42 Search Results for "Sobocinski, Pawel"


Volume

LIPIcs, Volume 35

6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)

CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands

Editors: Lawrence S. Moss and Pawel Sobocinski

Document
The Flower Calculus

Authors: Pablo Donato

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We introduce the flower calculus, a deep inference proof system for intuitionistic first-order logic inspired by Peirce’s existential graphs. It works as a rewriting system over inductive objects called "flowers", that enjoy both a graphical interpretation as topological diagrams, and a textual presentation as nested sequents akin to coherent formulas. Importantly, the calculus dispenses completely with the traditional notion of symbolic connective, operating solely on nested flowers containing atomic predicates. We prove both the soundness of the full calculus and the completeness of an analytic fragment with respect to Kripke semantics. This provides to our knowledge the first analyticity result for a proof system based on existential graphs, adapting semantic cut-elimination techniques to a deep inference setting. Furthermore, the kernel of rules targetted by completeness is fully invertible, a desirable property for both automated and interactive proof search.

Cite as

Pablo Donato. The Flower Calculus. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 5:1-5:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{donato:LIPIcs.FSCD.2024.5,
  author =	{Donato, Pablo},
  title =	{{The Flower Calculus}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{5:1--5:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.5},
  URN =		{urn:nbn:de:0030-drops-203343},
  doi =		{10.4230/LIPIcs.FSCD.2024.5},
  annote =	{Keywords: deep inference, graphical calculi, existential graphs, intuitionistic logic, Kripke semantics, cut-elimination}
}
Document
A Categorical Approach to DIBI Models

Authors: Tao Gu, Jialu Bao, Justin Hsu, Alexandra Silva, and Fabio Zanasi

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
The logic of Dependence and Independence Bunched Implications (DIBI) is a logic to reason about conditional independence (CI); for instance, DIBI formulas can characterise CI in discrete probability distributions and in relational databases, using a probabilistic DIBI model and a similarly-constructed relational model. Despite the similarity of the two models, there lacks a uniform account. As a result, the laborious case-by-case verification of the frame conditions required for constructing new models hinders them from generalising the results to CI in other useful models such that continuous distribution. In this paper, we develop an abstract framework for systematically constructing DIBI models, using category theory as the unifying mathematical language. We show that DIBI models arise from arbitrary symmetric monoidal categories with copy-discard structure. In particular, we use string diagrams - a graphical presentation of monoidal categories - to give a uniform definition of the parallel composition and subkernel relation in DIBI models. Our approach not only generalises known models, but also yields new models of interest and reduces properties of DIBI models to structures in the underlying categories. Furthermore, our categorical framework enables a comparison between string diagrammatic approaches to CI in the literature and a logical notion of CI, defined in terms of the satisfaction of specific DIBI formulas. We show that the logical notion is an extension of string diagrammatic CI under reasonable conditions.

Cite as

Tao Gu, Jialu Bao, Justin Hsu, Alexandra Silva, and Fabio Zanasi. A Categorical Approach to DIBI Models. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 17:1-17:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gu_et_al:LIPIcs.FSCD.2024.17,
  author =	{Gu, Tao and Bao, Jialu and Hsu, Justin and Silva, Alexandra and Zanasi, Fabio},
  title =	{{A Categorical Approach to DIBI Models}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{17:1--17:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.17},
  URN =		{urn:nbn:de:0030-drops-203469},
  doi =		{10.4230/LIPIcs.FSCD.2024.17},
  annote =	{Keywords: Conditional Independence, Dependence Independence Bunched Implications, String Diagrams, Markov Categories}
}
Document
homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Authors: Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We present the proof assistant homotopy.io for working with finitely-presented semistrict higher categories. The tool runs in the browser with a point-and-click interface, allowing direct manipulation of proof objects via a graphical representation. We describe the user interface and explain how the tool can be used in practice. We also describe the essential subsystems of the tool, including collapse, contraction, expansion, typechecking, and layout, as well as key implementation details including data structure encoding, memoisation, and rendering. These technical innovations have been essential for achieving good performance in a resource-constrained setting.

Cite as

Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary. homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 30:1-30:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{corbyn_et_al:LIPIcs.FSCD.2024.30,
  author =	{Corbyn, Nathan and Heidemann, Lukas and Hu, Nick and Sarti, Chiara and Tataru, Calin and Vicary, Jamie},
  title =	{{homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{30:1--30:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.30},
  URN =		{urn:nbn:de:0030-drops-203594},
  doi =		{10.4230/LIPIcs.FSCD.2024.30},
  annote =	{Keywords: Higher category theory, proof assistant, string diagrams}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions

Authors: Wojciech Różowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Deterministic automata have been traditionally studied through the point of view of language equivalence, but another perspective is given by the canonical notion of shortest-distinguishing-word distance quantifying the of states. Intuitively, the longer the word needed to observe a difference between two states, then the closer their behaviour is. In this paper, we give a sound and complete axiomatisation of shortest-distinguishing-word distance between regular languages. Our axiomatisation relies on a recently developed quantitative analogue of equational logic, allowing to manipulate rational-indexed judgements of the form e ≡_ε f meaning term e is approximately equivalent to term f within the error margin of ε. The technical core of the paper is dedicated to the completeness argument that draws techniques from order theory and Banach spaces to simplify the calculation of the behavioural distance to the point it can be then mimicked by axiomatic reasoning.

Cite as

Wojciech Różowski. A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 149:1-149:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rozowski:LIPIcs.ICALP.2024.149,
  author =	{R\'{o}\.{z}owski, Wojciech},
  title =	{{A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{149:1--149:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.149},
  URN =		{urn:nbn:de:0030-drops-202920},
  doi =		{10.4230/LIPIcs.ICALP.2024.149},
  annote =	{Keywords: Regular Expressions, Behavioural Distances, Quantitative Equational Theories}
}
Document
The Produoidal Algebra of Process Decomposition

Authors: Matt Earnshaw, James Hefford, and Mario Román

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We characterize a universal normal produoidal category of monoidal contexts over an arbitrary monoidal category. In the same sense that a monoidal morphism represents a process, a monoidal context represents an incomplete process: a piece of a decomposition, possibly containing missing parts. In particular, symmetric monoidal contexts coincide with monoidal lenses and endow them with a novel universal property. We apply this algebraic structure to the analysis of multi-party protocols in arbitrary theories of processes.

Cite as

Matt Earnshaw, James Hefford, and Mario Román. The Produoidal Algebra of Process Decomposition. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{earnshaw_et_al:LIPIcs.CSL.2024.25,
  author =	{Earnshaw, Matt and Hefford, James and Rom\'{a}n, Mario},
  title =	{{The Produoidal Algebra of Process Decomposition}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.25},
  URN =		{urn:nbn:de:0030-drops-196688},
  doi =		{10.4230/LIPIcs.CSL.2024.25},
  annote =	{Keywords: monoidal categories, profunctors, lenses, duoidal categories}
}
Document
String Diagrammatic Trace Theory

Authors: Matthew Earnshaw and Paweł Sobociński

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We extend the theory of formal languages in monoidal categories to the multi-sorted, symmetric case, and show how this theory permits a graphical treatment of topics in concurrency. In particular, we show that Mazurkiewicz trace languages are precisely symmetric monoidal languages over monoidal distributed alphabets. We introduce symmetric monoidal automata, which define the class of regular symmetric monoidal languages. Furthermore, we prove that Zielonka’s asynchronous automata coincide with symmetric monoidal automata over monoidal distributed alphabets. Finally, we apply the string diagrams for symmetric premonoidal categories to derive serializations of traces.

Cite as

Matthew Earnshaw and Paweł Sobociński. String Diagrammatic Trace Theory. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 43:1-43:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{earnshaw_et_al:LIPIcs.MFCS.2023.43,
  author =	{Earnshaw, Matthew and Soboci\'{n}ski, Pawe{\l}},
  title =	{{String Diagrammatic Trace Theory}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{43:1--43:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.43},
  URN =		{urn:nbn:de:0030-drops-185770},
  doi =		{10.4230/LIPIcs.MFCS.2023.43},
  annote =	{Keywords: symmetric monoidal categories, Mazurkiewicz traces, asynchronous automata}
}
Document
Regular Monoidal Languages

Authors: Matthew Earnshaw and Paweł Sobociński

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We introduce regular languages of morphisms in free monoidal categories, with their associated grammars and automata. These subsume the classical theory of regular languages of words and trees, but also open up a much wider class of languages over string diagrams. We use the algebra of monoidal categories to investigate the properties of regular monoidal languages, and provide sufficient conditions for their recognizability by deterministic monoidal automata.

Cite as

Matthew Earnshaw and Paweł Sobociński. Regular Monoidal Languages. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 44:1-44:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{earnshaw_et_al:LIPIcs.MFCS.2022.44,
  author =	{Earnshaw, Matthew and Soboci\'{n}ski, Pawe{\l}},
  title =	{{Regular Monoidal Languages}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{44:1--44:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.44},
  URN =		{urn:nbn:de:0030-drops-168425},
  doi =		{10.4230/LIPIcs.MFCS.2022.44},
  annote =	{Keywords: monoidal categories, string diagrams, formal language theory, cartesian restriction categories}
}
Document
Diagrammatic Polyhedral Algebra

Authors: Filippo Bonchi, Alessandro Di Giorgio, and Paweł Sobociński

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We extend the theory of Interacting Hopf algebras with an order primitive, and give a sound and complete axiomatisation of the prop of polyhedral cones. Next, we axiomatise an affine extension and prove soundness and completeness for the prop of polyhedra.

Cite as

Filippo Bonchi, Alessandro Di Giorgio, and Paweł Sobociński. Diagrammatic Polyhedral Algebra. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 40:1-40:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.FSTTCS.2021.40,
  author =	{Bonchi, Filippo and Di Giorgio, Alessandro and Soboci\'{n}ski, Pawe{\l}},
  title =	{{Diagrammatic Polyhedral Algebra}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{40:1--40:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.40},
  URN =		{urn:nbn:de:0030-drops-155511},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.40},
  annote =	{Keywords: String diagrams, Polyhedral cones, Polyhedra}
}
Document
On Doctrines and Cartesian Bicategories

Authors: Filippo Bonchi, Alessio Santamaria, Jens Seeber, and Paweł Sobociński

Published in: LIPIcs, Volume 211, 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)


Abstract
We study the relationship between cartesian bicategories and a specialisation of Lawvere’s hyperdoctrines, namely elementary existential doctrines. Both provide different ways of abstracting the structural properties of logical systems: the former in algebraic terms based on a string diagrammatic calculus, the latter in universal terms using the fundamental notion of adjoint functor. We prove that these two approaches are related by an adjunction, which can be strengthened to an equivalence by imposing further constraints on doctrines.

Cite as

Filippo Bonchi, Alessio Santamaria, Jens Seeber, and Paweł Sobociński. On Doctrines and Cartesian Bicategories. In 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 211, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.CALCO.2021.10,
  author =	{Bonchi, Filippo and Santamaria, Alessio and Seeber, Jens and Soboci\'{n}ski, Pawe{\l}},
  title =	{{On Doctrines and Cartesian Bicategories}},
  booktitle =	{9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-212-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{211},
  editor =	{Gadducci, Fabio and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2021.10},
  URN =		{urn:nbn:de:0030-drops-153656},
  doi =		{10.4230/LIPIcs.CALCO.2021.10},
  annote =	{Keywords: Cartesian bicategories, elementary existential doctrines, string diagram}
}
Document
Compositional Modelling of Network Games

Authors: Elena Di Lavore, Jules Hedges, and Paweł Sobociński

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
The analysis of games played on graph-like structures is of increasing importance due to the prevalence of social networks, both virtual and physical, in our daily life. As well as being relevant in computer science, mathematical analysis and computer simulations of such distributed games are vital methodologies in economics, politics and epidemiology, amongst other fields. Our contribution is to give compositional semantics of a family of such games as a well-behaved mapping, a strict monoidal functor, from a category of open graphs (syntax) to a category of open games (semantics). As well as introducing the theoretical framework, we identify some applications of compositionality.

Cite as

Elena Di Lavore, Jules Hedges, and Paweł Sobociński. Compositional Modelling of Network Games. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 30:1-30:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dilavore_et_al:LIPIcs.CSL.2021.30,
  author =	{Di Lavore, Elena and Hedges, Jules and Soboci\'{n}ski, Pawe{\l}},
  title =	{{Compositional Modelling of Network Games}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{30:1--30:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.30},
  URN =		{urn:nbn:de:0030-drops-134645},
  doi =		{10.4230/LIPIcs.CSL.2021.30},
  annote =	{Keywords: game theory, category theory, network games, open games, open graphs, compositionality}
}
Document
The Axiom of Choice in Cartesian Bicategories

Authors: Filippo Bonchi, Jens Seeber, and Paweł Sobociński

Published in: LIPIcs, Volume 139, 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)


Abstract
We argue that cartesian bicategories, often used as a general categorical algebra of relations, are also a natural setting for the study of the axiom of choice (AC). In this setting, AC manifests itself as an inequation asserting that every total relation contains a map. The generality of cartesian bicategories allows us to separate this formulation from other set-theoretically equivalent properties, for instance that epimorphisms split. Moreover, via a classification result, we show that cartesian bicategories satisfying choice tend to be those that arise from bicategories of spans.

Cite as

Filippo Bonchi, Jens Seeber, and Paweł Sobociński. The Axiom of Choice in Cartesian Bicategories. In 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 139, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.CALCO.2019.15,
  author =	{Bonchi, Filippo and Seeber, Jens and Soboci\'{n}ski, Pawe{\l}},
  title =	{{The Axiom of Choice in Cartesian Bicategories}},
  booktitle =	{8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-120-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{139},
  editor =	{Roggenbach, Markus and Sokolova, Ana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2019.15},
  URN =		{urn:nbn:de:0030-drops-114439},
  doi =		{10.4230/LIPIcs.CALCO.2019.15},
  annote =	{Keywords: Cartesian bicategories, Axiom of choice, string diagrams}
}
Document
Nominal String Diagrams

Authors: Samuel Balco and Alexander Kurz

Published in: LIPIcs, Volume 139, 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)


Abstract
We introduce nominal string diagrams as string diagrams internal in the category of nominal sets. This requires us to take nominal sets as a monoidal category, not with the cartesian product, but with the separated product. To this end, we develop the beginnings of a theory of monoidal categories internal in a symmetric monoidal category. As an instance, we obtain a notion of a nominal PROP as a PROP internal in nominal sets. A 2-dimensional calculus of simultaneous substitutions is an application.

Cite as

Samuel Balco and Alexander Kurz. Nominal String Diagrams. In 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 139, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{balco_et_al:LIPIcs.CALCO.2019.18,
  author =	{Balco, Samuel and Kurz, Alexander},
  title =	{{Nominal String Diagrams}},
  booktitle =	{8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-120-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{139},
  editor =	{Roggenbach, Markus and Sokolova, Ana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2019.18},
  URN =		{urn:nbn:de:0030-drops-114466},
  doi =		{10.4230/LIPIcs.CALCO.2019.18},
  annote =	{Keywords: string diagrams, nominal sets, separated product, simultaneous substitutions, internal category, monoidal category, internal monoidal categories, PROP}
}
Document
Tool Paper
CARTOGRAPHER: A Tool for String Diagrammatic Reasoning (Tool Paper)

Authors: Paweł Sobociński, Paul W. Wilson, and Fabio Zanasi

Published in: LIPIcs, Volume 139, 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)


Abstract
We introduce cartographer, a tool for editing and rewriting string diagrams of symmetric monoidal categories. Our approach is principled: the layout exploits the isomorphism between string diagrams and certain cospans of hypergraphs; the implementation of rewriting is based on the soundness and completeness of convex double-pushout rewriting for string diagram rewriting.

Cite as

Paweł Sobociński, Paul W. Wilson, and Fabio Zanasi. CARTOGRAPHER: A Tool for String Diagrammatic Reasoning (Tool Paper). In 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 139, pp. 20:1-20:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sobocinski_et_al:LIPIcs.CALCO.2019.20,
  author =	{Soboci\'{n}ski, Pawe{\l} and Wilson, Paul W. and Zanasi, Fabio},
  title =	{{CARTOGRAPHER: A Tool for String Diagrammatic Reasoning}},
  booktitle =	{8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)},
  pages =	{20:1--20:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-120-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{139},
  editor =	{Roggenbach, Markus and Sokolova, Ana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2019.20},
  URN =		{urn:nbn:de:0030-drops-114482},
  doi =		{10.4230/LIPIcs.CALCO.2019.20},
  annote =	{Keywords: tool, string diagram, symmetric monoidal category, graphical reasoning}
}
Document
Bialgebraic Semantics for String Diagrams

Authors: Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Turi and Plotkin’s bialgebraic semantics is an abstract approach to specifying the operational semantics of a system, by means of a distributive law between its syntax (encoded as a monad) and its dynamics (an endofunctor). This setup is instrumental in showing that a semantic specification (a coalgebra) satisfies desirable properties: in particular, that it is compositional. In this work, we use the bialgebraic approach to derive well-behaved structural operational semantics of string diagrams, a graphical syntax that is increasingly used in the study of interacting systems across different disciplines. Our analysis relies on representing the two-dimensional operations underlying string diagrams in various categories as a monad, and their bialgebraic semantics in terms of a distributive law for that monad. As a proof of concept, we provide bialgebraic compositional semantics for a versatile string diagrammatic language which has been used to model both signal flow graphs (control theory) and Petri nets (concurrency theory). Moreover, our approach reveals a correspondence between two different interpretations of the Frobenius equations on string diagrams and two synchronisation mechanisms for processes, à la Hoare and à la Milner.

Cite as

Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Bialgebraic Semantics for String Diagrams. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 37:1-37:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.CONCUR.2019.37,
  author =	{Bonchi, Filippo and Piedeleu, Robin and Sobocinski, Pawel and Zanasi, Fabio},
  title =	{{Bialgebraic Semantics for String Diagrams}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{37:1--37:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.37},
  URN =		{urn:nbn:de:0030-drops-109398},
  doi =		{10.4230/LIPIcs.CONCUR.2019.37},
  annote =	{Keywords: String Diagram, Structural Operational Semantics, Bialgebraic semantics}
}
  • Refine by Author
  • 7 Bonchi, Filippo
  • 7 Sobocinski, Pawel
  • 7 Sobociński, Paweł
  • 3 Kurz, Alexander
  • 3 Milius, Stefan
  • Show More...

  • Refine by Classification
  • 9 Theory of computation → Categorical semantics
  • 4 Theory of computation → Logic
  • 3 Theory of computation → Concurrency
  • 2 Theory of computation → Formal languages and automata theory
  • 2 Theory of computation → Models of computation
  • Show More...

  • Refine by Keyword
  • 10 coalgebra
  • 7 string diagrams
  • 5 category theory
  • 3 bisimulation
  • 2 Cartesian bicategories
  • Show More...

  • Refine by Type
  • 41 document
  • 1 volume

  • Refine by Publication Year
  • 24 2015
  • 5 2024
  • 4 2019
  • 3 2021
  • 2 2018
  • Show More...