39 Search Results for "Schmid, Stefan"


Document
The Line-Based Dial-a-Ride Problem

Authors: Kendra Reiter, Marie Schmidt, and Michael Stiglmayr

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
On-demand ridepooling systems offer flexible services pooling multiple passengers into one vehicle, complementing traditional bus services. We propose a transportation system combining the spatial aspects of a fixed sequence of bus stops with the temporal flexibility of ridepooling. In the line-based Dial-a-Ride problem (liDARP), vehicles adhere to a fixed, ordered sequence of stops in their routes, with the possibility of taking shortcuts and turning if they are empty. We propose three MILP formulations for the liDARP with a multi-objective function balancing environmental aspects with customer satisfaction, comparing them on a real-world bus line. Our experiments show that the formulation based on an Event-Based graph is the fastest, solving instances with up to 50 requests in under one second. Compared to the classical DARP, the liDARP is computationally faster, with minimal increases in total distance driven and average ride times.

Cite as

Kendra Reiter, Marie Schmidt, and Michael Stiglmayr. The Line-Based Dial-a-Ride Problem. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{reiter_et_al:OASIcs.ATMOS.2024.14,
  author =	{Reiter, Kendra and Schmidt, Marie and Stiglmayr, Michael},
  title =	{{The Line-Based Dial-a-Ride Problem}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{14:1--14:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.14},
  URN =		{urn:nbn:de:0030-drops-212024},
  doi =		{10.4230/OASIcs.ATMOS.2024.14},
  annote =	{Keywords: DARP, ridepooling, liDARP, public transport, on-demand}
}
Document
Graph Spanners for Group Steiner Distances

Authors: Davide Bilò, Luciano Gualà, Stefano Leucci, and Alessandro Straziota

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A spanner is a sparse subgraph of a given graph G which preserves distances, measured w.r.t. some distance metric, up to a multiplicative stretch factor. This paper addresses the problem of constructing graph spanners w.r.t. the group Steiner metric, which generalizes the recently introduced beer distance metric. In such a metric we are given a collection of groups of required vertices, and we measure the distance between two vertices as the length of the shortest path between them that traverses at least one required vertex from each group. We discuss the relation between group Steiner spanners and classic spanners and we show that they exhibit strong ties with sourcewise spanners w.r.t. the shortest path metric. Nevertheless, group Steiner spanners capture several interesting scenarios that are not encompassed by existing spanners. This happens, e.g., for the singleton case, in which each group consists of a single required vertex, thus modeling the setting in which routes need to traverse certain points of interests (in any order). We provide several constructions of group Steiner spanners for both the all-pairs and single-source case, which exhibit various size-stretch trade-offs. Notably, we provide spanners with almost-optimal trade-offs for the singleton case. Moreover, some of our spanners also yield novel trade-offs for classical sourcewise spanners. Finally, we also investigate the query times that can be achieved when our spanners are turned into group Steiner distance oracles with the same size, stretch, and building time.

Cite as

Davide Bilò, Luciano Gualà, Stefano Leucci, and Alessandro Straziota. Graph Spanners for Group Steiner Distances. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.ESA.2024.25,
  author =	{Bil\`{o}, Davide and Gual\`{a}, Luciano and Leucci, Stefano and Straziota, Alessandro},
  title =	{{Graph Spanners for Group Steiner Distances}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.25},
  URN =		{urn:nbn:de:0030-drops-210968},
  doi =		{10.4230/LIPIcs.ESA.2024.25},
  annote =	{Keywords: Network sparsification, Graph spanners, Group Steiner tree, Distance oracles}
}
Document
Toward Self-Adjusting k-Ary Search Tree Networks

Authors: Evgeniy Feder, Anton Paramonov, Pavel Mavrin, Iosif Salem, Vitaly Aksenov, and Stefan Schmid

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Datacenter networks are becoming increasingly flexible with the incorporation of new optical communication technologies, such as optical circuit switches, enabling self-adjusting topologies that can adapt to the traffic pattern in a demand-aware manner. In this paper, we take the first steps toward demand-aware and self-adjusting k-ary tree networks. These are more powerful generalizations of existing binary search tree networks (like SplayNet [Stefan Schmid et al., 2016]), which have been at the core of self-adjusting network (SAN) designs. k-ary search tree networks are a natural generalization offering nodes of higher degrees, reduced route lengths, and local routing in spite of reconfigurations (due to maintaining the search property). Our main results are two online heuristics for self-adjusting k-ary tree networks. Empirical results show that our heuristics work better than SplayNet in most of the real network traces and for average to low locality synthetic traces, and are only a little inferior to SplayNet in all remaining traces. We build our online algorithms by first solving the offline case. First, we compute an offline (optimal) static demand-aware network for arbitrary traffic patterns in 𝒪(n³ ⋅ k) time via dynamic programming, where n is the number of network nodes (e.g., datacenter racks), and also improve the bound for the special case of uniformly distributed traffic. Then, we present a centroid-based approach to demand-aware network designs that we use both in the offline static and online settings. In the offline uniform-workload case, we construct this centroid network in linear time 𝒪(n).

Cite as

Evgeniy Feder, Anton Paramonov, Pavel Mavrin, Iosif Salem, Vitaly Aksenov, and Stefan Schmid. Toward Self-Adjusting k-Ary Search Tree Networks. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feder_et_al:LIPIcs.ESA.2024.52,
  author =	{Feder, Evgeniy and Paramonov, Anton and Mavrin, Pavel and Salem, Iosif and Aksenov, Vitaly and Schmid, Stefan},
  title =	{{Toward Self-Adjusting k-Ary Search Tree Networks}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{52:1--52:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.52},
  URN =		{urn:nbn:de:0030-drops-211235},
  doi =		{10.4230/LIPIcs.ESA.2024.52},
  annote =	{Keywords: self-adjusting networks, networks, splay-tree, k-ary tree}
}
Document
Semi-Streaming Algorithms for Weighted k-Disjoint Matchings

Authors: S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We design and implement two single-pass semi-streaming algorithms for the maximum weight k-disjoint matching (k-DM) problem. Given an integer k, the k-DM problem is to find k pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For k ≥ 2, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is 1/(3+ε)-approximate. We also develop an approximation preserving reduction from k-DM to the maximum weight b-matching problem. Leveraging this reduction and an existing semi-streaming b-matching algorithm, we design a (1/(2+ε))(1 - 1/(k+1))-approximate semi-streaming algorithm for k-DM. For any constant ε > 0, both of these algorithms require O(nk log_{1+ε}² n) bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the k-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 95 real-world and synthetic test problems, including thirteen graphs generated from data center network traces. On these instances, our streaming algorithms used significantly less memory (ranging from 6× to 512× less) and were faster in runtime than the offline algorithms. Our solutions were often within 5% of the best weights from the offline algorithms. We highlight that the existing offline algorithms run out of 1 TB memory for most of the large instances (> 1 billion edges), whereas our streaming algorithms can solve these problems using only 100 GB memory for k = 8.

Cite as

S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy. Semi-Streaming Algorithms for Weighted k-Disjoint Matchings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 53:1-53:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.ESA.2024.53,
  author =	{Ferdous, S M and Samineni, Bhargav and Pothen, Alex and Halappanavar, Mahantesh and Krishnamoorthy, Bala},
  title =	{{Semi-Streaming Algorithms for Weighted k-Disjoint Matchings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{53:1--53:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.53},
  URN =		{urn:nbn:de:0030-drops-211245},
  doi =		{10.4230/LIPIcs.ESA.2024.53},
  annote =	{Keywords: Matchings, Semi-Streaming Algorithms, Approximation Algorithms}
}
Document
Competitive Capacitated Online Recoloring

Authors: Rajmohan Rajaraman and Omer Wasim

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper, we revisit the online recoloring problem introduced recently by Azar, Machluf, Patt-Shamir and Touitou [Azar et al., 2022] to investigate algorithmic challenges that arise while scheduling virtual machines or processes in distributed systems and cloud services. In online recoloring, there is a fixed set V of n vertices and an initial coloring c₀: V → [k] for some k ∈ ℤ^{> 0}. Under an online sequence σ of requests where each request is an edge (u_t,v_t), a proper vertex coloring c of the graph G_t induced by requests until time t needs to be maintained for all t; i.e., for any (u,v) ∈ G_t, c(u)≠ c(v). In the distributed systems application, a vertex corresponds to a VM, an edge corresponds to the requirement that the two endpoint VMs be on different clusters, and a coloring is an allocation of VMs to clusters. The objective is to minimize the total weight of vertices recolored for the sequence σ. In [Azar et al., 2022], the authors give competitive algorithms for two polynomially tractable cases - 2-coloring for bipartite G_t and (Δ+1)-coloring for Δ-degree G_t - and lower bounds for the fully dynamic case where G_t can be arbitrary. We obtain the first competitive algorithms for capacitated online recoloring and fully dynamic recoloring, in which there is a bound on the number or weight of vertices in each color. Our first set of results is for 2-recoloring using algorithms that are (1+ε)-resource augmented where ε ∈ (0,1) is an arbitrarily small constant. Our main result is an O(log n)-competitive deterministic algorithm for weighted bipartite graphs, which is asymptotically optimal in light of an Ω(log n) lower bound that holds for an unbounded amount of augmentation. We also present an O(nlog n)-competitive deterministic algorithm for fully dynamic recoloring, which is optimal within an O(log n) factor in light of a Ω(n) lower bound that holds for an unbounded amount of augmentation. Our second set of results is for Δ-recoloring in an (1+ε)-overprovisioned setting where the maximum degree of G_t is bounded by (1-ε)Δ for all t, and each color assigned to at most (1+ε)n/(Δ) vertices, for an arbitrary ε > 0. Our main result is an O(1)-competitive randomized algorithm for Δ = O(√{n/log n}). We also present an O(Δ)-competitive deterministic algorithm for Δ ≤ ε n/2. Both results are asymptotically optimal.

Cite as

Rajmohan Rajaraman and Omer Wasim. Competitive Capacitated Online Recoloring. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 95:1-95:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rajaraman_et_al:LIPIcs.ESA.2024.95,
  author =	{Rajaraman, Rajmohan and Wasim, Omer},
  title =	{{Competitive Capacitated Online Recoloring}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{95:1--95:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.95},
  URN =		{urn:nbn:de:0030-drops-211666},
  doi =		{10.4230/LIPIcs.ESA.2024.95},
  annote =	{Keywords: online algorithms, competitive ratio, recoloring, resource augmentation}
}
Document
Payment Censorship in the Lightning Network Despite Encrypted Communication

Authors: Charmaine Ndolo and Florian Tschorsch

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
The Lightning network (LN) offers a solution to Bitcoin’s scalability limitations by providing fast and private off-chain payments. In addition to the LN’s long known application-level centralisation, recent work has highlighted its centralisation at the network-level which makes it vulnerable to attacks on privacy by malicious actors. In this work, we explore the LN’s susceptibility to censorship by a network-level actor such as a malicious autonomous system. We show that a network-level actor can identify and censor all payments routed via their network by just examining the packet headers. Our results indicate that it is viable to accurately identify LN messages despite the fact that all inter-peer communication is end-to-end encrypted. Additionally, we describe how a network-level observer can determine a node’s role in a payment path based on timing, direction of flow and message type, and demonstrate the approach’s feasibility using experiments in a live instance of the network. Simulations of the attack on a snapshot of the Lightning mainnet suggest that the impact of the attack varies from mild to potentially dramatic depending on the adversary and type of payments that are censored. We analyse countermeasures the network can implement and come to the conclusion that an adequate solution comprises constant message sizes as well as dummy traffic.

Cite as

Charmaine Ndolo and Florian Tschorsch. Payment Censorship in the Lightning Network Despite Encrypted Communication. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ndolo_et_al:LIPIcs.AFT.2024.12,
  author =	{Ndolo, Charmaine and Tschorsch, Florian},
  title =	{{Payment Censorship in the Lightning Network Despite Encrypted Communication}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.12},
  URN =		{urn:nbn:de:0030-drops-209484},
  doi =		{10.4230/LIPIcs.AFT.2024.12},
  annote =	{Keywords: Lightning network, payment channel networks, censorship resistance}
}
Document
Musketeer: Incentive-Compatible Rebalancing for Payment Channel Networks

Authors: Zeta Avarikioti, Stefan Schmid, and Samarth Tiwari

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
In this work, we revisit the severely limited throughput problem of cryptocurrencies and propose a novel rebalancing approach for Payment Channel Networks (PCNs). PCNs are a popular solution for increasing the blockchain throughput, however, their benefit depends on the overall users' liquidity. Rebalancing mechanisms are the state-of-the-art approach to maintaining high liquidity in PCNs. However, existing opt-in rebalancing mechanisms exclude users that may assist in rebalancing for small service fees, leading to suboptimal solutions and under-utilization of the PCNs' bounded liquidity. We introduce the first rebalancing approach for PCNs that includes all users, following a "all for one and one for all" design philosophy that yields optimal throughput. The proposed approach introduces a double-auction rebalancing problem, which we term Musketeer, where users can participate as buyers (paying fees to rebalance) or sellers (charging fees to route transactions). The desired properties tailored to the unique characteristics of PCNs are formally defined, including the novel game-theoretic property of cyclic budget balance that is a stronger variation of strong budget balance. Basic results derived from auction theory, including an impossibility and multiple mechanisms that either achieve all desiderata under a relaxed model or sacrifice one of the properties, are presented. We also propose a novel mechanism that leverages time delays as an additional cost to users. This mechanism is provably truthful, cyclic budget balanced, individually rational and economic efficient but only with respect to liquidity.

Cite as

Zeta Avarikioti, Stefan Schmid, and Samarth Tiwari. Musketeer: Incentive-Compatible Rebalancing for Payment Channel Networks. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{avarikioti_et_al:LIPIcs.AFT.2024.13,
  author =	{Avarikioti, Zeta and Schmid, Stefan and Tiwari, Samarth},
  title =	{{Musketeer: Incentive-Compatible Rebalancing for Payment Channel Networks}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.13},
  URN =		{urn:nbn:de:0030-drops-209494},
  doi =		{10.4230/LIPIcs.AFT.2024.13},
  annote =	{Keywords: Blockchains, Payment Channel Networks, Rebalancing, Game Theory}
}
Document
Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Authors: Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Refinement types have been extensively used in class-based languages to specify and verify fine-grained logical specifications. Despite the advances in practical aspects such as applicability and usability, two fundamental issues persist. First, the soundness of existing class-based refinement type systems is inadequately explored, casting doubts on their reliability. Second, the expressiveness of existing systems is limited, restricting the depiction of semantic properties related to object-oriented constructs. This work tackles these issues through a systematic framework. We formalize a declarative class-based refinement type calculus (named RFJ), that is expressive and concise. We rigorously develop the soundness meta-theory of this calculus, followed by its mechanization in Coq. Finally, to ensure the calculus’s verifiability, we propose an algorithmic verification approach based on a fragment of first-order logic (named LFJ), and implement this approach as a type checker.

Cite as

Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao. Formalizing, Mechanizing, and Verifying Class-Based Refinement Types. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 39:1-39:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECOOP.2024.39,
  author =	{Sun, Ke and Wang, Di and Chen, Sheng and Wang, Meng and Hao, Dan},
  title =	{{Formalizing, Mechanizing, and Verifying Class-Based Refinement Types}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{39:1--39:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.39},
  URN =		{urn:nbn:de:0030-drops-208881},
  doi =		{10.4230/LIPIcs.ECOOP.2024.39},
  annote =	{Keywords: Refinement Types, Program Verification, Object-oriented Programming}
}
Document
Streaming Matching and Edge Cover in Practice

Authors: S M Ferdous, Alex Pothen, and Mahantesh Halappanavar

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Graph algorithms with polynomial space and time requirements often become infeasible for massive graphs with billions of edges or more. State-of-the-art approaches therefore employ approximate serial, parallel, and distributed algorithms to tackle these challenges. However, such approaches require storing the entire graph in memory and thus need access to costly computing resources such as clusters and supercomputers. In this paper, we present practical streaming approaches for solving massive graph problems using limited memory for two prototypical graph problems: maximum weighted matching and minimum weighted edge cover. For matching, we conduct a thorough computational study on two of the semi-streaming algorithms including a recent breakthrough result that achieves a 1/(2+ε)-approximation of the weight while using O(n log W /ε) memory (here n is the number of vertices and W is the maximum edge weight), designed by Paz and Schwartzman [SODA, 2017]. Empirically, we show that the semi-streaming algorithms produce matchings whose weight is close to the best 1/2-approximate offline algorithm while requiring less time and an order-of-magnitude less memory. For minimum weighted edge cover, we develop three novel semi-streaming algorithms. Two of these algorithms require a single pass through the input graph, require O(n log n) memory, and provide a 2-approximation guarantee on the objective. We also leverage a relationship between approximate maximum weighted matching and approximate minimum weighted edge cover to develop a two-pass 3/2+ε-approximate algorithm with the memory requirement of Paz and Schwartzman’s semi-streaming matching algorithm. These streaming approaches are compared against the state-of-the-art 3/2-approximate offline algorithm. The semi-streaming matching and the novel edge cover algorithms proposed in this paper can process graphs with several billions of edges in under 30 minutes using 6 GB of memory, which is at least an order of magnitude improvement from the offline (non-streaming) algorithms. For the largest graph, the best alternative offline parallel approximation algorithm (GPA+ROMA) could not finish in three hours even while employing hundreds of processors and 1 TB of memory. We also demonstrate an application of semi-streaming algorithm by computing a matching using linearly bounded memory on intersection graphs derived from three machine learning datasets, while the existing offline algorithms could not complete on one of these datasets since its memory requirement exceeded 1TB.

Cite as

S M Ferdous, Alex Pothen, and Mahantesh Halappanavar. Streaming Matching and Edge Cover in Practice. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.SEA.2024.12,
  author =	{Ferdous, S M and Pothen, Alex and Halappanavar, Mahantesh},
  title =	{{Streaming Matching and Edge Cover in Practice}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.12},
  URN =		{urn:nbn:de:0030-drops-203773},
  doi =		{10.4230/LIPIcs.SEA.2024.12},
  annote =	{Keywords: Matching, Edge Cover, Semi-Streaming Algorithm, Parallel Algorithms, Algorithm Engineering}
}
Document
Track A: Algorithms, Complexity and Games
Caching Connections in Matchings

Authors: Yaniv Sadeh and Haim Kaplan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Motivated by the desire to utilize a limited number of configurable optical switches by recent advances in Software Defined Networks (SDNs), we define an online problem which we call the Caching in Matchings problem. This problem has a natural combinatorial structure and therefore may find additional applications in theory and practice. In the Caching in Matchings problem our cache consists of k matchings of connections between servers that form a bipartite graph. To cache a connection we insert it into one of the k matchings possibly evicting at most two other connections from this matching. This problem resembles the problem known as Connection Caching [Cohen et al., 2000], where we also cache connections but our only restriction is that they form a graph with bounded degree k. Our results show a somewhat surprising qualitative separation between the problems: The competitive ratio of any online algorithm for caching in matchings must depend on the size of the graph. Specifically, we give a deterministic O(nk) competitive and randomized O(n log k) competitive algorithms for caching in matchings, where n is the number of servers and k is the number of matchings. We also show that the competitive ratio of any deterministic algorithm is Ω(max(n/k,k)) and of any randomized algorithm is Ω(log (n/(k² log k)) ⋅ log k). In particular, the lower bound for randomized algorithms is Ω(log n) regardless of k, and can be as high as Ω(log² n) if k = n^{1/3}, for example. We also show that if we allow the algorithm to use at least 2k-1 matchings compared to k used by the optimum then we match the competitive ratios of connection catching which are independent of n. Interestingly, we also show that even a single extra matching for the algorithm allows to get substantially better bounds.

Cite as

Yaniv Sadeh and Haim Kaplan. Caching Connections in Matchings. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 120:1-120:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sadeh_et_al:LIPIcs.ICALP.2024.120,
  author =	{Sadeh, Yaniv and Kaplan, Haim},
  title =	{{Caching Connections in Matchings}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{120:1--120:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.120},
  URN =		{urn:nbn:de:0030-drops-202639},
  doi =		{10.4230/LIPIcs.ICALP.2024.120},
  annote =	{Keywords: Caching, Matchings, Caching in Matchings, Edge Coloring, Online Algorithms}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
A Subquadratic Bound for Online Bisection

Authors: Marcin Bienkowski and Stefan Schmid

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The online bisection problem is a natural dynamic variant of the classic optimization problem, where one has to dynamically maintain a partition of n elements into two clusters of cardinality n/2. During runtime, an online algorithm is given a sequence of requests, each being a pair of elements: an inter-cluster request costs one unit while an intra-cluster one is free. The algorithm may change the partition, paying a unit cost for each element that changes its cluster. This natural problem admits a simple deterministic O(n²)-competitive algorithm [Avin et al., DISC 2016]. While several significant improvements over this result have been obtained since the original work, all of them either limit the generality of the input or assume some form of resource augmentation (e.g., larger clusters). Moreover, the algorithm of Avin et al. achieves the best known competitive ratio even if randomization is allowed. In this paper, we present the first randomized online algorithm that breaks this natural quadratic barrier and achieves a competitive ratio of Õ(n^{23/12}) without resource augmentation and for an arbitrary sequence of requests.

Cite as

Marcin Bienkowski and Stefan Schmid. A Subquadratic Bound for Online Bisection. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2024.14,
  author =	{Bienkowski, Marcin and Schmid, Stefan},
  title =	{{A Subquadratic Bound for Online Bisection}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.14},
  URN =		{urn:nbn:de:0030-drops-197247},
  doi =		{10.4230/LIPIcs.STACS.2024.14},
  annote =	{Keywords: Bisection, Graph Partitioning, online balanced Repartitioning, online Algorithms, competitive Analysis}
}
Document
On the Convergence Time in Graphical Games: A Locality-Sensitive Approach

Authors: Juho Hirvonen, Laura Schmid, Krishnendu Chatterjee, and Stefan Schmid

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
Graphical games are a useful framework for modeling the interactions of (selfish) agents who are connected via an underlying topology and whose behaviors influence each other. They have wide applications ranging from computer science to economics and biology. Yet, even though an agent’s payoff only depends on the actions of their direct neighbors in graphical games, computing the Nash equilibria and making statements about the convergence time of "natural" local dynamics in particular can be highly challenging. In this work, we present a novel approach for classifying complexity of Nash equilibria in graphical games by establishing a connection to local graph algorithms, a subfield of distributed computing. In particular, we make the observation that the equilibria of graphical games are equivalent to locally verifiable labelings (LVL) in graphs; vertex labelings which are verifiable with constant-round local algorithms. This connection allows us to derive novel lower bounds on the convergence time to equilibrium of best-response dynamics in graphical games. Since we establish that distributed convergence can sometimes be provably slow, we also introduce and give bounds on an intuitive notion of "time-constrained" inefficiency of best responses. We exemplify how our results can be used in the implementation of mechanisms that ensure convergence of best responses to a Nash equilibrium. Our results thus also give insight into the convergence of strategy-proof algorithms for graphical games, which is still not well understood.

Cite as

Juho Hirvonen, Laura Schmid, Krishnendu Chatterjee, and Stefan Schmid. On the Convergence Time in Graphical Games: A Locality-Sensitive Approach. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 11:1-11:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hirvonen_et_al:LIPIcs.OPODIS.2023.11,
  author =	{Hirvonen, Juho and Schmid, Laura and Chatterjee, Krishnendu and Schmid, Stefan},
  title =	{{On the Convergence Time in Graphical Games: A Locality-Sensitive Approach}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{11:1--11:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.11},
  URN =		{urn:nbn:de:0030-drops-195015},
  doi =		{10.4230/LIPIcs.OPODIS.2023.11},
  annote =	{Keywords: distributed computing, Nash equilibria, mechanism design, best-response dynamics}
}
Document
Online Algorithms with Randomly Infused Advice

Authors: Yuval Emek, Yuval Gil, Maciej Pacut, and Stefan Schmid

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We introduce a novel method for the rigorous quantitative evaluation of online algorithms that relaxes the "radical worst-case" perspective of classic competitive analysis. In contrast to prior work, our method, referred to as randomly infused advice (RIA), does not make any assumptions about the input sequence and does not rely on the development of designated online algorithms. Rather, it can be applied to existing online randomized algorithms, introducing a means to evaluate their performance in scenarios that lie outside the radical worst-case regime. More concretely, an online algorithm ALG with RIA benefits from pieces of advice generated by an omniscient but not entirely reliable oracle. The crux of the new method is that the advice is provided to ALG by writing it into the buffer ℬ from which ALG normally reads its random bits, hence allowing us to augment it through a very simple and non-intrusive interface. The (un)reliability of the oracle is captured via a parameter 0 ≤ α ≤ 1 that determines the probability (per round) that the advice is successfully infused by the oracle; if the advice is not infused, which occurs with probability 1 - α, then the buffer ℬ contains fresh random bits (as in the classic online setting). The applicability of the new RIA method is demonstrated by applying it to three extensively studied online problems: paging, uniform metrical task systems, and online set cover. For these problems, we establish new upper bounds on the competitive ratio of classic online algorithms that improve as the infusion parameter α increases. These are complemented with (often tight) lower bounds on the competitive ratio of online algorithms with RIA for the three problems.

Cite as

Yuval Emek, Yuval Gil, Maciej Pacut, and Stefan Schmid. Online Algorithms with Randomly Infused Advice. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{emek_et_al:LIPIcs.ESA.2023.44,
  author =	{Emek, Yuval and Gil, Yuval and Pacut, Maciej and Schmid, Stefan},
  title =	{{Online Algorithms with Randomly Infused Advice}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{44:1--44:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.44},
  URN =		{urn:nbn:de:0030-drops-186970},
  doi =		{10.4230/LIPIcs.ESA.2023.44},
  annote =	{Keywords: Online algorithms, competitive analysis, advice}
}
Document
Towards More Flexible and Automated Communication Networks (Dagstuhl Seminar 22471)

Authors: Artur Hecker, Stefan Schmid, Henning Schulzrinne, Lily Hügerich, Sándor Laki, and Iosif Salem

Published in: Dagstuhl Reports, Volume 12, Issue 11 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22471 "Towards More Flexible and Automated Communication Networks". Communication network are becoming more and more automated, allowing to overcome human configuration errors (a frequent reason for outages) and enabling a more fine-grained control, potentially improving also efficiency. For example, the percentage of employees of Telecom companies "really touching the network" is decreasing. The goal of this seminar was to bring together experts in the field to identify and discuss the key challenges in making communication networks more autonomous. To this end, the seminar was structured around a small number of enlightning keynote talks, leaving significant time for breakout sessions and discussions, as well as socializing.

Cite as

Artur Hecker, Stefan Schmid, Henning Schulzrinne, Lily Hügerich, Sándor Laki, and Iosif Salem. Towards More Flexible and Automated Communication Networks (Dagstuhl Seminar 22471). In Dagstuhl Reports, Volume 12, Issue 11, pp. 96-108, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{hecker_et_al:DagRep.12.11.96,
  author =	{Hecker, Artur and Schmid, Stefan and Schulzrinne, Henning and H\"{u}gerich, Lily and Laki, S\'{a}ndor and Salem, Iosif},
  title =	{{Towards More Flexible and Automated Communication Networks (Dagstuhl Seminar 22471)}},
  pages =	{96--108},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{11},
  editor =	{Hecker, Artur and Schmid, Stefan and Schulzrinne, Henning and H\"{u}gerich, Lily and Laki, S\'{a}ndor and Salem, Iosif},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.11.96},
  URN =		{urn:nbn:de:0030-drops-178379},
  doi =		{10.4230/DagRep.12.11.96},
  annote =	{Keywords: networking, communication technologies, automation, programmability, flexibility}
}
  • Refine by Author
  • 29 Schmid, Stefan
  • 5 Foerster, Klaus-Tycho
  • 3 Avin, Chen
  • 3 Parham, Mahmoud
  • 3 Salem, Iosif
  • Show More...

  • Refine by Classification
  • 6 Networks → Network algorithms
  • 5 Theory of computation → Distributed algorithms
  • 5 Theory of computation → Online algorithms
  • 4 Networks → Routing protocols
  • 2 Computer systems organization → Dependable and fault-tolerant systems and networks
  • Show More...

  • Refine by Keyword
  • 2 Churn
  • 2 Matchings
  • 2 Online algorithms
  • 2 P2P Topologies
  • 2 Reconfigurable Networks
  • Show More...

  • Refine by Type
  • 39 document

  • Refine by Publication Year
  • 13 2024
  • 7 2023
  • 3 2017
  • 3 2019
  • 3 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail