10 Search Results for "Gravin, Nick"


Document
Beating Competitive Ratio 4 for Graphic Matroid Secretary

Authors: Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
One of the classic problems in online decision-making is the secretary problem, where the goal is to hire the best secretary out of n rankable applicants or, in a natural extension, to maximize the probability of selecting the largest number from a sequence arriving in random order. Many works have considered generalizations of this problem where one can accept multiple values subject to a combinatorial constraint. The seminal work of Babaioff, Immorlica, Kempe, and Kleinberg (SODA'07, JACM'18) proposed the matroid secretary conjecture, suggesting that there exists an O(1)-competitive algorithm for the matroid constraint, and many works since have attempted to obtain algorithms for both general matroids and specific classes of matroids. The ultimate goal of these results is to obtain an e-competitive algorithm, and the strong matroid secretary conjecture states that this is possible for general matroids. One of the most important classes of matroids is the graphic matroid, where a set of edges in a graph is deemed independent if it contains no cycle. Given the rich combinatorial structure of graphs, obtaining algorithms for these matroids is often seen as a good first step towards solving the problem for general matroids. For matroid secretary, Babaioff et al. (SODA'07, JACM'18) first studied graphic matroid case and obtained a 16-competitive algorithm. Subsequent works have improved the competitive ratio, most recently to 4 by Soto, Turkieltaub, and Verdugo (SODA'18). In this paper, we break the 4-competitive barrier for the problem, obtaining a new algorithm with a competitive ratio of 3.95. For the special case of simple graphs (i.e., graphs that do not contain parallel edges) we further improve this to 3.77. Intuitively, solving the problem for simple graphs is easier as they do not contain cycles of length two. A natural question that arises is whether we can obtain a ratio arbitrarily close to e by assuming the graph has a large enough girth. We answer this question affirmatively, proving that one can obtain a competitive ratio arbitrarily close to e even for constant values of girth, providing further evidence for the strong matroid secretary conjecture. We further show that this bound is tight: for any constant g, one cannot obtain a competitive ratio better than e even if we assume that the input graph has girth at least g. To our knowledge, such a bound was not previously known even for simple graphs.

Cite as

Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski. Beating Competitive Ratio 4 for Graphic Matroid Secretary. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 52:1-52:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ESA.2025.52,
  author =	{Banihashem, Kiarash and Hajiaghayi, MohammadTaghi and Kowalski, Dariusz R. and Krysta, Piotr and Mittal, Danny and Olkowski, Jan},
  title =	{{Beating Competitive Ratio 4 for Graphic Matroid Secretary}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{52:1--52:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.52},
  URN =		{urn:nbn:de:0030-drops-245205},
  doi =		{10.4230/LIPIcs.ESA.2025.52},
  annote =	{Keywords: online algorithms, graphic matroids, secretary problem}
}
Document
On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses

Authors: Ioannis Caragiannis, Nick Gravin, and Zhile Jiang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The problem of identifying the satisfiability threshold of random 3-SAT formulas has received a lot of attention during the last decades and has inspired the study of other threshold phenomena in random combinatorial structures. The classical assumption in this line of research is that, for a given set of n Boolean variables, each clause is drawn uniformly at random among all sets of three literals from these variables, independently from other clauses. Here, we keep the uniform distribution of each clause, but deviate significantly from the independence assumption and consider richer families of probability distributions. For integer parameters n, m, and k, we denote by ℱ_k(n,m) the family of probability distributions that produce formulas with m clauses, each selected uniformly at random from all sets of three literals from the n variables, so that the clauses are k-wise independent. Our aim is to make general statements about the satisfiability or unsatisfiability of formulas produced by distributions in ℱ_k(n,m) for different values of the parameters n, m, and k. Our technical results are as follows: First, all probability distributions in ℱ₂(n,m) with m ∈ Ω(n³) return unsatisfiable formulas with high probability. This result is tight. We show that there exists a probability distribution 𝒟 ∈ ℱ₃(n,m) with m ∈ O(n³) so that a random formula drawn from 𝒟 is almost always satisfiable. In contrast, for m ∈ Ω(n²), any probability distribution 𝒟 ∈ ℱ₄(n,m) returns an unsatisfiable formula with high probability. This is our most surprising and technically involved result. Finally, for any integer k ≥ 2, any probability distribution 𝒟 ∈ ℱ_k(n,m) with m ∈ O(n^{1-1/k}) returns a satisfiable formula with high probability.

Cite as

Ioannis Caragiannis, Nick Gravin, and Zhile Jiang. On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 103:1-103:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{caragiannis_et_al:LIPIcs.ESA.2025.103,
  author =	{Caragiannis, Ioannis and Gravin, Nick and Jiang, Zhile},
  title =	{{On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{103:1--103:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.103},
  URN =		{urn:nbn:de:0030-drops-245721},
  doi =		{10.4230/LIPIcs.ESA.2025.103},
  annote =	{Keywords: Random 3-SAT, k-wise independence, Random bipartite graph}
}
Document
On the Performance of Mildly Greedy Players in k-Coloring Games

Authors: Vittorio Bilò, Andrea D'Ascenzo, Mattia D'Emidio, and Giuseppe F. Italiano

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the performance of mildly greedy players in k-coloring games, a relevant subclass of anti-coordination games. A mildly greedy player is a selfish agent who is willing to deviate from a certain strategy profile only if her payoff improves by a factor of more than ε, for some given ε ≥ 0. In presence of mildly greedy players, stability is captured by the concept of (1+ε)-approximate Nash equilibrium. In this paper, we first show that, for any k-coloring game, the (1+ε)-approximate price of anarchy, i.e., the price of anarchy of (1+ε)-approximate pure Nash equilibria, is at least (k-1)/((k-1)ε +k), and that this bound is tight for any ε ≥ 0. Then, we evaluate the approximation ratio of the solutions achieved after a (1 + ϵ)-approximate one-round walk starting from any initial strategy profile, where a (1 + ϵ)-approximate one-round walk is a sequence of (1 + ε)-approximate best-responses, one for each player. We provide a lower bound of min{(k-2)/k, (k-1)/((k-1)ε+k)} on this ratio, for any ε ≥ 0 and k ≥ 5; for the cases of k = 3 and k = 4, we give finer bounds depending on ε. Our work generalizes the results known for cut games, the special case of k-coloring games restricted to k = 2.

Cite as

Vittorio Bilò, Andrea D'Ascenzo, Mattia D'Emidio, and Giuseppe F. Italiano. On the Performance of Mildly Greedy Players in k-Coloring Games. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.MFCS.2025.21,
  author =	{Bil\`{o}, Vittorio and D'Ascenzo, Andrea and D'Emidio, Mattia and Italiano, Giuseppe F.},
  title =	{{On the Performance of Mildly Greedy Players in k-Coloring Games}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{21:1--21:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-241287},
  doi =		{10.4230/LIPIcs.MFCS.2025.21},
  annote =	{Keywords: Coloring games, (Approximate) Nash Equilibria, Price of Anarchy}
}
Document
Track A: Algorithms, Complexity and Games
q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations

Authors: Kiril Bangachev and S. Matthew Weinberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3). For domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following: 1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. 2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest. We also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019].

Cite as

Kiril Bangachev and S. Matthew Weinberg. q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bangachev_et_al:LIPIcs.ICALP.2025.18,
  author =	{Bangachev, Kiril and Weinberg, S. Matthew},
  title =	{{q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233956},
  doi =		{10.4230/LIPIcs.ICALP.2025.18},
  annote =	{Keywords: Subadditive Functions, Fractionally Subadditive Functions, Posted Price Mechanisms, Concentration Inequalities}
}
Document
Track A: Algorithms, Complexity and Games
A New Impossibility Result for Online Bipartite Matching Problems

Authors: Flavio Chierichetti, Mirko Giacchini, Alessandro Panconesi, and Andrea Vattani

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Online Bipartite Matching with random user arrival is a fundamental problem in the online advertisement ecosystem. Over the last 30 years, many algorithms and impossibility results have been developed for this problem. In particular, the latest impossibility result was established by Manshadi, Oveis Gharan and Saberi [Manshadi et al., 2011] in 2011. Since then, several algorithms have been published in an effort to narrow the gap between the upper and the lower bounds on the competitive ratio. In this paper we show that no algorithm can achieve a competitive ratio better than 1- e/(e^e) = 0.82062…, improving upon the 0.823 upper bound presented in [Manshadi et al., 2011]. Our construction is simple to state, accompanied by a fully analytic proof, and yields a competitive ratio bound intriguingly similar to 1 - 1/e, the optimal competitive ratio for the fully adversarial Online Bipartite Matching problem. Although the tightness of our upper bound remains an open question, we show that our construction is extremal in a natural class of instances.

Cite as

Flavio Chierichetti, Mirko Giacchini, Alessandro Panconesi, and Andrea Vattani. A New Impossibility Result for Online Bipartite Matching Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 58:1-58:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chierichetti_et_al:LIPIcs.ICALP.2025.58,
  author =	{Chierichetti, Flavio and Giacchini, Mirko and Panconesi, Alessandro and Vattani, Andrea},
  title =	{{A New Impossibility Result for Online Bipartite Matching Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{58:1--58:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.58},
  URN =		{urn:nbn:de:0030-drops-234354},
  doi =		{10.4230/LIPIcs.ICALP.2025.58},
  annote =	{Keywords: Bipartite Matching, Random Graphs, Competitive Ratio}
}
Document
Track A: Algorithms, Complexity and Games
Query Efficient Weighted Stochastic Matching

Authors: Mahsa Derakhshan and Mohammad Saneian

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In this paper, we study the weighted stochastic matching problem. Let G = (V, E) be a given edge-weighted graph, and let its realization 𝒢 be a random subgraph of G that includes each edge e ∈ E independently with a known probability p_e. The goal in this problem is to pick a sparse subgraph Q of G without prior knowledge of 𝒢, such that the maximum weight matching among the realized edges of Q (i.e., the subgraph Q ∩ 𝒢) in expectation approximates the maximum weight matching of the entire realization 𝒢. It is established by previous work that attaining any constant approximation ratio for this problem requires selecting a subgraph of max-degree Ω(1/p), where p = min_{e ∈ E} p_e. On the positive side, there exists a (1-ε)-approximation algorithm by Behnezhad and Derakhshan [FOCS'20], albeit at the cost of a max-degree having exponential dependence on 1/p. Within the O(1/p) query regime, however, the best-known algorithm achieves a 0.536 approximation ratio due to Dughmi, Kalayci, and Patel [ICALP'23], improving over the 0.501 approximation algorithm by Behnezhad, Farhadi, Hajiaghayi, and Reyhani [SODA'19]. In this work, we present a 0.68-approximation algorithm with the asymptotically optimal O(1/p) queries per vertex. Our result not only substantially improves the approximation ratio for weighted graphs, but also breaks the well-known 2/3 barrier with the optimal number of queries - even for unweighted graphs. Our analysis involves reducing the problem to designing a randomized matching algorithm on a given stochastic graph with some variance-bounding properties. To achieve these properties, we leverage a randomized algorithm by MacRury and Ma [STOC'24] for a variant of online stochastic matching.

Cite as

Mahsa Derakhshan and Mohammad Saneian. Query Efficient Weighted Stochastic Matching. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 67:1-67:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{derakhshan_et_al:LIPIcs.ICALP.2025.67,
  author =	{Derakhshan, Mahsa and Saneian, Mohammad},
  title =	{{Query Efficient Weighted Stochastic Matching}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{67:1--67:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.67},
  URN =		{urn:nbn:de:0030-drops-234445},
  doi =		{10.4230/LIPIcs.ICALP.2025.67},
  annote =	{Keywords: Sublinear algorithms, Stochastic, Matching}
}
Document
A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions

Authors: Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We investigate prophet inequalities with competitive ratios approaching 1, seeking to generalize k-uniform matroids. We first show that large girth does not suffice: for all k, there exists a matroid of girth ≥ k and a prophet inequality instance on that matroid whose optimal competitive ratio is 1/2. Next, we show k-fold matroid unions do suffice: we provide a prophet inequality with competitive ratio 1-O(√{(log k)/k}) for any k-fold matroid union. Our prophet inequality follows from an online contention resolution scheme. The key technical ingredient in our online contention resolution scheme is a novel bicriterion concentration inequality for arbitrary monotone 1-Lipschitz functions over independent items which may be of independent interest. Applied to our particular setting, our bicriterion concentration inequality yields "Chernoff-strength" concentration for a 1-Lipschitz function that is not (approximately) self-bounding.

Cite as

Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang. A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alon_et_al:LIPIcs.ITCS.2025.4,
  author =	{Alon, Noga and Gravin, Nick and Pollner, Tristan and Rubinstein, Aviad and Wang, Hongao and Weinberg, S. Matthew and Zhang, Qianfan},
  title =	{{A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.4},
  URN =		{urn:nbn:de:0030-drops-226329},
  doi =		{10.4230/LIPIcs.ITCS.2025.4},
  annote =	{Keywords: Prophet Inequalities, Online Contention Resolution Schemes, Concentration Inequalities}
}
Document
Combinatorial Pen Testing (Or Consumer Surplus of Deferred-Acceptance Auctions)

Authors: Aadityan Ganesh and Jason Hartline

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Pen testing is the problem of selecting high-capacity resources when the only way to measure the capacity of a resource expends its capacity. We have a set of n pens with unknown amounts of ink and our goal is to select a feasible subset of pens maximizing the total ink in them. We are allowed to learn about the ink levels by writing with them, but this uses up ink that was previously in the pens. We identify optimal and near optimal pen testing algorithms by drawing analogues to auction theoretic frameworks of deferred-acceptance auctions and virtual values. Our framework allows the conversion of any near optimal deferred-acceptance mechanism into a near optimal pen testing algorithm. Moreover, these algorithms guarantee an additional overhead of at most (1+o(1)) ln n in the approximation factor to the omniscient algorithm that has access to the ink levels in the pens. We use this framework to give pen testing algorithms for various combinatorial constraints like matroid, knapsack, and general downward-closed constraints, and also for online environments.

Cite as

Aadityan Ganesh and Jason Hartline. Combinatorial Pen Testing (Or Consumer Surplus of Deferred-Acceptance Auctions). In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 52:1-52:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ganesh_et_al:LIPIcs.ITCS.2025.52,
  author =	{Ganesh, Aadityan and Hartline, Jason},
  title =	{{Combinatorial Pen Testing (Or Consumer Surplus of Deferred-Acceptance Auctions)}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{52:1--52:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.52},
  URN =		{urn:nbn:de:0030-drops-226808},
  doi =		{10.4230/LIPIcs.ITCS.2025.52},
  annote =	{Keywords: Pen testing, consumer surplus, money-burning, deferred-acceptance auctions}
}
Document
Track A: Algorithms, Complexity and Games
Online Stochastic Matching with Edge Arrivals

Authors: Nick Gravin, Zhihao Gavin Tang, and Kangning Wang

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by Gamlath et al., who showed that no online policy is better than the straightforward greedy algorithm, i.e., no online algorithm has a worst-case competitive ratio better than 0.5. In this work, we consider the bipartite matching problem with edge arrivals in a natural stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized according to a known probability distribution. We focus on a natural class of prune & greedy online policies motivated by practical considerations from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages: first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy algorithm on the pruned graph. We propose prune & greedy algorithms that are 0.552-competitive on the instances that can be pruned to a 2-regular stochastic bipartite graph, and 0.503-competitive on arbitrary stochastic bipartite graphs. The algorithms and our analysis significantly deviate from the prior work. We first obtain analytically manageable lower bound on the size of the matching, which leads to a non-linear optimization problem. We further reduce this problem to a continuous optimization with a constant number of parameters that can be solved using standard software tools.

Cite as

Nick Gravin, Zhihao Gavin Tang, and Kangning Wang. Online Stochastic Matching with Edge Arrivals. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 74:1-74:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gravin_et_al:LIPIcs.ICALP.2021.74,
  author =	{Gravin, Nick and Tang, Zhihao Gavin and Wang, Kangning},
  title =	{{Online Stochastic Matching with Edge Arrivals}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{74:1--74:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.74},
  URN =		{urn:nbn:de:0030-drops-141438},
  doi =		{10.4230/LIPIcs.ICALP.2021.74},
  annote =	{Keywords: online matching, graph algorithms, prophet inequality}
}
Document
Tight Lower Bounds for Multiplicative Weights Algorithmic Families

Authors: Nick Gravin, Yuval Peres, and Balasubramanian Sivan

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We study the fundamental problem of prediction with expert advice and develop regret lower bounds for a large family of algorithms for this problem. We develop simple adversarial primitives, that lend themselves to various combinations leading to sharp lower bounds for many algorithmic families. We use these primitives to show that the classic Multiplicative Weights Algorithm (MWA) has a regret of (T*ln(k)/2)^{0.5} (where T is the time horizon and k is the number of experts), there by completely closing the gap between upper and lower bounds. We further show a regret lower bound of (2/3)* (T*ln(k)/2)^{0.5} for a much more general family of algorithms than MWA, where the learning rate can be arbitrarily varied over time, or even picked from arbitrary distributions over time. We also use our primitives to construct adversaries in the geometric horizon setting for MWA to precisely characterize the regret at 0.391/(\delta)^{0.5} for the case of 2 experts and a lower bound of (1/2)*(ln(k)/(2*\delta))^{0.5}, for the case of arbitrary number of experts k (here \delta is the probability that the game ends in any given round).

Cite as

Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Tight Lower Bounds for Multiplicative Weights Algorithmic Families. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gravin_et_al:LIPIcs.ICALP.2017.48,
  author =	{Gravin, Nick and Peres, Yuval and Sivan, Balasubramanian},
  title =	{{Tight Lower Bounds for Multiplicative Weights Algorithmic Families}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.48},
  URN =		{urn:nbn:de:0030-drops-74997},
  doi =		{10.4230/LIPIcs.ICALP.2017.48},
  annote =	{Keywords: Multiplicative Weights, Lower Bounds, Adversarial Primitives}
}
  • Refine by Type
  • 10 Document/PDF
  • 8 Document/HTML

  • Refine by Publication Year
  • 8 2025
  • 1 2021
  • 1 2017

  • Refine by Author
  • 4 Gravin, Nick
  • 2 Weinberg, S. Matthew
  • 1 Alon, Noga
  • 1 Bangachev, Kiril
  • 1 Banihashem, Kiarash
  • Show More...

  • Refine by Series/Journal
  • 10 LIPIcs

  • Refine by Classification
  • 4 Theory of computation → Online algorithms
  • 2 Mathematics of computing → Probability and statistics
  • 2 Theory of computation → Approximation algorithms analysis
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 Concentration Inequalities
  • 1 (Approximate) Nash Equilibria
  • 1 Adversarial Primitives
  • 1 Bipartite Matching
  • 1 Coloring games
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail