {Arrighi, Emmanuel and Fernau, Henning and de Oliveira Oliveira, Mateus and Wolf, Petra}, title = {{Width Notions for Ordering-Related Problems}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {9:1--9:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.9}, URN = {urn:nbn:de:0030-drops-132505}, doi = {10.4230/LIPIcs.FSTTCS.2020.9}, annote = {Keywords: Parameterized algorithms, interval width, linear extension, one-sided crossing minimization, Kemeny rank aggregation, grouping by swapping} }

Document

**Published in:** LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)

We generalize the concept of synchronizing words for finite automata, which map all states of the automata to the same state, to deterministic visibly push-down automata. Here, a synchronizing word w does not only map all states to the same state but also fulfills some conditions on the stack content of each run after reading w. We consider three types of these stack constraints: after reading w, the stack (1) is empty in each run, (2) contains the same sequence of stack symbols in each run, or (3) contains an arbitrary sequence which is independent of the other runs. We show that in contrast to general deterministic push-down automata, it is decidable for deterministic visibly push-down automata whether there exists a synchronizing word with each of these stack constraints, more precisely, the problems are in EXPTIME. Under the constraint (1), the problem is even in P. For the sub-classes of deterministic very visibly push-down automata, the problem is in P for all three types of constraints. We further study variants of the synchronization problem where the number of turns in the stack height behavior caused by a synchronizing word is restricted, as well as the problem of synchronizing a variant of a sequential transducer, which shows some visibly behavior, by a word that synchronizes the states and produces the same output on all runs.

Henning Fernau and Petra Wolf. Synchronization of Deterministic Visibly Push-Down Automata. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 45:1-45:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{fernau_et_al:LIPIcs.FSTTCS.2020.45, author = {Fernau, Henning and Wolf, Petra}, title = {{Synchronization of Deterministic Visibly Push-Down Automata}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {45:1--45:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.45}, URN = {urn:nbn:de:0030-drops-132861}, doi = {10.4230/LIPIcs.FSTTCS.2020.45}, annote = {Keywords: Synchronizing word, Deterministic visibly push-down automata, Deterministc finite atuomata, Finite-turn push-down automata, Sequential transducer, Computational complexity} }

Document

**Published in:** LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)

We introduce a new natural variant of the synchronization problem. Our aim is to model different constraints on the order in which a potential synchronizing word might traverse through the states. We discuss how a word can induce a state-order and examine the computational complexity of different variants of the problem whether an automaton can be synchronized with a word of which the induced order agrees with a given relation. While most of the problems are PSPACE-complete we also observe NP-complete variants and variants solvable in polynomial time. One of them is the careful synchronization problem for partial weakly acyclic automata (which are partial automata whose states can be ordered such that no transition leads to a smaller state), which is shown to be solvable in time 𝒪(k² n²) where n is the size of the state set and k is the alphabet-size. The algorithm even computes a synchronizing word as a witness. This is quite surprising as the careful synchronization problem uses to be a hard problem for most classes of automata. We will also observe a drop in the complexity if we track the orders of states on several paths simultaneously instead of tracking the set of active states. Further, we give upper bounds on the length of a synchronizing word depending on the size of the input relation and show that (despite the partiality) the bound of the Černý conjecture also holds for partial weakly acyclic automata.

Petra Wolf. Synchronization Under Dynamic Constraints. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 58:1-58:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{wolf:LIPIcs.FSTTCS.2020.58, author = {Wolf, Petra}, title = {{Synchronization Under Dynamic Constraints}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {58:1--58:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.58}, URN = {urn:nbn:de:0030-drops-132998}, doi = {10.4230/LIPIcs.FSTTCS.2020.58}, annote = {Keywords: Synchronizing automaton, \v{C}ern\'{y} conjecture, Reset sequence, Dynamic constraints, Computational complexity} }

Document

**Published in:** LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)

The question if a deterministic finite automaton admits a software reset in the form of a so-called synchronizing word can be answered in polynomial time. In this paper, we extend this algorithmic question to deterministic automata beyond finite automata. We prove that the question of synchronizability becomes undecidable even when looking at deterministic one-counter automata. This is also true for another classical mild extension of regularity, namely that of deterministic one-turn push-down automata. However, when we combine both restrictions, we arrive at scenarios with a PSPACE-complete (and hence decidable) synchronizability problem. Likewise, we arrive at a decidable synchronizability problem for (partially) blind deterministic counter automata.
There are several interpretations of what synchronizability should mean for deterministic push-down automata. This is depending on the role of the stack: should it be empty on synchronization, should it be always the same or is it arbitrary? For the automata classes studied in this paper, the complexity or decidability status of the synchronizability problem is mostly independent of this technicality, but we also discuss one class of automata where this makes a difference.

Henning Fernau, Petra Wolf, and Tomoyuki Yamakami. Synchronizing Deterministic Push-Down Automata Can Be Really Hard. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{fernau_et_al:LIPIcs.MFCS.2020.33, author = {Fernau, Henning and Wolf, Petra and Yamakami, Tomoyuki}, title = {{Synchronizing Deterministic Push-Down Automata Can Be Really Hard}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {33:1--33:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.33}, URN = {urn:nbn:de:0030-drops-127008}, doi = {10.4230/LIPIcs.MFCS.2020.33}, annote = {Keywords: Synchronizing automaton, Reset sequence, Real-time deterministic push-down automaton, Finite-turn push-down automaton, Computability, Computational complexity} }

Document

**Published in:** LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)

Many variations of synchronization of finite automata have been studied in the previous decades. Here, we suggest studying the question if synchronizing words exist that belong to some fixed constraint language, given by some partial finite automaton called constraint automaton. We show that this synchronization problem becomes PSPACE-complete even for some constraint automata with two states and a ternary alphabet. In addition, we characterize constraint automata with arbitrarily many states for which the constrained synchronization problem is polynomial-time solvable. We classify the complexity of the constrained synchronization problem for constraint automata with two states and two or three letters completely and lift those results to larger classes of finite automata.

Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer, Mikhail V. Volkov, and Petra Wolf. Computational Complexity of Synchronization under Regular Constraints. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 63:1-63:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{fernau_et_al:LIPIcs.MFCS.2019.63, author = {Fernau, Henning and Gusev, Vladimir V. and Hoffmann, Stefan and Holzer, Markus and Volkov, Mikhail V. and Wolf, Petra}, title = {{Computational Complexity of Synchronization under Regular Constraints}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {63:1--63:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.63}, URN = {urn:nbn:de:0030-drops-110078}, doi = {10.4230/LIPIcs.MFCS.2019.63}, annote = {Keywords: Finite automata, synchronization, computational complexity} }

Document

**Published in:** LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)

We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results.

Ronald de Haan and Petra Wolf. Restricted Power - Computational Complexity Results for Strategic Defense Games. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 17:1-17:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{dehaan_et_al:LIPIcs.FUN.2018.17, author = {de Haan, Ronald and Wolf, Petra}, title = {{Restricted Power - Computational Complexity Results for Strategic Defense Games}}, booktitle = {9th International Conference on Fun with Algorithms (FUN 2018)}, pages = {17:1--17:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-067-5}, ISSN = {1868-8969}, year = {2018}, volume = {100}, editor = {Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.17}, URN = {urn:nbn:de:0030-drops-88082}, doi = {10.4230/LIPIcs.FUN.2018.17}, annote = {Keywords: Computational complexity, generalized games, metatheorems} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail