5 Search Results for "Caires, Luís"


Document
Adjoint Natural Deduction

Authors: Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Adjoint logic is a general approach to combining multiple logics with different structural properties, including linear, affine, strict, and (ordinary) intuitionistic logics, where each proposition has an intrinsic mode of truth. It has been defined in the form of a sequent calculus because the central concept of independence is most clearly understood in this form, and because it permits a proof of cut elimination following standard techniques. In this paper we present a natural deduction formulation of adjoint logic and show how it is related to the sequent calculus. As a consequence, every provable proposition has a verification (sometimes called a long normal form). We also give a computational interpretation of adjoint logic in the form of a functional language and prove properties of computations that derive from the structure of modes, including freedom from garbage (for modes without weakening and contraction), strictness (for modes disallowing weakening), and erasure (based on a preorder between modes). Finally, we present a surprisingly subtle algorithm for type checking.

Cite as

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint Natural Deduction. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jang_et_al:LIPIcs.FSCD.2024.15,
  author =	{Jang, Junyoung and Roshal, Sophia and Pfenning, Frank and Pientka, Brigitte},
  title =	{{Adjoint Natural Deduction}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.15},
  URN =		{urn:nbn:de:0030-drops-203441},
  doi =		{10.4230/LIPIcs.FSCD.2024.15},
  annote =	{Keywords: Substructural Logic, Type Systems, Functional Programming}
}
Document
Track A: Algorithms, Complexity and Games
On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch

Authors: Tsvi Kopelowitz, Ariel Korin, and Liam Roditty

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For an undirected unweighted graph G = (V,E) with n vertices and m edges, let d(u,v) denote the distance from u ∈ V to v ∈ V in G. An (α,β)-stretch approximate distance oracle (ADO) for G is a data structure that given u,v ∈ V returns in constant (or near constant) time a value dˆ(u,v) such that d(u,v) ≤ dˆ(u,v) ≤ α⋅ d(u,v) + β, for some reals α > 1, β. Thorup and Zwick [Mikkel Thorup and Uri Zwick, 2005] showed that one cannot beat stretch 3 with subquadratic space (in terms of n) for general graphs. Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one can obtain stretch 2 using O(m^{1/3}n^{4/3}) space, and so if m is subquadratic in n then the space usage is also subquadratic. Moreover, Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one cannot beat stretch 2 with subquadratic space even for graphs where m = Õ(n), based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can beat stretch 2 while using subquadratic space. In particular, we show that if the maximum degree in G is Δ_G ≤ O(n^{1/k-ε}) for some 0 < ε ≤ 1/k, then there exists an ADO for G that uses Õ(n^{2-(kε)/3) space and has a (2,1-k)-stretch. For k = 2 this result implies a subquadratic sub-2 stretch ADO for graphs with Δ_G ≤ O(n^{1/2-ε}). Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer k ≤ log n, obtaining a sub-(k+2)/k stretch for graphs with Δ_G = Θ(n^{1/k}) requires Ω̃(n²) space. Thus, for graphs with maximum degree Θ(n^{1/2}), obtaining a sub-2 stretch requires Ω̃(n²) space.

Cite as

Tsvi Kopelowitz, Ariel Korin, and Liam Roditty. On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kopelowitz_et_al:LIPIcs.ICALP.2024.101,
  author =	{Kopelowitz, Tsvi and Korin, Ariel and Roditty, Liam},
  title =	{{On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.101},
  URN =		{urn:nbn:de:0030-drops-202443},
  doi =		{10.4230/LIPIcs.ICALP.2024.101},
  annote =	{Keywords: Graph algorithms, Approximate distance oracle, data structures, shortest path}
}
Document
Domain-Aware Session Types

Authors: Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
We develop a generalization of existing Curry-Howard interpretations of (binary) session types by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds that indicate domains. These worlds govern domain migration, subject to a parametric accessibility relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed process framework for domain-aware, message-passing concurrency. Its logical foundations ensure that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures that processes only communicate with accessible domains and so respect the accessibility relation. Remarkably, our domain-aware framework can specify scenarios in which domain information is available only at runtime; flexible accessibility relations can be cleanly defined and statically enforced. As a specific application, we introduce domain-aware multiparty session types, in which global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a precise analysis of these multiparty protocols by reduction to our binary domain-aware framework: complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring also the principled transfer of key correctness properties from the binary to the multiparty setting.

Cite as

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-Aware Session Types. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{caires_et_al:LIPIcs.CONCUR.2019.39,
  author =	{Caires, Lu{\'\i}s and P\'{e}rez, Jorge A. and Pfenning, Frank and Toninho, Bernardo},
  title =	{{Domain-Aware Session Types}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.39},
  URN =		{urn:nbn:de:0030-drops-109417},
  doi =		{10.4230/LIPIcs.CONCUR.2019.39},
  annote =	{Keywords: Session Types, Linear Logic, Process Calculi, Hybrid Logic}
}
Document
Composing Interfering Abstract Protocols

Authors: Filipe Militão, Jonathan Aldrich, and Luís Caires

Published in: LIPIcs, Volume 56, 30th European Conference on Object-Oriented Programming (ECOOP 2016)


Abstract
The undisciplined use of shared mutable state can be a source of program errors when aliases unsafely interfere with each other. While protocol-based techniques to reason about interference abound, they do not address two practical concerns: the decidability of protocol composition and its integration with protocol abstraction. We show that our composition procedure is decidable and that it ensures safe interference even when composing abstract protocols. To evaluate the expressiveness of our protocol framework for safe shared memory interference, we show how this same protocol framework can be used to model safe, typeful message-passing concurrency idioms.

Cite as

Filipe Militão, Jonathan Aldrich, and Luís Caires. Composing Interfering Abstract Protocols. In 30th European Conference on Object-Oriented Programming (ECOOP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 56, pp. 16:1-16:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{militao_et_al:LIPIcs.ECOOP.2016.16,
  author =	{Milit\~{a}o, Filipe and Aldrich, Jonathan and Caires, Lu{\'\i}s},
  title =	{{Composing Interfering Abstract Protocols}},
  booktitle =	{30th European Conference on Object-Oriented Programming (ECOOP 2016)},
  pages =	{16:1--16:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-014-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{56},
  editor =	{Krishnamurthi, Shriram and Lerner, Benjamin S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2016.16},
  URN =		{urn:nbn:de:0030-drops-61108},
  doi =		{10.4230/LIPIcs.ECOOP.2016.16},
  annote =	{Keywords: shared memory interference, protocol composition, aliasing, linearity}
}
Document
Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

Authors: Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho

Published in: LIPIcs, Volume 16, Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL (2012)


Abstract
Prior work has shown that intuitionistic linear logic can be seen as a session-type discipline for the pi-calculus, where cut reduction in the sequent calculus corresponds to synchronous process reduction. In this paper, we exhibit a new process assignment from the asynchronous, polyadic pi-calculus to exactly the same proof rules. Proof-theoretically, the difference between these interpretations can be understood through permutations of inference rules that preserve observational equivalence of closed processes in the synchronous case. We also show that, under this new asynchronous interpretation, cut reductions correspond to a natural asynchronous buffered session semantics, where each session is allocated a separate communication buffer.

Cite as

Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho. Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication. In Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs), Volume 16, pp. 228-242, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{deyoung_et_al:LIPIcs.CSL.2012.228,
  author =	{DeYoung, Henry and Caires, Lu{\'\i}s and Pfenning, Frank and Toninho, Bernardo},
  title =	{{Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication}},
  booktitle =	{Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL},
  pages =	{228--242},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-42-2},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{16},
  editor =	{C\'{e}gielski, Patrick and Durand, Arnaud},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.228},
  URN =		{urn:nbn:de:0030-drops-36753},
  doi =		{10.4230/LIPIcs.CSL.2012.228},
  annote =	{Keywords: linear logic, cut reduction, asynchronous pi-calculus, session types}
}
  • Refine by Author
  • 3 Caires, Luís
  • 3 Pfenning, Frank
  • 2 Toninho, Bernardo
  • 1 Aldrich, Jonathan
  • 1 DeYoung, Henry
  • Show More...

  • Refine by Classification
  • 1 Software and its engineering → Message passing
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Linear logic
  • 1 Theory of computation → Process calculi
  • 1 Theory of computation → Proof theory
  • Show More...

  • Refine by Keyword
  • 1 Approximate distance oracle
  • 1 Functional Programming
  • 1 Graph algorithms
  • 1 Hybrid Logic
  • 1 Linear Logic
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2024
  • 1 2012
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail