98 Search Results for "Potapov, Igor"


Volume

LIPIcs, Volume 117

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)

MFCS 2018, August 27-31, 2018, Liverpool, GB

Editors: Igor Potapov, Paul Spirakis, and James Worrell

Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Finite Presentation of Graphs of Treewidth at Most Three

Authors: Amina Doumane, Samuel Humeau, and Damien Pous

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide a finite equational presentation of graphs of treewidth at most three, solving an instance of an open problem by Courcelle and Engelfriet. We use a syntax generalising series-parallel expressions, denoting graphs with a small interface. We introduce appropriate notions of connectivity for such graphs (components, cutvertices, separation pairs). We use those concepts to analyse the structure of graphs of treewidth at most three, showing how they can be decomposed recursively, first canonically into connected parallel components, and then non-deterministically. The main difficulty consists in showing that all non-deterministic choices can be related using only finitely many equational axioms.

Cite as

Amina Doumane, Samuel Humeau, and Damien Pous. A Finite Presentation of Graphs of Treewidth at Most Three. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 135:1-135:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doumane_et_al:LIPIcs.ICALP.2024.135,
  author =	{Doumane, Amina and Humeau, Samuel and Pous, Damien},
  title =	{{A Finite Presentation of Graphs of Treewidth at Most Three}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{135:1--135:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.135},
  URN =		{urn:nbn:de:0030-drops-202787},
  doi =		{10.4230/LIPIcs.ICALP.2024.135},
  annote =	{Keywords: Graphs, treewidth, connectedness, axiomatisation, series-parallel expressions}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Algorithm for Reachability in d-VASS

Authors: Yuxi Fu, Qizhe Yang, and Yangluo Zheng

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An 𝖥_{d} upper bound for the reachability problem in vector addition systems with states (VASS) in fixed dimension is given, where 𝖥_d is the d-th level of the Grzegorczyk hierarchy of complexity classes. The new algorithm combines the idea of the linear path scheme characterization of the reachability in the 2-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju and Lambert. The result improves the 𝖥_{d + 4} upper bound due to Leroux and Schmitz (LICS 2019).

Cite as

Yuxi Fu, Qizhe Yang, and Yangluo Zheng. Improved Algorithm for Reachability in d-VASS. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 136:1-136:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2024.136,
  author =	{Fu, Yuxi and Yang, Qizhe and Zheng, Yangluo},
  title =	{{Improved Algorithm for Reachability in d-VASS}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{136:1--136:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.136},
  URN =		{urn:nbn:de:0030-drops-202799},
  doi =		{10.4230/LIPIcs.ICALP.2024.136},
  annote =	{Keywords: Petri net, vector addition system, reachability}
}
Document
Brief Announcement
Brief Announcement: Collision-Free Robot Scheduling

Authors: Duncan Adamson, Nathan Flaherty, Igor Potapov, and Paul G. Spirakis

Published in: LIPIcs, Volume 292, 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024)


Abstract
Robots are becoming an increasingly common part of scientific work within laboratory environments. In this paper, we investigate the problem of designing schedules for completing a set of tasks at fixed locations with multiple robots in a laboratory. We represent the laboratory as a graph with tasks placed on fixed vertices and robots represented as agents, with the constraint that no two robots may occupy the same vertex, or traverse the same edge, at the same time. Each schedule is partitioned into a set of timesteps, corresponding to a walk through the graph (allowing for a robot to wait at a vertex to complete a task), with each timestep taking time equal to the time for a robot to move from one vertex to another and each task taking some given number of timesteps during the completion of which a robot must stay at the vertex containing the task. The goal is to determine a set of schedules, with one schedule for each robot, minimising the number of timesteps taken by the schedule taking the greatest number of timesteps within the set of schedules. We show that the problem of finding a task-fulfilling schedule in at most L timesteps is NP-complete for many simple classes of graphs. Explicitly, we provide this result for complete graphs, bipartite graphs, star graphs, and planar graphs. Finally, we provide positive results for line graphs, showing that we can find an optimal set of schedules for k robots completing m tasks of equal length of a path of length n in O(kmn) time, and a k-approximation when the length of the tasks is unbounded.

Cite as

Duncan Adamson, Nathan Flaherty, Igor Potapov, and Paul G. Spirakis. Brief Announcement: Collision-Free Robot Scheduling. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 292, pp. 22:1-22:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adamson_et_al:LIPIcs.SAND.2024.22,
  author =	{Adamson, Duncan and Flaherty, Nathan and Potapov, Igor and Spirakis, Paul G.},
  title =	{{Brief Announcement: Collision-Free Robot Scheduling}},
  booktitle =	{3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024)},
  pages =	{22:1--22:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-315-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{292},
  editor =	{Casteigts, Arnaud and Kuhn, Fabian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2024.22},
  URN =		{urn:nbn:de:0030-drops-199004},
  doi =		{10.4230/LIPIcs.SAND.2024.22},
  annote =	{Keywords: Graph Exploration, Scheduling, NP-Completeness, Approximation Algorithms}
}
Document
The Complexity of Periodic Energy Minimisation

Authors: Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev, and Igor Potapov

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The computational complexity of pairwise energy minimisation of N points in real space is a long-standing open problem. The idea of the potential intractability of the problem was supported by a lack of progress in finding efficient algorithms, even when restricted the integer grid approximation. In this paper we provide a firm answer to the problem on ℤ^d by showing that for a large class of pairwise energy functions the problem of periodic energy minimisation is NP-hard if the size of the period (known as a unit cell) is fixed, and is undecidable otherwise. We do so by introducing an abstraction of pairwise average energy minimisation as a mathematical problem, which covers many existing models. The most influential aspects of this work are showing for the first time: 1) undecidability of average pairwise energy minimisation in general 2) computational hardness for the most natural model with periodic boundary conditions, and 3) novel reductions for a large class of generic pairwise energy functions covering many physical abstractions at once. In particular, we develop a new tool of overlapping digital rhombuses to incorporate the properties of the physical force fields, and we connect it with classical tiling problems. Moreover, we illustrate the power of such reductions by incorporating more physical properties such as charge neutrality, and we show an inapproximability result for the extreme case of the 1D average energy minimisation problem.

Cite as

Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev, and Igor Potapov. The Complexity of Periodic Energy Minimisation. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{adamson_et_al:LIPIcs.MFCS.2022.8,
  author =	{Adamson, Duncan and Deligkas, Argyrios and Gusev, Vladimir V. and Potapov, Igor},
  title =	{{The Complexity of Periodic Energy Minimisation}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{8:1--8:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.8},
  URN =		{urn:nbn:de:0030-drops-168065},
  doi =		{10.4230/LIPIcs.MFCS.2022.8},
  annote =	{Keywords: Optimisation of periodic structures, tiling, undecidability, NP-hardness}
}
Document
Ranking Bracelets in Polynomial Time

Authors: Duncan Adamson, Vladimir V. Gusev, Igor Potapov, and Argyrios Deligkas

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
The main result of the paper is the first polynomial-time algorithm for ranking bracelets. The time-complexity of the algorithm is O(k²⋅ n⁴), where k is the size of the alphabet and n is the length of the considered bracelets. The key part of the algorithm is to compute the rank of any word with respect to the set of bracelets by finding three other ranks: the rank over all necklaces, the rank over palindromic necklaces, and the rank over enclosing apalindromic necklaces. The last two concepts are introduced in this paper. These ranks are key components to our algorithm in order to decompose the problem into parts. Additionally, this ranking procedure is used to build a polynomial-time unranking algorithm.

Cite as

Duncan Adamson, Vladimir V. Gusev, Igor Potapov, and Argyrios Deligkas. Ranking Bracelets in Polynomial Time. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 4:1-4:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{adamson_et_al:LIPIcs.CPM.2021.4,
  author =	{Adamson, Duncan and Gusev, Vladimir V. and Potapov, Igor and Deligkas, Argyrios},
  title =	{{Ranking Bracelets in Polynomial Time}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{4:1--4:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.4},
  URN =		{urn:nbn:de:0030-drops-139554},
  doi =		{10.4230/LIPIcs.CPM.2021.4},
  annote =	{Keywords: Bracelets, Ranking, Necklaces}
}
Document
On the Mortality Problem: From Multiplicative Matrix Equations to Linear Recurrence Sequences and Beyond

Authors: Paul C. Bell, Igor Potapov, and Pavel Semukhin

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We consider the following variant of the Mortality Problem: given k x k matrices A_1, A_2, ...,A_{t}, does there exist nonnegative integers m_1, m_2, ...,m_t such that the product A_1^{m_1} A_2^{m_2} * ... * A_{t}^{m_{t}} is equal to the zero matrix? It is known that this problem is decidable when t <= 2 for matrices over algebraic numbers but becomes undecidable for sufficiently large t and k even for integral matrices. In this paper, we prove the first decidability results for t>2. We show as one of our central results that for t=3 this problem in any dimension is Turing equivalent to the well-known Skolem problem for linear recurrence sequences. Our proof relies on the Primary Decomposition Theorem for matrices that was not used to show decidability results in matrix semigroups before. As a corollary we obtain that the above problem is decidable for t=3 and k <= 3 for matrices over algebraic numbers and for t=3 and k=4 for matrices over real algebraic numbers. Another consequence is that the set of triples (m_1,m_2,m_3) for which the equation A_1^{m_1} A_2^{m_2} A_3^{m_3} equals the zero matrix is equal to a finite union of direct products of semilinear sets. For t=4 we show that the solution set can be non-semilinear, and thus it seems unlikely that there is a direct connection to the Skolem problem. However we prove that the problem is still decidable for upper-triangular 2 x 2 rational matrices by employing powerful tools from transcendence theory such as Baker’s theorem and S-unit equations.

Cite as

Paul C. Bell, Igor Potapov, and Pavel Semukhin. On the Mortality Problem: From Multiplicative Matrix Equations to Linear Recurrence Sequences and Beyond. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 83:1-83:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bell_et_al:LIPIcs.MFCS.2019.83,
  author =	{Bell, Paul C. and Potapov, Igor and Semukhin, Pavel},
  title =	{{On the Mortality Problem: From Multiplicative Matrix Equations to Linear Recurrence Sequences and Beyond}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{83:1--83:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.83},
  URN =		{urn:nbn:de:0030-drops-110279},
  doi =		{10.4230/LIPIcs.MFCS.2019.83},
  annote =	{Keywords: Linear recurrence sequences, Skolem’s problem, mortality problem, matrix equations, primary decomposition theorem, Baker’s theorem}
}
Document
Complete Volume
LIPIcs, Volume 117, MFCS'18, Complete Volume

Authors: Igor Potapov, Paul Spirakis, and James Worrell

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
LIPIcs, Volume 117, MFCS'18, Complete Volume

Cite as

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Proceedings{potapov_et_al:LIPIcs.MFCS.2018,
  title =	{{LIPIcs, Volume 117, MFCS'18, Complete Volume}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018},
  URN =		{urn:nbn:de:0030-drops-97459},
  doi =		{10.4230/LIPIcs.MFCS.2018},
  annote =	{Keywords: Theory of computation}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Igor Potapov, Paul Spirakis, and James Worrell

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{potapov_et_al:LIPIcs.MFCS.2018.0,
  author =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.0},
  URN =		{urn:nbn:de:0030-drops-95824},
  doi =		{10.4230/LIPIcs.MFCS.2018.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Consensus Strings with Small Maximum Distance and Small Distance Sum

Authors: Laurent Bulteau and Markus L. Schmid

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
The parameterised complexity of consensus string problems (Closest String, Closest Substring, Closest String with Outliers) is investigated in a more general setting, i. e., with a bound on the maximum Hamming distance and a bound on the sum of Hamming distances between solution and input strings. We completely settle the parameterised complexity of these generalised variants of Closest String and Closest Substring, and partly for Closest String with Outliers; in addition, we answer some open questions from the literature regarding the classical problem variants with only one distance bound. Finally, we investigate the question of polynomial kernels and respective lower bounds.

Cite as

Laurent Bulteau and Markus L. Schmid. Consensus Strings with Small Maximum Distance and Small Distance Sum. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bulteau_et_al:LIPIcs.MFCS.2018.1,
  author =	{Bulteau, Laurent and Schmid, Markus L.},
  title =	{{Consensus Strings with Small Maximum Distance and Small Distance Sum}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.1},
  URN =		{urn:nbn:de:0030-drops-95834},
  doi =		{10.4230/LIPIcs.MFCS.2018.1},
  annote =	{Keywords: Consensus String Problems, Closest String, Closest Substring, Parameterised Complexity, Kernelisation}
}
Document
Plain Stopping Time and Conditional Complexities Revisited

Authors: Mikhail Andreev, Gleb Posobin, and Alexander Shen

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
In this paper we analyze the notion of "stopping time complexity", the amount of information needed to specify when to stop while reading an infinite sequence. This notion was introduced by Vovk and Pavlovic [Vovk and Pavlovic, 2016]. It turns out that plain stopping time complexity of a binary string x could be equivalently defined as (a) the minimal plain complexity of a Turing machine that stops after reading x on a one-directional input tape; (b) the minimal plain complexity of an algorithm that enumerates a prefix-free set containing x; (c) the conditional complexity C(x|x*) where x in the condition is understood as a prefix of an infinite binary sequence while the first x is understood as a terminated binary string; (d) as a minimal upper semicomputable function K such that each binary sequence has at most 2^n prefixes z such that K(z)<n; (e) as maxC^X(x) where C^X(z) is plain Kolmogorov complexity of z relative to oracle X and the maximum is taken over all extensions X of x. We also show that some of these equivalent definitions become non-equivalent in the more general setting where the condition y and the object x may differ, and answer an open question from Chernov, Hutter and Schmidhuber [Alexey V. Chernov et al., 2007].

Cite as

Mikhail Andreev, Gleb Posobin, and Alexander Shen. Plain Stopping Time and Conditional Complexities Revisited. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{andreev_et_al:LIPIcs.MFCS.2018.2,
  author =	{Andreev, Mikhail and Posobin, Gleb and Shen, Alexander},
  title =	{{Plain Stopping Time and Conditional Complexities Revisited}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{2:1--2:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.2},
  URN =		{urn:nbn:de:0030-drops-95842},
  doi =		{10.4230/LIPIcs.MFCS.2018.2},
  annote =	{Keywords: Kolmogorov complexity, stopping time complexity, structured conditional complexity, algorithmic information theory}
}
Document
Error-Tolerant Non-Adaptive Learning of a Hidden Hypergraph

Authors: Hasan Abasi

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
We consider the problem of learning the hypergraph using edge-detecting queries. In this model, the learner is allowed to query whether a set of vertices includes an edge from a hidden hypergraph. Except a few, all previous algorithms assume that a query's result is always correct. In this paper we study the problem of learning a hypergraph where alpha -fraction of the queries are incorrect. The main contribution of this paper is generalizing the well-known structure CFF (Cover Free Family) to be Dense (we will call it DCFF - Dense Cover Free Family) while presenting three different constructions for DCFF. Later, we use these constructions wisely to give a polynomial time non-adaptive learning algorithm for a hypergraph problem with at most alpha-fracion incorrect queries. The hypergraph problem is also known as both monotone DNF learning problem, and complexes group testing problem.

Cite as

Hasan Abasi. Error-Tolerant Non-Adaptive Learning of a Hidden Hypergraph. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{abasi:LIPIcs.MFCS.2018.3,
  author =	{Abasi, Hasan},
  title =	{{Error-Tolerant Non-Adaptive Learning of a Hidden Hypergraph}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.3},
  URN =		{urn:nbn:de:0030-drops-95854},
  doi =		{10.4230/LIPIcs.MFCS.2018.3},
  annote =	{Keywords: Error Tolerant Algorithm, Hidden Hypergraph, Montone DNF, Group Testing, Non-Adaptive Learning}
}
Document
From Expanders to Hitting Distributions and Simulation Theorems

Authors: Alexander Kozachinskiy

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
In this paper we explore hitting distributions, a notion that arose recently in the context of deterministic "query-to-communication" simulation theorems. We show that any expander in which any two distinct vertices have at most one common neighbor can be transformed into a gadget possessing good hitting distributions. We demonstrate that this result is applicable to affine plane expanders and to Lubotzky-Phillips-Sarnak construction of Ramanujan graphs . In particular, from affine plane expanders we extract a gadget achieving the best known trade-off between the arity of outer function and the size of gadget. More specifically, when this gadget has k bits on input, it admits a simulation theorem for all outer function of arity roughly 2^(k/2) or less (the same was also known for k-bit Inner Product). In addition we show that, unlike Inner Product, underlying hitting distributions in our new gadget are "polynomial-time listable" in the sense that their supports can be written down in time 2^O(k), i.e. in time polynomial in size of gadget's matrix. We also obtain two results showing that with current technique no better trade-off between the arity of outer function and the size of gadget can be achieved. Namely, we observe that no gadget can have hitting distributions with significantly better parameters than Inner Product or our new affine plane gadget. We also show that Thickness Lemma, a place which causes restrictions on the arity of outer functions in proofs of simulation theorems, is unimprovable.

Cite as

Alexander Kozachinskiy. From Expanders to Hitting Distributions and Simulation Theorems. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{kozachinskiy:LIPIcs.MFCS.2018.4,
  author =	{Kozachinskiy, Alexander},
  title =	{{From Expanders to Hitting Distributions and Simulation Theorems}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.4},
  URN =		{urn:nbn:de:0030-drops-95863},
  doi =		{10.4230/LIPIcs.MFCS.2018.4},
  annote =	{Keywords: simulation theorems, hitting distributions, expanders}
}
Document
Balance Problems for Integer Circuits

Authors: Titus Dose

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
We investigate the computational complexity of balance problems for {-,*}-circuits computing finite sets of natural numbers. These problems naturally build on problems for integer expressions and integer circuits studied by Stockmeyer and Meyer (1973), McKenzie and Wagner (2007), and Glaßer et al. (2010). Our work shows that the balance problem for {-,*}-circuits is undecidable which is the first natural problem for integer circuits or related constraint satisfaction problems that admits only one arithmetic operation and is proven to be undecidable. Starting from this result we precisely characterize the complexity of balance problems for proper subsets of {-,*}. These problems turn out to be complete for one of the classes L, NL, and NP.

Cite as

Titus Dose. Balance Problems for Integer Circuits. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dose:LIPIcs.MFCS.2018.5,
  author =	{Dose, Titus},
  title =	{{Balance Problems for Integer Circuits}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.5},
  URN =		{urn:nbn:de:0030-drops-95874},
  doi =		{10.4230/LIPIcs.MFCS.2018.5},
  annote =	{Keywords: computational complexity, integer expressions, integer circuits}
}
Document
On Hadamard Series and Rotating Q-Automata

Authors: Louis-Marie Dando and Sylvain Lombardy

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
In this paper, we study rotating Q-automata, which are (memoryless) automata with weights in Q, that can read the input tape from left to right several times. We show that the series realized by valid rotating Q-automata are Q-Hadamard series (which are the closure of Q-rational series by pointwise inverse), and that every Q-Hadamard series can be realized by such an automaton. We prove that, although validity of rotating Q-automata is undecidable, the equivalence problem is decidable on rotating Q-automata. Finally, we prove that every valid two-way Q-automaton admits an equivalent rotating Q-automaton. The conversion, which is effective, implies the decidability of equivalence of two-way Q-automata.

Cite as

Louis-Marie Dando and Sylvain Lombardy. On Hadamard Series and Rotating Q-Automata. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dando_et_al:LIPIcs.MFCS.2018.6,
  author =	{Dando, Louis-Marie and Lombardy, Sylvain},
  title =	{{On Hadamard Series and Rotating Q-Automata}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.6},
  URN =		{urn:nbn:de:0030-drops-95881},
  doi =		{10.4230/LIPIcs.MFCS.2018.6},
  annote =	{Keywords: Rational series, Hadamard operations, Rotating automata, Two-way automata}
}
  • Refine by Author
  • 11 Potapov, Igor
  • 3 Adamson, Duncan
  • 3 Deligkas, Argyrios
  • 3 Semukhin, Pavel
  • 2 Erlebach, Thomas
  • Show More...

  • Refine by Classification
  • 9 Mathematics of computing → Graph algorithms
  • 9 Theory of computation → Problems, reductions and completeness
  • 7 Mathematics of computing → Graph theory
  • 6 Theory of computation → Complexity theory and logic
  • 5 Theory of computation → Formal languages and automata theory
  • Show More...

  • Refine by Keyword
  • 3 Approximation Algorithms
  • 3 Kolmogorov complexity
  • 3 decidability
  • 2 Algorithms
  • 2 Computational Complexity
  • Show More...

  • Refine by Type
  • 97 document
  • 1 volume

  • Refine by Publication Year
  • 88 2018
  • 3 2024
  • 2 2016
  • 1 2013
  • 1 2017
  • Show More...