25 Search Results for "Hlinený, Petr"


Volume

OASIcs, Volume 13

Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'09)

MEMICS 2009, November 13-15, 2009, Znojmo, Czech Republic

Editors: Petr Hlinený, Václav Matyáš, and Tomáš Vojnar

Document
Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

Authors: Petr Hliněný and Liana Khazaliya

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete since the 1980s, and fairly involved techniques were already required to show its fixed-parameter tractability when parameterized by the vertex cover number. In this paper we prove that computing exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, for simple graphs of path-width 13 and tree-width 9). Thus, while tree-width and path-width have been very successful tools in many graph algorithm scenarios, our result shows that general crossing number computations unlikely (under P≠ NP) could be successfully tackled using graph decompositions of bounded width, what has been a "tantalizing open problem" [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.

Cite as

Petr Hliněný and Liana Khazaliya. Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width). In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 40:1-40:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hlineny_et_al:LIPIcs.ISAAC.2024.40,
  author =	{Hlin\v{e}n\'{y}, Petr and Khazaliya, Liana},
  title =	{{Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{40:1--40:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.40},
  URN =		{urn:nbn:de:0030-drops-221677},
  doi =		{10.4230/LIPIcs.ISAAC.2024.40},
  annote =	{Keywords: Graph Drawing, Crossing Number, Tree-width, Path-width}
}
Document
Note on Min- k-Planar Drawings of Graphs

Authors: Petr Hliněný and Lili Ködmön

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
The k-planar graphs, which are (usually with small values of k such as 1,2,3) subject to recent intense research, admit a drawing in which edges are allowed to cross, but each one edge is allowed to carry at most k crossings. In recently introduced [Binucci et al., GD 2023] min-k-planar drawings of graphs, edges may possibly carry more than k crossings, but in any two crossing edges, at least one of the two must have at most k crossings. In both concepts, one may consider general drawings or a popular restricted concept of drawings called simple. In a simple drawing, every two edges are allowed to cross at most once, and any two edges which share a vertex are forbidden to cross. While, regarding the former concept, it is for k ≤ 3 known (but perhaps not widely known) that every general k-planar graph admits a simple k-planar drawing and this ceases to be true for any k ≤ 4, the difference between general and simple drawings in the latter concept is more striking. We prove that there exist graphs with a min-2-planar drawing, or with a min-3-planar drawing avoiding crossings of adjacent edges, which have no simple min-k-planar drawings for arbitrarily large fixed k.

Cite as

Petr Hliněný and Lili Ködmön. Note on Min- k-Planar Drawings of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 8:1-8:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hlineny_et_al:LIPIcs.GD.2024.8,
  author =	{Hlin\v{e}n\'{y}, Petr and K\"{o}dm\"{o}n, Lili},
  title =	{{Note on Min- k-Planar Drawings of Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{8:1--8:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.8},
  URN =		{urn:nbn:de:0030-drops-212924},
  doi =		{10.4230/LIPIcs.GD.2024.8},
  annote =	{Keywords: Crossing Number, Planarity, k-Planar Graph, Min-k-Planar Graph}
}
Document
On the Uncrossed Number of Graphs

Authors: Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G to be drawn without crossings while allowing multiple different drawings of G. More formally, a collection 𝒟 of drawings of G is uncrossed if, for each edge e of G, there is a drawing in 𝒟 such that e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in some uncrossed collection of G. No exact values of the uncrossed numbers have been determined yet, not even for simple graph classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD 2023]. We also present a strong general lower bound on unc(G) in terms of the number of vertices and edges of G. Moreover, we prove NP-hardness of the related problem of determining the edge crossing number of a graph G, which is the smallest number of edges of G taken over all drawings of G that participate in a crossing. This problem was posed as open by Schaefer in his book [Crossing Numbers of Graphs 2018].

Cite as

Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner. On the Uncrossed Number of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balko_et_al:LIPIcs.GD.2024.18,
  author =	{Balko, Martin and Hlin\v{e}n\'{y}, Petr and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Orthaber, Joachim and Vogtenhuber, Birgit and Wagner, Mirko H.},
  title =	{{On the Uncrossed Number of Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.18},
  URN =		{urn:nbn:de:0030-drops-213028},
  doi =		{10.4230/LIPIcs.GD.2024.18},
  annote =	{Keywords: Uncrossed Number, Crossing Number, Planarity, Thickness}
}
Document
ℋ-Clique-Width and a Hereditary Analogue of Product Structure

Authors: Petr Hliněný and Jan Jedelský

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We introduce a novel generalization of the notion of clique-width which aims to bridge the gap between classical hereditary width measures and the recently introduced graph product structure theory. Bounding the new H-clique-width, in the special case of H being the class of paths, is equivalent to admitting a hereditary (i.e., induced) product structure of a path times a graph of bounded clique-width. Furthermore, every graph admitting the usual (non-induced) product structure of a path times a graph of bounded tree-width, has bounded H-clique-width and, as a consequence, it admits the usual product structure in an induced way. We prove further basic properties of H-clique-width in general.

Cite as

Petr Hliněný and Jan Jedelský. ℋ-Clique-Width and a Hereditary Analogue of Product Structure. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 61:1-61:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hlineny_et_al:LIPIcs.MFCS.2024.61,
  author =	{Hlin\v{e}n\'{y}, Petr and Jedelsk\'{y}, Jan},
  title =	{{ℋ-Clique-Width and a Hereditary Analogue of Product Structure}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{61:1--61:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.61},
  URN =		{urn:nbn:de:0030-drops-206176},
  doi =		{10.4230/LIPIcs.MFCS.2024.61},
  annote =	{Keywords: product structure, hereditary class, clique-width, twin-width}
}
Document
Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

Authors: Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guśpiel, Petr Hliněný, Filip Pokrývka, and Marek Sokołowski

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph G of twin-width at most 2 contains no K_{t,t} subgraph for some integer t, then the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse graph class C we obtain a polynomial time algorithm which for any input graph G ∈ C either outputs a contraction sequence of width at most c (where c depends only on C), or correctly outputs that G has twin-width more than 2. On the other hand, we present an easy example of a graph class of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.

Cite as

Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guśpiel, Petr Hliněný, Filip Pokrývka, and Marek Sokołowski. Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 11:1-11:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ISAAC.2023.11,
  author =	{Bergougnoux, Benjamin and Gajarsk\'{y}, Jakub and Gu\'{s}piel, Grzegorz and Hlin\v{e}n\'{y}, Petr and Pokr\'{y}vka, Filip and Soko{\l}owski, Marek},
  title =	{{Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{11:1--11:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.11},
  URN =		{urn:nbn:de:0030-drops-193130},
  doi =		{10.4230/LIPIcs.ISAAC.2023.11},
  annote =	{Keywords: twin-width, tree-width, excluded grid, sparsity}
}
Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
Document
Track A: Algorithms, Complexity and Games
Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

Authors: Petr Hliněný and Jan Jedelský

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows us to solve many otherwise hard problems efficiently. Graph classes of bounded twin-width, in which appropriate contraction sequences are efficiently constructible, are thus of interest in combinatorics and in computer science. However, we currently do not know in general how to obtain a witnessing contraction sequence of low width efficiently, and published upper bounds on the twin-width in non-trivial cases are often "astronomically large". We focus on planar graphs, which are known to have bounded twin-width (already since the introduction of twin-width), but the first explicit "non-astronomical" upper bounds on the twin-width of planar graphs appeared just a year ago; namely the bound of at most 183 by Jacob and Pilipczuk [arXiv, January 2022], and 583 by Bonnet, Kwon and Wood [arXiv, February 2022]. Subsequent arXiv manuscripts in 2022 improved the bound down to 37 (Bekos et al.), 11 and 9 (both by Hliněný). We further elaborate on the approach used in the latter manuscripts, proving that the twin-width of every planar graph is at most 8, and construct a witnessing contraction sequence in linear time. Note that the currently best lower-bound planar example is of twin-width 7, by Král' and Lamaison [arXiv, September 2022]. We also prove that the twin-width of every bipartite planar graph is at most 6, and again construct a witnessing contraction sequence in linear time.

Cite as

Petr Hliněný and Jan Jedelský. Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 75:1-75:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hlineny_et_al:LIPIcs.ICALP.2023.75,
  author =	{Hlin\v{e}n\'{y}, Petr and Jedelsk\'{y}, Jan},
  title =	{{Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{75:1--75:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.75},
  URN =		{urn:nbn:de:0030-drops-181271},
  doi =		{10.4230/LIPIcs.ICALP.2023.75},
  annote =	{Keywords: twin-width, planar graph}
}
Document
Graph Product Structure for h-Framed Graphs

Authors: Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, and Michael Kaufmann

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Graph product structure theory expresses certain graphs as subgraphs of the strong product of much simpler graphs. In particular, an elegant formulation for the corresponding structural theorems involves the strong product of a path and of a bounded treewidth graph, and allows to lift combinatorial results for bounded treewidth graphs to graph classes for which the product structure holds, such as to planar graphs [Dujmović et al., J. ACM, 67(4), 22:1-38, 2020]. In this paper, we join the search for extensions of this powerful tool beyond planarity by considering the h-framed graphs, a graph class that includes 1-planar, optimal 2-planar, and k-map graphs (for appropriate values of h). We establish a graph product structure theorem for h-framed graphs stating that the graphs in this class are subgraphs of the strong product of a path, of a planar graph of treewidth at most 3, and of a clique of size 3⌊ h/2 ⌋+⌊ h/3 ⌋-1. This allows us to improve over the previous structural theorems for 1-planar and k-map graphs. Our results constitute significant progress over the previous bounds on the queue number, non-repetitive chromatic number, and p-centered chromatic number of these graph classes, e.g., we lower the currently best upper bound on the queue number of 1-planar graphs and k-map graphs from 115 to 82 and from ⌊ 33/2(k+3 ⌊ k/2⌋ -3)⌋ to ⌊ 33/2 (3⌊ k/2 ⌋+⌊ k/3 ⌋-1) ⌋, respectively. We also employ the product structure machinery to improve the current upper bounds on the twin-width of 1-planar graphs from O(1) to 80. All our structural results are constructive and yield efficient algorithms to obtain the corresponding decompositions.

Cite as

Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, and Michael Kaufmann. Graph Product Structure for h-Framed Graphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.ISAAC.2022.23,
  author =	{Bekos, Michael A. and Da Lozzo, Giordano and Hlin\v{e}n\'{y}, Petr and Kaufmann, Michael},
  title =	{{Graph Product Structure for h-Framed Graphs}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.23},
  URN =		{urn:nbn:de:0030-drops-173086},
  doi =		{10.4230/LIPIcs.ISAAC.2022.23},
  annote =	{Keywords: Graph product structure theory, h-framed graphs, k-map graphs, queue number, twin-width}
}
Document
Parameterised Partially-Predrawn Crossing Number

Authors: Thekla Hamm and Petr Hliněný

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Inspired by the increasingly popular research on extending partial graph drawings, we propose a new perspective on the traditional and arguably most important geometric graph parameter, the crossing number. Specifically, we define the partially predrawn crossing number to be the smallest number of crossings in any drawing of a graph, part of which is prescribed on the input (not counting the prescribed crossings). Our main result - an FPT-algorithm to compute the partially predrawn crossing number - combines advanced ideas from research on the classical crossing number and so called partial planarity in a very natural but intricate way. Not only do our techniques generalise the known FPT-algorithm by Grohe for computing the standard crossing number, they also allow us to substantially improve a number of recent parameterised results for various drawing extension problems.

Cite as

Thekla Hamm and Petr Hliněný. Parameterised Partially-Predrawn Crossing Number. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 46:1-46:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{hamm_et_al:LIPIcs.SoCG.2022.46,
  author =	{Hamm, Thekla and Hlin\v{e}n\'{y}, Petr},
  title =	{{Parameterised Partially-Predrawn Crossing Number}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{46:1--46:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.46},
  URN =		{urn:nbn:de:0030-drops-160547},
  doi =		{10.4230/LIPIcs.SoCG.2022.46},
  annote =	{Keywords: Crossing Number, Drawing Extension, Partial Planarity, Parameterised Complexity}
}
Document
Twin-Width Is Linear in the Poset Width

Authors: Jakub Balabán and Petr Hliněný

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
Twin-width is a new parameter informally measuring how diverse are the neighbourhoods of the graph vertices, and it extends also to other binary relational structures, e.g. to digraphs and posets. It was introduced just very recently, in 2020 by Bonnet, Kim, Thomassé and Watrigant. One of the core results of these authors is that FO model checking on graph classes of bounded twin-width is in FPT. With that result, they also claimed that posets of bounded width have bounded twin-width, thus capturing prior result on FO model checking of posets of bounded width in FPT. However, their translation from poset width to twin-width was indirect and giving only a very loose double-exponential bound. We prove that posets of width d have twin-width at most 8d with a direct and elementary argument, and show that this bound is tight up to a constant factor. Specifically, for posets of width 2 we prove that in the worst case their twin-width is also equal 2. These two theoretical results are complemented with straightforward algorithms to construct the respective contraction sequence for a given poset.

Cite as

Jakub Balabán and Petr Hliněný. Twin-Width Is Linear in the Poset Width. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.IPEC.2021.6,
  author =	{Balab\'{a}n, Jakub and Hlin\v{e}n\'{y}, Petr},
  title =	{{Twin-Width Is Linear in the Poset Width}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.6},
  URN =		{urn:nbn:de:0030-drops-153895},
  doi =		{10.4230/LIPIcs.IPEC.2021.6},
  annote =	{Keywords: twin-width, digraph, poset, FO model checking, contraction sequence}
}
Document
Computational Complexity of Covering Multigraphs with Semi-Edges: Small Cases

Authors: Jan Bok, Jiří Fiala, Petr Hliněný, Nikola Jedličková, and Jan Kratochvíl

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We initiate the study of computational complexity of graph coverings, aka locally bijective graph homomorphisms, for graphs with semi-edges. The notion of graph covering is a discretization of coverings between surfaces or topological spaces, a notion well known and deeply studied in classical topology. Graph covers have found applications in discrete mathematics for constructing highly symmetric graphs, and in computer science in the theory of local computations. In 1991, Abello et al. asked for a classification of the computational complexity of deciding if an input graph covers a fixed target graph, in the ordinary setting (of graphs with only edges). Although many general results are known, the full classification is still open. In spite of that, we propose to study the more general case of covering graphs composed of normal edges (including multiedges and loops) and so-called semi-edges. Semi-edges are becoming increasingly popular in modern topological graph theory, as well as in mathematical physics. They also naturally occur in the local computation setting, since they are lifted to matchings in the covering graph. We show that the presence of semi-edges makes the covering problem considerably harder; e.g., it is no longer sufficient to specify the vertex mapping induced by the covering, but one necessarily has to deal with the edge mapping as well. We show some solvable cases and, in particular, completely characterize the complexity of the already very nontrivial problem of covering one- and two-vertex (multi)graphs with semi-edges. Our NP-hardness results are proven for simple input graphs, and in the case of regular two-vertex target graphs, even for bipartite ones. We remark that our new characterization results also strengthen previously known results for covering graphs without semi-edges, and they in turn apply to an infinite class of simple target graphs with at most two vertices of degree more than two. Some of the results are moreover proven in a more general setting (e.g., finding k-tuples of pairwise disjoint perfect matchings in regular graphs, or finding equitable partitions of regular bipartite graphs).

Cite as

Jan Bok, Jiří Fiala, Petr Hliněný, Nikola Jedličková, and Jan Kratochvíl. Computational Complexity of Covering Multigraphs with Semi-Edges: Small Cases. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 21:1-21:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bok_et_al:LIPIcs.MFCS.2021.21,
  author =	{Bok, Jan and Fiala, Ji\v{r}{\'\i} and Hlin\v{e}n\'{y}, Petr and Jedli\v{c}kov\'{a}, Nikola and Kratochv{\'\i}l, Jan},
  title =	{{Computational Complexity of Covering Multigraphs with Semi-Edges: Small Cases}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{21:1--21:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.21},
  URN =		{urn:nbn:de:0030-drops-144611},
  doi =		{10.4230/LIPIcs.MFCS.2021.21},
  annote =	{Keywords: graph cover, covering projection, semi-edges, multigraphs, complexity}
}
Document
Isomorphism Problem for S_d-Graphs

Authors: Deniz Ağaoğlu and Petr Hliněný

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
An H-graph is the intersection graph of connected subgraphs of a suitable subdivision of a fixed graph H, introduced by Biró, Hujter and Tuza (1992). We focus on S_d-graphs as a special case generalizing interval graphs. A graph G is an S_d-graph iff it is the intersection graph of connected subgraphs of a subdivision of a star S_d with d rays. We give an FPT algorithm to solve the isomorphism problem for S_d-graphs with the parameter d. This solves an open problem of Chaplick, Töpfer, Voborník and Zeman (2016). In the course of our proof, we also show that the isomorphism problem of S_d-graphs is computationally at least as hard as the isomorphism problem of posets of bounded width.

Cite as

Deniz Ağaoğlu and Petr Hliněný. Isomorphism Problem for S_d-Graphs. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{agaoglu_et_al:LIPIcs.MFCS.2020.4,
  author =	{A\u{g}ao\u{g}lu, Deniz and Hlin\v{e}n\'{y}, Petr},
  title =	{{Isomorphism Problem for S\underlined-Graphs}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.4},
  URN =		{urn:nbn:de:0030-drops-126754},
  doi =		{10.4230/LIPIcs.MFCS.2020.4},
  annote =	{Keywords: intersection graph, isomorphism testing, interval graph, H-graph}
}
Document
Bounded Degree Conjecture Holds Precisely for c-Crossing-Critical Graphs with c <= 12

Authors: Drago Bokal, Zdeněk Dvořák, Petr Hliněný, Jesús Leaños, Bojan Mohar, and Tilo Wiedera

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-crossings when drawn in the plane. For every fixed pair of integers with c >= 13 and d >= 1, we give first explicit constructions of c-crossing-critical graphs containing a vertex of degree greater than d. We also show that such unbounded degree constructions do not exist for c <=12, precisely, that there exists a constant D such that every c-crossing-critical graph with c <=12 has maximum degree at most D. Hence, the bounded maximum degree conjecture of c-crossing-critical graphs, which was generally disproved in 2010 by Dvořák and Mohar (without an explicit construction), holds true, surprisingly, exactly for the values c <=12.

Cite as

Drago Bokal, Zdeněk Dvořák, Petr Hliněný, Jesús Leaños, Bojan Mohar, and Tilo Wiedera. Bounded Degree Conjecture Holds Precisely for c-Crossing-Critical Graphs with c <= 12. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 14:1-14:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bokal_et_al:LIPIcs.SoCG.2019.14,
  author =	{Bokal, Drago and Dvo\v{r}\'{a}k, Zden\v{e}k and Hlin\v{e}n\'{y}, Petr and Lea\~{n}os, Jes\'{u}s and Mohar, Bojan and Wiedera, Tilo},
  title =	{{Bounded Degree Conjecture Holds Precisely for c-Crossing-Critical Graphs with c \langle= 12}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{14:1--14:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.14},
  URN =		{urn:nbn:de:0030-drops-104183},
  doi =		{10.4230/LIPIcs.SoCG.2019.14},
  annote =	{Keywords: graph drawing, crossing number, crossing-critical, zip product}
}
Document
Structure and Generation of Crossing-Critical Graphs

Authors: Zdenek Dvorák, Petr Hlinený, and Bojan Mohar

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-crossings when drawn in the plane. For c=1 there are only two such graphs without degree-2 vertices, K_5 and K_{3,3}, but for any fixed c>1 there exist infinitely many c-crossing-critical graphs. It has been previously shown that c-crossing-critical graphs have bounded path-width and contain only a bounded number of internally disjoint paths between any two vertices. We expand on these results, providing a more detailed description of the structure of crossing-critical graphs. On the way towards this description, we prove a new structural characterisation of plane graphs of bounded path-width. Then we show that every c-crossing-critical graph can be obtained from a c-crossing-critical graph of bounded size by replicating bounded-size parts that already appear in narrow "bands" or "fans" in the graph. This also gives an algorithm to generate all the c-crossing-critical graphs of at most given order n in polynomial time per each generated graph.

Cite as

Zdenek Dvorák, Petr Hlinený, and Bojan Mohar. Structure and Generation of Crossing-Critical Graphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.SoCG.2018.33,
  author =	{Dvor\'{a}k, Zdenek and Hlinen\'{y}, Petr and Mohar, Bojan},
  title =	{{Structure and Generation of Crossing-Critical Graphs}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.33},
  URN =		{urn:nbn:de:0030-drops-87460},
  doi =		{10.4230/LIPIcs.SoCG.2018.33},
  annote =	{Keywords: crossing number, crossing-critical, path-width, exhaustive generation}
}
  • Refine by Author
  • 13 Hliněný, Petr
  • 7 Hlinený, Petr
  • 4 Hlineny, Petr
  • 3 Ganian, Robert
  • 2 Jedelský, Jan
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 5 twin-width
  • 4 Crossing Number
  • 3 crossing number
  • 2 Planarity
  • 2 clique-width
  • Show More...

  • Refine by Type
  • 24 document
  • 1 volume

  • Refine by Publication Year
  • 4 2024
  • 3 2012
  • 3 2018
  • 3 2023
  • 2 2009
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail