58 Search Results for "Dell, Holger"


Volume

LIPIcs, Volume 249

17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

IPEC 2022, September 7-9, 2022, Potsdam, Germany

Editors: Holger Dell and Jesper Nederlof

Document
PACE Solver Description
PACE Solver Description: Exact (GUTHMI) and Heuristic (GUTHM)

Authors: Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer, Johannes Meintrup, Ulrich Meyer, and Manuel Penschuck

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Twin-width (tww) is a parameter measuring the similarity of an undirected graph to a co-graph [Édouard Bonnet et al., 2022]. It is useful to analyze the parameterized complexity of various graph problems. This paper presents two algorithms to compute the twin-width and to provide a contraction sequence as witness. The two algorithms are motivated by the PACE 2023 challenge, one for the exact track and one for the heuristic track. Each algorithm produces a contraction sequence witnessing (i) the minimal twin-width admissible by the graph in the exact track (ii) an upper bound on the twin-width as tight as possible in the heuristic track. Our heuristic algorithm relies on several greedy approaches with different performance characteristics to find and improve solutions. For large graphs we use locality sensitive hashing to approximately identify suitable contraction candidates. The exact solver follows a branch-and-bound design. It relies on the heuristic algorithm to provide initial upper bounds, and uses lower bounds via contraction sequences to show the optimality of a heuristic solution found in some branch.

Cite as

Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer, Johannes Meintrup, Ulrich Meyer, and Manuel Penschuck. PACE Solver Description: Exact (GUTHMI) and Heuristic (GUTHM). In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 37:1-37:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{leonhardt_et_al:LIPIcs.IPEC.2023.37,
  author =	{Leonhardt, Alexander and Dell, Holger and Haak, Anselm and Kammer, Frank and Meintrup, Johannes and Meyer, Ulrich and Penschuck, Manuel},
  title =	{{PACE Solver Description: Exact (GUTHMI) and Heuristic (GUTHM)}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{37:1--37:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.37},
  URN =		{urn:nbn:de:0030-drops-194563},
  doi =		{10.4230/LIPIcs.IPEC.2023.37},
  annote =	{Keywords: PACE 2023 Challenge, Heuristic, Exact, Twin-Width}
}
Document
Track A: Algorithms, Complexity and Games
Parameterised and Fine-Grained Subgraph Counting, Modulo 2

Authors: Leslie Ann Goldberg and Marc Roth

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Given a class of graphs ℋ, the problem ⊕Sub(ℋ) is defined as follows. The input is a graph H ∈ ℋ together with an arbitrary graph G. The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H. The goal of this research is to determine for which classes ℋ the problem ⊕Sub(ℋ) is fixed-parameter tractable (FPT), i.e., solvable in time f(|H|)⋅|G|^O(1). Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ⊕Sub(ℋ) is FPT if and only if the class of allowed patterns ℋ is matching splittable, which means that for some fixed B, every H ∈ ℋ can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes ℋ, and (II) all tree pattern classes, i.e., all classes ℋ such that every H ∈ ℋ is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I).

Cite as

Leslie Ann Goldberg and Marc Roth. Parameterised and Fine-Grained Subgraph Counting, Modulo 2. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 68:1-68:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{goldberg_et_al:LIPIcs.ICALP.2023.68,
  author =	{Goldberg, Leslie Ann and Roth, Marc},
  title =	{{Parameterised and Fine-Grained Subgraph Counting, Modulo 2}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{68:1--68:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.68},
  URN =		{urn:nbn:de:0030-drops-181200},
  doi =		{10.4230/LIPIcs.ICALP.2023.68},
  annote =	{Keywords: modular counting, parameterised complexity, fine-grained complexity, subgraph counting}
}
Document
Counting and Sampling: Algorithms and Complexity (Dagstuhl Seminar 22482)

Authors: Holger Dell, Mark R. Jerrum, Haiko Müller, Konrad Anand, and Marcus Pappik

Published in: Dagstuhl Reports, Volume 12, Issue 11 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22482 "Counting and Sampling: Algorithms and Complexity". We document the talks presented, covering many advances in the area made over the last five years. As well, we document the progress made by working groups on future projects.

Cite as

Holger Dell, Mark R. Jerrum, Haiko Müller, Konrad Anand, and Marcus Pappik. Counting and Sampling: Algorithms and Complexity (Dagstuhl Seminar 22482). In Dagstuhl Reports, Volume 12, Issue 11, pp. 124-145, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{dell_et_al:DagRep.12.11.124,
  author =	{Dell, Holger and Jerrum, Mark R. and M\"{u}ller, Haiko and Anand, Konrad and Pappik, Marcus},
  title =	{{Counting and Sampling: Algorithms and Complexity (Dagstuhl Seminar 22482)}},
  pages =	{124--145},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{11},
  editor =	{Dell, Holger and Jerrum, Mark R. and M\"{u}ller, Haiko and Anand, Konrad and Pappik, Marcus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.12.11.124},
  URN =		{urn:nbn:de:0030-drops-178394},
  doi =		{10.4230/DagRep.12.11.124},
  annote =	{Keywords: Sampling, Counting, Algorithms, Complexity, Statistical Physics, Phase Transitions, Markov Chains, Graphs, Point Processes}
}
Document
Complete Volume
LIPIcs, Volume 249, IPEC 2022, Complete Volume

Authors: Holger Dell and Jesper Nederlof

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
LIPIcs, Volume 249, IPEC 2022, Complete Volume

Cite as

17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 1-520, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{dell_et_al:LIPIcs.IPEC.2022,
  title =	{{LIPIcs, Volume 249, IPEC 2022, Complete Volume}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{1--520},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022},
  URN =		{urn:nbn:de:0030-drops-173553},
  doi =		{10.4230/LIPIcs.IPEC.2022},
  annote =	{Keywords: LIPIcs, Volume 249, IPEC 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Holger Dell and Jesper Nederlof

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 0:i-0:xviii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dell_et_al:LIPIcs.IPEC.2022.0,
  author =	{Dell, Holger and Nederlof, Jesper},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.0},
  URN =		{urn:nbn:de:0030-drops-173562},
  doi =		{10.4230/LIPIcs.IPEC.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

Authors: Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
The Delaunay graph of a point set P ⊆ ℝ² is the plane graph with the vertex-set P and the edge-set that contains {p,p'} if there exists a disc whose intersection with P is exactly {p,p'}. Accordingly, a triangulated graph G is Delaunay realizable if there exists a triangulation of the Delaunay graph of some P ⊆ ℝ², called a Delaunay triangulation of P, that is isomorphic to G. The objective of Delaunay Realization is to compute a point set P ⊆ ℝ² that realizes a given graph G (if such a P exists). Known algorithms do not solve Delaunay Realization as they are non-constructive. Obtaining a constructive algorithm for Delaunay Realization was mentioned as an open problem by Hiroshima et al. [Hiroshima et al., 2000]. We design an n^𝒪(n)-time constructive algorithm for Delaunay Realization. In fact, our algorithm outputs sets of points with integer coordinates.

Cite as

Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi. A Finite Algorithm for the Realizabilty of a Delaunay Triangulation. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2022.1,
  author =	{Agrawal, Akanksha and Saurabh, Saket and Zehavi, Meirav},
  title =	{{A Finite Algorithm for the Realizabilty of a Delaunay Triangulation}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.1},
  URN =		{urn:nbn:de:0030-drops-173573},
  doi =		{10.4230/LIPIcs.IPEC.2022.1},
  annote =	{Keywords: Delaunay Triangulation, Delaunay Realization, Finite Algorithm, Integer Coordinate Realization}
}
Document
Parameterized Complexity of Perfectly Matched Sets

Authors: Akanksha Agrawal, Sutanay Bhattacharjee, Satyabrata Jana, and Abhishek Sahu

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
For an undirected graph G, a pair of vertex disjoint subsets (A, B) is a pair of perfectly matched sets if each vertex in A (resp. B) has exactly one neighbor in B (resp. A). In the above, the size of the pair is |A| (= |B|). Given a graph G and a positive integer k, the Perfectly Matched Sets problem asks whether there exists a pair of perfectly matched sets of size at least k in G. This problem is known to be NP-hard on planar graphs and W[1]-hard on general graphs, when parameterized by k. However, little is known about the parameterized complexity of the problem in restricted graph classes. In this work, we study the problem parameterized by k, and design FPT algorithms for: i) apex-minor-free graphs running in time 2^O(√k)⋅ n^O(1), and ii) K_{b,b}-free graphs. We obtain a linear kernel for planar graphs and k^𝒪(d)-sized kernel for d-degenerate graphs. It is known that the problem is W[1]-hard on chordal graphs, in fact on split graphs, parameterized by k. We complement this hardness result by designing a polynomial-time algorithm for interval graphs.

Cite as

Akanksha Agrawal, Sutanay Bhattacharjee, Satyabrata Jana, and Abhishek Sahu. Parameterized Complexity of Perfectly Matched Sets. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2022.2,
  author =	{Agrawal, Akanksha and Bhattacharjee, Sutanay and Jana, Satyabrata and Sahu, Abhishek},
  title =	{{Parameterized Complexity of Perfectly Matched Sets}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{2:1--2:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.2},
  URN =		{urn:nbn:de:0030-drops-173580},
  doi =		{10.4230/LIPIcs.IPEC.2022.2},
  annote =	{Keywords: Perfectly Matched Sets, Parameterized Complexity, Apex-minor-free graphs, d-degenerate graphs, Planar graphs, Interval Graphs}
}
Document
On the Hardness of Generalized Domination Problems Parameterized by Mim-Width

Authors: Brage I. K. Bakkane and Lars Jaffke

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
For nonempty σ, ρ ⊆ ℕ, a vertex set S in a graph G is a (σ, ρ)-dominating set if for all v ∈ S, |N(v) ∩ S| ∈ σ, and for all v ∈ V(G) ⧵ S, |N(v) ∩ S| ∈ ρ. The Min/Max (σ,ρ)-Dominating Set problems ask, given a graph G and an integer k, whether G contains a (σ, ρ)-dominating set of size at most k and at least k, respectively. This framework captures many well-studied graph problems related to independence and domination. Bui-Xuan, Telle, and Vatshelle [TCS 2013] showed that for finite or co-finite σ and ρ, the Min/Max (σ,ρ)-Dominating Set problems are solvable in XP time parameterized by the mim-width of a given branch decomposition of the input graph. In this work we consider the parameterized complexity of these problems and obtain the following: For minimization problems, we complete several scattered W[1]-hardness results in the literature to a full dichotomoy into polynomial-time solvable and W[1]-hard cases, and for maximization problems we obtain the same result under the additional restriction that σ and ρ are finite sets. All W[1]-hard cases hold assuming that a linear branch decomposition of bounded mim-width is given, and with the solution size being an additional part of the parameter. Furthermore, for all W[1]-hard cases we also rule out f(w)n^o(w/log w)-time algorithms assuming the Exponential Time Hypothesis, where f is any computable function, n is the number of vertices and w the mim-width of the given linear branch decomposition of the input graph.

Cite as

Brage I. K. Bakkane and Lars Jaffke. On the Hardness of Generalized Domination Problems Parameterized by Mim-Width. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bakkane_et_al:LIPIcs.IPEC.2022.3,
  author =	{Bakkane, Brage I. K. and Jaffke, Lars},
  title =	{{On the Hardness of Generalized Domination Problems Parameterized by Mim-Width}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.3},
  URN =		{urn:nbn:de:0030-drops-173597},
  doi =		{10.4230/LIPIcs.IPEC.2022.3},
  annote =	{Keywords: generalized domination, linear mim-width, W\lbrack1\rbrack-hardness, Exponential Time Hypothesis}
}
Document
FPT Approximation for Fair Minimum-Load Clustering

Authors: Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
In this paper, we consider the Minimum-Load k-Clustering/Facility Location (MLkC) problem where we are given a set P of n points in a metric space that we have to cluster and an integer k > 0 that denotes the number of clusters. Additionally, we are given a set F of cluster centers in the same metric space. The goal is to select a set C ⊆ F of k centers and assign each point in P to a center in C, such that the maximum load over all centers is minimized. Here the load of a center is the sum of the distances between it and the points assigned to it. Although clustering/facility location problems have rich literature, the minimum-load objective has not been studied substantially, and hence MLkC has remained a poorly understood problem. More interestingly, the problem is notoriously hard even in some special cases including the one in line metrics as shown by Ahmadian et al. [APPROX 2014, ACM Trans. Algorithms 2018]. They also show APX-hardness of the problem in the plane. On the other hand, the best-known approximation factor for MLkC is O(k), even in the plane. In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al. [NeurIPS, 2017]. Here the input points are partitioned into 𝓁 protected groups, and only clusters that proportionally represent each group are allowed. MLkC is the special case with 𝓁 = 1. For the fair version, we are able to obtain a randomized 3-approximation algorithm in f(k,𝓁)⋅ n^O(1) time. Also, our scheme leads to an improved (1 + ε)-approximation in the case of Euclidean norm with the same running time (depending also linearly on the dimension d). Our results imply the same approximations for MLkC with running time f(k)⋅ n^O(1), achieving the first constant-factor FPT approximations for this problem in general and Euclidean metric spaces.

Cite as

Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov. FPT Approximation for Fair Minimum-Load Clustering. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bandyapadhyay_et_al:LIPIcs.IPEC.2022.4,
  author =	{Bandyapadhyay, Sayan and Fomin, Fedor V. and Golovach, Petr A. and Purohit, Nidhi and Simonov, Kirill},
  title =	{{FPT Approximation for Fair Minimum-Load Clustering}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.4},
  URN =		{urn:nbn:de:0030-drops-173600},
  doi =		{10.4230/LIPIcs.IPEC.2022.4},
  annote =	{Keywords: fair clustering, load balancing, parameterized approximation}
}
Document
On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

Authors: Johannes Blum, Yann Disser, Andreas Emil Feldmann, Siddharth Gupta, and Anna Zych-Pawlewicz

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We consider the Sparse Hitting Set (Sparse-HS) problem, where we are given a set system (V,ℱ,ℬ) with two families ℱ,ℬ of subsets of the universe V. The task is to find a hitting set for ℱ that minimizes the maximum number of elements in any of the sets of ℬ. This generalizes several problems that have been studied in the literature. Our focus is on determining the complexity of some of these special cases of Sparse-HS with respect to the sparseness k, which is the optimum number of hitting set elements in any set of ℬ (i.e., the value of the objective function). For the Sparse Vertex Cover (Sparse-VC) problem, the universe is given by the vertex set V of a graph, and ℱ is its edge set. We prove NP-hardness for sparseness k ≥ 2 and polynomial time solvability for k = 1. We also provide a polynomial-time 2-approximation algorithm for any k. A special case of Sparse-VC is Fair Vertex Cover (Fair-VC), where the family ℬ is given by vertex neighbourhoods. For this problem it was open whether it is FPT (or even XP) parameterized by the sparseness k. We answer this question in the negative, by proving NP-hardness for constant k. We also provide a polynomial-time (2-1/k)-approximation algorithm for Fair-VC, which is better than any approximation algorithm possible for Sparse-VC or the Vertex Cover problem (under the Unique Games Conjecture). We then switch to a different set of problems derived from Sparse-HS related to the highway dimension, which is a graph parameter modelling transportation networks. In recent years a growing literature has shown interesting algorithms for graphs of low highway dimension. To exploit the structure of such graphs, most of them compute solutions to the r-Shortest Path Cover (r-SPC) problem, where r > 0, ℱ contains all shortest paths of length between r and 2r, and ℬ contains all balls of radius 2r. It is known that there is an XP algorithm that computes solutions to r-SPC of sparseness at most h if the input graph has highway dimension h. However it was not known whether a corresponding FPT algorithm exists as well. We prove that r-SPC and also the related r-Highway Dimension (r-HD) problem, which can be used to formally define the highway dimension of a graph, are both W[1]-hard. Furthermore, by the result of Abraham et al. [ICALP 2011] there is a polynomial-time O(log k)-approximation algorithm for r-HD, but for r-SPC such an algorithm is not known. We prove that r-SPC admits a polynomial-time O(log n)-approximation algorithm.

Cite as

Johannes Blum, Yann Disser, Andreas Emil Feldmann, Siddharth Gupta, and Anna Zych-Pawlewicz. On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blum_et_al:LIPIcs.IPEC.2022.5,
  author =	{Blum, Johannes and Disser, Yann and Feldmann, Andreas Emil and Gupta, Siddharth and Zych-Pawlewicz, Anna},
  title =	{{On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.5},
  URN =		{urn:nbn:de:0030-drops-173612},
  doi =		{10.4230/LIPIcs.IPEC.2022.5},
  annote =	{Keywords: sparse hitting set, fair vertex cover, highway dimension}
}
Document
On the Complexity of Problems on Tree-Structured Graphs

Authors: Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in f(k)n^O(1) time and f(k)log n space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on "tree-structured graphs" are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by log n, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a "natural home" for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most f(k)n^O(1) and use f(k)log n space. Moreover, we introduce "tree-shaped" variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.

Cite as

Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk. On the Complexity of Problems on Tree-Structured Graphs. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2022.6,
  author =	{Bodlaender, Hans L. and Groenland, Carla and Jacob, Hugo and Pilipczuk, Marcin and Pilipczuk, Micha{\l}},
  title =	{{On the Complexity of Problems on Tree-Structured Graphs}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.6},
  URN =		{urn:nbn:de:0030-drops-173626},
  doi =		{10.4230/LIPIcs.IPEC.2022.6},
  annote =	{Keywords: Parameterized Complexity, Treewidth, XALP, XNLP}
}
Document
On the Parameterized Complexity of Computing Tree-Partitions

Authors: Hans L. Bodlaender, Carla Groenland, and Hugo Jacob

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We study the parameterized complexity of computing the tree-partition-width, a graph parameter equivalent to treewidth on graphs of bounded maximum degree. On one hand, we can obtain approximations of the tree-partition-width efficiently: we show that there is an algorithm that, given an n-vertex graph G and an integer k, constructs a tree-partition of width O(k⁷) for G or reports that G has tree-partition width more than k, in time k^O(1) n². We can improve slightly on the approximation factor by sacrificing the dependence on k, or on n. On the other hand, we show the problem of computing tree-partition-width exactly is XALP-complete, which implies that it is W[t]-hard for all t. We deduce XALP-completeness of the problem of computing the domino treewidth. Finally, we adapt some known results on the parameter tree-partition-width and the topological minor relation, and use them to compare tree-partition-width to tree-cut width.

Cite as

Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. On the Parameterized Complexity of Computing Tree-Partitions. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2022.7,
  author =	{Bodlaender, Hans L. and Groenland, Carla and Jacob, Hugo},
  title =	{{On the Parameterized Complexity of Computing Tree-Partitions}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.7},
  URN =		{urn:nbn:de:0030-drops-173633},
  doi =		{10.4230/LIPIcs.IPEC.2022.7},
  annote =	{Keywords: Parameterized algorithms, Tree partitions, tree-partition-width, Treewidth, Domino Treewidth, Approximation Algorithms, Parameterized Complexity}
}
Document
XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

Authors: Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
In this paper, we showcase the class XNLP as a natural place for many hard problems parameterized by linear width measures. This strengthens existing W[1]-hardness proofs for these problems, since XNLP-hardness implies W[t]-hardness for all t. It also indicates, via a conjecture by Pilipczuk and Wrochna [ToCT 2018], that any XP algorithm for such problems is likely to require XP space. In particular, we show XNLP-completeness for natural problems parameterized by pathwidth, linear clique-width, and linear mim-width. The problems we consider are Independent Set, Dominating Set, Odd Cycle Transversal, (q-)Coloring, Max Cut, Maximum Regular Induced Subgraph, Feedback Vertex Set, Capacitated (Red-Blue) Dominating Set, and Bipartite Bandwidth.

Cite as

Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima. XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2022.8,
  author =	{Bodlaender, Hans L. and Groenland, Carla and Jacob, Hugo and Jaffke, Lars and Lima, Paloma T.},
  title =	{{XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.8},
  URN =		{urn:nbn:de:0030-drops-173640},
  doi =		{10.4230/LIPIcs.IPEC.2022.8},
  annote =	{Keywords: parameterized complexity, XNLP, linear clique-width, W-hierarchy, pathwidth, linear mim-width, bandwidth}
}
Document
Twin-Width VIII: Delineation and Win-Wins

Authors: Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We introduce the notion of delineation. A graph class C is said delineated by twin-width (or simply, delineated) if for every hereditary closure D of a subclass of C, it holds that D has bounded twin-width if and only if D is monadically dependent. An effective strengthening of delineation for a class C implies that tractable FO model checking on C is perfectly understood: On hereditary closures of subclasses D of C, FO model checking on D is fixed-parameter tractable (FPT) exactly when D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that K_{t,t}-free segment graphs, and axis-parallel H_t-free unit segment graphs have bounded twin-width, where H_t is the half-graph or ladder of height t. In contrast, axis-parallel H₄-free two-lengthed segment graphs have unbounded twin-width. We leave as an open question whether unit segment graphs are delineated. More broadly, we explore which structures (large bicliques, half-graphs, or independent sets) are responsible for making the twin-width large on the main classes of intersection and visibility graphs. Our new results, combined with the FPT algorithm for first-order model checking on graphs given with O(1)-sequences [BKTW, JACM '22], give rise to a variety of algorithmic win-win arguments. They all fall in the same framework: If p is an FO definable graph parameter that effectively functionally upperbounds twin-width on a class C, then p(G) ⩾ k can be decided in FPT time f(k) ⋅ |V(G)|^O(1). For instance, we readily derive FPT algorithms for k-Ladder on visibility graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This showcases that the theory of twin-width can serve outside of classes of bounded twin-width.

Cite as

Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé. Twin-Width VIII: Delineation and Win-Wins. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2022.9,
  author =	{Bonnet, \'{E}douard and Chakraborty, Dibyayan and Kim, Eun Jung and K\"{o}hler, Noleen and Lopes, Raul and Thomass\'{e}, St\'{e}phan},
  title =	{{Twin-Width VIII: Delineation and Win-Wins}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.9},
  URN =		{urn:nbn:de:0030-drops-173650},
  doi =		{10.4230/LIPIcs.IPEC.2022.9},
  annote =	{Keywords: Twin-width, intersection graphs, visibility graphs, monadic dependence and stability, first-order model checking}
}
  • Refine by Author
  • 15 Dell, Holger
  • 7 Roth, Marc
  • 4 Curticapean, Radu
  • 4 Fomin, Fedor V.
  • 3 Bodlaender, Hans L.
  • Show More...

  • Refine by Classification
  • 26 Theory of computation → Parameterized complexity and exact algorithms
  • 11 Theory of computation → Graph algorithms analysis
  • 9 Theory of computation → Fixed parameter tractability
  • 9 Theory of computation → Problems, reductions and completeness
  • 7 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 11 parameterized complexity
  • 5 Parameterized Complexity
  • 4 counting complexity
  • 3 FPT
  • 3 Treewidth
  • Show More...

  • Refine by Type
  • 57 document
  • 1 volume

  • Refine by Publication Year
  • 36 2022
  • 5 2021
  • 4 2017
  • 4 2019
  • 3 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail