10 Search Results for "Tan, Zihan"


Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Lower Bounds on 0-Extension with Steiner Nodes

Authors: Yu Chen and Zihan Tan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the 0-Extension problem, we are given an edge-weighted graph G = (V,E,c), a set T ⊆ V of its vertices called terminals, and a semi-metric D over T, and the goal is to find an assignment f of each non-terminal vertex to a terminal, minimizing the sum, over all edges (u,v) ∈ E, the product of the edge weight c(u,v) and the distance D(f(u),f(v)) between the terminals that u,v are mapped to. Current best approximation algorithms on 0-Extension are based on rounding a linear programming relaxation called the semi-metric LP relaxation. The integrality gap of this LP, is upper bounded by O(log|T|/log log|T|) and lower bounded by Ω((log|T|)^{2/3}), has been shown to be closely related to the quality of cut and flow vertex sparsifiers. We study a variant of the 0-Extension problem where Steiner vertices are allowed. Specifically, we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following from previous work, this new integrality gap turns out to be closely related to the quality achievable by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. We show that the new integrality gap stays superconstant Ω(log log |T|) even if we allow a super-linear O(|T|log^{1-ε}|T|) number of Steiner nodes.

Cite as

Yu Chen and Zihan Tan. Lower Bounds on 0-Extension with Steiner Nodes. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.47,
  author =	{Chen, Yu and Tan, Zihan},
  title =	{{Lower Bounds on 0-Extension with Steiner Nodes}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.47},
  URN =		{urn:nbn:de:0030-drops-201905},
  doi =		{10.4230/LIPIcs.ICALP.2024.47},
  annote =	{Keywords: Graph Algorithms, Zero Extension, Integrality Gap}
}
Document
Track A: Algorithms, Complexity and Games
Sublinear Algorithms for TSP via Path Covers

Authors: Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study sublinear time algorithms for the traveling salesman problem (TSP). First, we focus on the closely related maximum path cover problem, which asks for a collection of vertex disjoint paths that include the maximum number of edges. We show that for any fixed ε > 0, there is an algorithm that (1/2 - ε)-approximates the maximum path cover size of an n-vertex graph in Õ(n) time. This improves upon a (3/8-ε)-approximate Õ(n √n)-time algorithm of Chen, Kannan, and Khanna [ICALP'20]. Equipped with our path cover algorithm, we give an Õ(n) time algorithm that estimates the cost of (1,2)-TSP within a factor of (1.5+ε) which is an improvement over a folklore (1.75 + ε)-approximate Õ(n)-time algorithm, as well as a (1.625+ε)-approximate Õ(n√n)-time algorithm of [CHK ICALP'20]. For graphic TSP, we present an Õ(n) algorithm that estimates the cost of graphic TSP within a factor of 1.83 which is an improvement over a 1.92-approximate Õ(n) time algorithm due to [CHK ICALP'20, Behnezhad FOCS'21]. We show that the approximation can be further improved to 1.66 using n^{2-Ω(1)} time. All of our Õ(n) time algorithms are information-theoretically time-optimal up to polylog n factors. Additionally, we show that our approximation guarantees for path cover and (1,2)-TSP hit a natural barrier: We show better approximations require better sublinear time algorithms for the well-studied maximum matching problem.

Cite as

Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Sublinear Algorithms for TSP via Path Covers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{behnezhad_et_al:LIPIcs.ICALP.2024.19,
  author =	{Behnezhad, Soheil and Roghani, Mohammad and Rubinstein, Aviad and Saberi, Amin},
  title =	{{Sublinear Algorithms for TSP via Path Covers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.19},
  URN =		{urn:nbn:de:0030-drops-201623},
  doi =		{10.4230/LIPIcs.ICALP.2024.19},
  annote =	{Keywords: Sublinear Algorithms, Traveling Salesman Problem, Approximation Algorithm, (1, 2)-TSP, Graphic TSP}
}
Document
Track A: Algorithms, Complexity and Games
The Discrepancy of Shortest Paths

Authors: Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].

Cite as

Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang. The Discrepancy of Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.27,
  author =	{Bodwin, Greg and Deng, Chengyuan and Gao, Jie and Hoppenworth, Gary and Upadhyay, Jalaj and Wang, Chen},
  title =	{{The Discrepancy of Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.27},
  URN =		{urn:nbn:de:0030-drops-201705},
  doi =		{10.4230/LIPIcs.ICALP.2024.27},
  annote =	{Keywords: Discrepancy, hereditary discrepancy, shortest paths, differential privacy}
}
Document
Track A: Algorithms, Complexity and Games
Additive Spanner Lower Bounds with Optimal Inner Graph Structure

Authors: Greg Bodwin, Gary Hoppenworth, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We construct n-node graphs on which any O(n)-size spanner has additive error at least +Ω(n^{3/17}), improving on the previous best lower bound of Ω(n^{1/7}) [Bodwin-Hoppenworth FOCS '22]. Our construction completes the first two steps of a particular three-step research program, introduced in prior work and overviewed here, aimed at producing tight bounds for the problem by aligning aspects of the upper and lower bound constructions. More specifically, we develop techniques that enable the use of inner graphs in the lower bound framework whose technical properties are provably tight with the corresponding assumptions made in the upper bounds. As an additional application of our techniques, we improve the corresponding lower bound for O(n)-size additive emulators to +Ω(n^{1/14}).

Cite as

Greg Bodwin, Gary Hoppenworth, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Additive Spanner Lower Bounds with Optimal Inner Graph Structure. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.28,
  author =	{Bodwin, Greg and Hoppenworth, Gary and Vassilevska Williams, Virginia and Wein, Nicole and Xu, Zixuan},
  title =	{{Additive Spanner Lower Bounds with Optimal Inner Graph Structure}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.28},
  URN =		{urn:nbn:de:0030-drops-201715},
  doi =		{10.4230/LIPIcs.ICALP.2024.28},
  annote =	{Keywords: Additive Spanners, Graph Theory}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Electrical Oblivious Routing on Expanders

Authors: Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we investigate the question of whether the electrical flow routing is a good oblivious routing scheme on an m-edge graph G = (V, E) that is a Φ-expander, i.e. where |∂ S| ≥ Φ ⋅ vol(S) for every S ⊆ V, vol(S) ≤ vol(V)/2. Beyond its simplicity and structural importance, this question is well-motivated by the current state-of-the-art of fast algorithms for 𝓁_∞ oblivious routings that reduce to the expander-case which is in turn solved by electrical flow routing. Our main result proves that the electrical routing is an O(Φ^{-1} log m)-competitive oblivious routing in the 𝓁₁- and 𝓁_∞-norms. We further observe that the oblivious routing is O(log² m)-competitive in the 𝓁₂-norm and, in fact, O(log m)-competitive if 𝓁₂-localization is O(log m) which is widely believed. Using these three upper bounds, we can smoothly interpolate to obtain upper bounds for every p ∈ [2, ∞] and q given by 1/p + 1/q = 1. Assuming 𝓁₂-localization in O(log m), we obtain that in 𝓁_p and 𝓁_q, the electrical oblivious routing is O(Φ^{-(1-2/p)}log m) competitive. Using the currently known result for 𝓁₂-localization, this ratio deteriorates by at most a sublogarithmic factor for every p, q ≠ 2. We complement our upper bounds with lower bounds that show that the electrical routing for any such p and q is Ω(Φ^{-(1-2/p)} log m)-competitive. This renders our results in 𝓁₁ and 𝓁_∞ unconditionally tight up to constants, and the result in any 𝓁_p- and 𝓁_q-norm to be tight in case of 𝓁₂-localization in O(log m).

Cite as

Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Optimal Electrical Oblivious Routing on Expanders. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 65:1-65:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{florescu_et_al:LIPIcs.ICALP.2024.65,
  author =	{Florescu, Cella and Kyng, Rasmus and Gutenberg, Maximilian Probst and Sachdeva, Sushant},
  title =	{{Optimal Electrical Oblivious Routing on Expanders}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{65:1--65:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.65},
  URN =		{urn:nbn:de:0030-drops-202083},
  doi =		{10.4230/LIPIcs.ICALP.2024.65},
  annote =	{Keywords: Expanders, Oblivious routing for 𝓁\underlinep, Electrical flow routing}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Cite as

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2024.95,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{Fully Dynamic Strongly Connected Components in Planar Digraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95},
  URN =		{urn:nbn:de:0030-drops-202388},
  doi =		{10.4230/LIPIcs.ICALP.2024.95},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability, planar graphs}
}
Document
Track A: Algorithms, Complexity and Games
Sublinear Algorithms and Lower Bounds for Estimating MST and TSP Cost in General Metrics

Authors: Yu Chen, Sanjeev Khanna, and Zihan Tan

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We consider the design of sublinear space and query complexity algorithms for estimating the cost of a minimum spanning tree (MST) and the cost of a minimum traveling salesman (TSP) tour in a metric on n points. We start by exploring this estimation task in the regime of o(n) space, when the input is presented as a stream of all binom(n,2) entries of the metric in an arbitrary order (a metric stream). For any α ≥ 2, we show that both MST and TSP cost can be α-approximated using Õ(n/α) space, and moreover, Ω(n/α²) space is necessary for this task. We further show that even if the streaming algorithm is allowed p passes over a metric stream, it still requires Ω̃(√{n/α p²}) space. We next consider the well-studied semi-streaming regime. In this regime, it is straightforward to compute MST cost exactly even in the case where the input stream only contains the edges of a weighted graph that induce the underlying metric (a graph stream), and the main challenging problem is to estimate TSP cost to within a factor that is strictly better than 2. We show that in graph streams, for any ε > 0, any one-pass (2-ε)-approximation of TSP cost requires Ω(ε² n²) space. On the other hand, we show that there is an Õ(n) space two-pass algorithm that approximates the TSP cost to within a factor of 1.96. Finally, we consider the query complexity of estimating metric TSP cost to within a factor that is strictly better than 2 when the algorithm is given access to an n × n matrix that specifies pairwise distances between n points. The problem of MST cost estimation in this model is well-understood and a (1+ε)-approximation is achievable by Õ(n/ε^{O(1)}) queries. However, for estimating TSP cost, it is known that an analogous result requires Ω(n²) queries even for (1,2)-TSP, and for general metrics, no algorithm that achieves a better than 2-approximation with o(n²) queries is known. We make progress on this task by designing an algorithm that performs Õ(n^{1.5}) distance queries and achieves a strictly better than 2-approximation when either the metric is known to contain a spanning tree supported on weight-1 edges or the algorithm is given access to a minimum spanning tree of the graph. Prior to our work, such results were only known for the special cases of graphic TSP and (1,2)-TSP. In terms of techniques, our algorithms for metric TSP cost estimation in both streaming and query settings rely on estimating the cover advantage which intuitively measures the cost needed to turn an MST into an Eulerian graph. One of our main algorithmic contributions is to show that this quantity can be meaningfully estimated by a sublinear number of queries in the query model. On one hand, the fact that a metric stream reveals pairwise distances for all pairs of vertices provably helps algorithmically. On the other hand, it also seems to render useless techniques for proving space lower bounds via reductions from well-known hard communication problems. Our main technical contribution in lower bounds is to identify and characterize the communication complexity of new problems that can serve as canonical starting point for proving metric stream lower bounds.

Cite as

Yu Chen, Sanjeev Khanna, and Zihan Tan. Sublinear Algorithms and Lower Bounds for Estimating MST and TSP Cost in General Metrics. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 37:1-37:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2023.37,
  author =	{Chen, Yu and Khanna, Sanjeev and Tan, Zihan},
  title =	{{Sublinear Algorithms and Lower Bounds for Estimating MST and TSP Cost in General Metrics}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{37:1--37:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.37},
  URN =		{urn:nbn:de:0030-drops-180892},
  doi =		{10.4230/LIPIcs.ICALP.2023.37},
  annote =	{Keywords: Minimum spanning tree, travelling salesman problem, streaming algorithms}
}
Document
A New Conjecture on Hardness of 2-CSP’s with Implications to Hardness of Densest k-Subgraph and Other Problems

Authors: Julia Chuzhoy, Mina Dalirrooyfard, Vadim Grinberg, and Zihan Tan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We propose a new conjecture on hardness of 2-CSP’s, and show that new hardness of approximation results for Densest k-Subgraph and several other problems, including a graph partitioning problem, and a variation of the Graph Crossing Number problem, follow from this conjecture. The conjecture can be viewed as occupying a middle ground between the d-to-1 conjecture, and hardness results for 2-CSP’s that can be obtained via standard techniques, such as Parallel Repetition combined with standard 2-prover protocols for the 3SAT problem. We hope that this work will motivate further exploration of hardness of 2-CSP’s in the regimes arising from the conjecture. We believe that a positive resolution of the conjecture will provide a good starting point for other hardness of approximation proofs. Another contribution of our work is proving that the problems that we consider are roughly equivalent from the approximation perspective. Some of these problems arose in previous work, from which it appeared that they may be related to each other. We formalize this relationship in this work.

Cite as

Julia Chuzhoy, Mina Dalirrooyfard, Vadim Grinberg, and Zihan Tan. A New Conjecture on Hardness of 2-CSP’s with Implications to Hardness of Densest k-Subgraph and Other Problems. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 38:1-38:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chuzhoy_et_al:LIPIcs.ITCS.2023.38,
  author =	{Chuzhoy, Julia and Dalirrooyfard, Mina and Grinberg, Vadim and Tan, Zihan},
  title =	{{A New Conjecture on Hardness of 2-CSP’s with Implications to Hardness of Densest k-Subgraph and Other Problems}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{38:1--38:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.38},
  URN =		{urn:nbn:de:0030-drops-175411},
  doi =		{10.4230/LIPIcs.ITCS.2023.38},
  annote =	{Keywords: Hardness of Approximation, Densest k-Subgraph}
}
Document
Track A: Algorithms, Complexity and Games
On Packing Low-Diameter Spanning Trees

Authors: Julia Chuzhoy, Merav Parter, and Zihan Tan

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated tree packing theorem of Tutte and Nash-Williams from 1961 states that every k-edge connected graph G contains a collection 𝒯 of ⌊k/2⌋ edge-disjoint spanning trees, that we refer to as a tree packing; the diameter of the tree packing 𝒯 is the largest diameter of any tree in 𝒯. A desirable property of a tree packing for leveraging the high connectivity of a graph in distributed communication networks, is that its diameter is low. Yet, despite extensive research in this area, it is still unclear how to compute a tree packing of a low-diameter graph G, whose diameter is sublinear in |V(G)|, or, alternatively, how to show that such a packing does not exist. In this paper, we provide first non-trivial upper and lower bounds on the diameter of tree packing. We start by showing that, for every k-edge connected n-vertex graph G of diameter D, there is a tree packing 𝒯 containing Ω(k) trees, of diameter O((101k log n)^D), with edge-congestion at most 2. Karger’s edge sampling technique demonstrates that, if G is a k-edge connected graph, and G[p] is a subgraph of G obtained by sampling each edge of G independently with probability p = Θ(log n/k), then with high probability G[p] is connected. We extend this result to show that the diameter of G[p] is bounded by O(k^(D(D+1)/2)) with high probability. This immediately gives a tree packing of Ω(k/log n) edge-disjoint trees of diameter at most O(k^(D(D+1)/2)). We also show that these two results are nearly tight for graphs with a small diameter: we show that there are k-edge connected graphs of diameter 2D, such that any packing of k/α trees with edge-congestion η contains at least one tree of diameter Ω((k/(2α η D))^D), for any k,α and η. Additionally, we show that if, for every pair u,v of vertices of a given graph G, there is a collection of k edge-disjoint paths connecting u to v, of length at most D each, then we can efficiently compute a tree packing of size k, diameter O(D log n), and edge-congestion O(log n). Finally, we provide several applications of low-diameter tree packing in the distributed settings of network optimization and secure computation.

Cite as

Julia Chuzhoy, Merav Parter, and Zihan Tan. On Packing Low-Diameter Spanning Trees. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 33:1-33:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chuzhoy_et_al:LIPIcs.ICALP.2020.33,
  author =	{Chuzhoy, Julia and Parter, Merav and Tan, Zihan},
  title =	{{On Packing Low-Diameter Spanning Trees}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.33},
  URN =		{urn:nbn:de:0030-drops-124405},
  doi =		{10.4230/LIPIcs.ICALP.2020.33},
  annote =	{Keywords: Spanning tree, packing, edge-connectivity}
}
  • Refine by Author
  • 4 Tan, Zihan
  • 3 Chen, Yu
  • 2 Bodwin, Greg
  • 2 Chuzhoy, Julia
  • 2 Hoppenworth, Gary
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Sparsification and spanners
  • 2 Theory of computation → Design and analysis of algorithms
  • 1 Mathematics of computing → Approximation algorithms
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Dynamic graph algorithms
  • Show More...

  • Refine by Keyword
  • 1 (1
  • 1 2)-TSP
  • 1 Additive Spanners
  • 1 Approximation Algorithm
  • 1 Densest k-Subgraph
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 7 2024
  • 2 2023
  • 1 2020