4 Search Results for "Kaminski, Michael"


Document
Sets of Linear Forms Which Are Hard to Compute

Authors: Michael Kaminski and Igor E. Shparlinski

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We present a uniform description of sets of m linear forms in n variables over the field of rational numbers whose computation requires m(n - 1) additions. Our result is based on bounds on the height of the annihilating polynomials in the Perron theorem and an effective form of the Lindemann-Weierstrass theorem which is due to Sert (1999).

Cite as

Michael Kaminski and Igor E. Shparlinski. Sets of Linear Forms Which Are Hard to Compute. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 66:1-66:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kaminski_et_al:LIPIcs.MFCS.2021.66,
  author =	{Kaminski, Michael and Shparlinski, Igor E.},
  title =	{{Sets of Linear Forms Which Are Hard to Compute}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{66:1--66:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.66},
  URN =		{urn:nbn:de:0030-drops-145065},
  doi =		{10.4230/LIPIcs.MFCS.2021.66},
  annote =	{Keywords: Linear algorithms, additive complexity, effective Perron theorem, effective Lindemann-Weierstrass theorem}
}
Document
Grammars for Document Spanners

Authors: Liat Peterfreund

Published in: LIPIcs, Volume 186, 24th International Conference on Database Theory (ICDT 2021)


Abstract
We propose a new grammar-based language for defining information-extractors from documents (text) that is built upon the well-studied framework of document spanners for extracting structured data from text. While previously studied formalisms for document spanners are mainly based on regular expressions, we use an extension of context-free grammars, called {extraction grammars}, to define the new class of context-free spanners. Extraction grammars are simply context-free grammars extended with variables that capture interval positions of the document, namely spans. While regular expressions are efficient for tokenizing and tagging, context-free grammars are also efficient for capturing structural properties. Indeed, we show that context-free spanners are strictly more expressive than their regular counterparts. We reason about the expressive power of our new class and present a pushdown-automata model that captures it. We show that extraction grammars can be evaluated with polynomial data complexity. Nevertheless, as the degree of the polynomial depends on the query, we present an enumeration algorithm for unambiguous extraction grammars that, after quintic preprocessing, outputs the results sequentially, without repetitions, with a constant delay between every two consecutive ones.

Cite as

Liat Peterfreund. Grammars for Document Spanners. In 24th International Conference on Database Theory (ICDT 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 186, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{peterfreund:LIPIcs.ICDT.2021.7,
  author =	{Peterfreund, Liat},
  title =	{{Grammars for Document Spanners}},
  booktitle =	{24th International Conference on Database Theory (ICDT 2021)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-179-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{186},
  editor =	{Yi, Ke and Wei, Zhewei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2021.7},
  URN =		{urn:nbn:de:0030-drops-137154},
  doi =		{10.4230/LIPIcs.ICDT.2021.7},
  annote =	{Keywords: Information Extraction, Document Spanners, Context-Free Grammars, Constant-Delay Enumeration, Regular Expressions, Pushdown Automata}
}
Document
On Repetition Languages

Authors: Orna Kupferman and Ofer Leshkowitz

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
A regular language R of finite words induces three repetition languages of infinite words: the language lim(R), which contains words with infinitely many prefixes in R, the language ∞ R, which contains words with infinitely many disjoint subwords in R, and the language R^ω, which contains infinite concatenations of words in R. Specifying behaviors, the three repetition languages provide three different ways of turning a specification of a finite behavior into an infinite one. We study the expressive power required for recognizing repetition languages, in particular whether they can always be recognized by a deterministic Büchi word automaton (DBW), the blow up in going from an automaton for R to automata for the repetition languages, and the complexity of related decision problems. For lim R and ∞ R, most of these problems have already been studied or are easy. We focus on R^ω. Its study involves some new and interesting results about additional repetition languages, in particular R^#, which contains exactly all words with unboundedly many concatenations of words in R. We show that R^ω is DBW-recognizable iff R^# is ω-regular iff R^# = R^ω, and there are languages for which these criteria do not hold. Thus, R^ω need not be DBW-recognizable. In addition, when exists, the construction of a DBW for R^ω may involve a 2^{O(n log n)} blow-up, and deciding whether R^ω is DBW-recognizable, for R given by a nondeterministic automaton, is PSPACE-complete. Finally, we lift the difference between R^# and R^ω to automata on finite words and study a variant of Büchi automata where a word is accepted if (possibly different) runs on it visit accepting states unboundedly many times.

Cite as

Orna Kupferman and Ofer Leshkowitz. On Repetition Languages. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 59:1-59:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kupferman_et_al:LIPIcs.MFCS.2020.59,
  author =	{Kupferman, Orna and Leshkowitz, Ofer},
  title =	{{On Repetition Languages}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{59:1--59:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.59},
  URN =		{urn:nbn:de:0030-drops-127268},
  doi =		{10.4230/LIPIcs.MFCS.2020.59},
  annote =	{Keywords: B\"{u}chi automata, Expressive power, Succinctness}
}
Document
Multi-Criteria Optimization in Answer Set Programming

Authors: Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub

Published in: LIPIcs, Volume 11, Technical Communications of the 27th International Conference on Logic Programming (ICLP'11) (2011)


Abstract
We elaborate upon new strategies and heuristics for solving multi-criteria optimization problems via Answer Set Programming (ASP). In particular, we conceive a new solving algorithm, based on conflictdriven learning, allowing for non-uniform descents during optimization. We apply these techniques to solve realistic Linux package configuration problems. To this end, we describe the Linux package configuration tool aspcud and compare its performance with systems pursuing alternative approaches.

Cite as

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-Criteria Optimization in Answer Set Programming. In Technical Communications of the 27th International Conference on Logic Programming (ICLP'11). Leibniz International Proceedings in Informatics (LIPIcs), Volume 11, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{gebser_et_al:LIPIcs.ICLP.2011.1,
  author =	{Gebser, Martin and Kaminski, Roland and Kaufmann, Benjamin and Schaub, Torsten},
  title =	{{Multi-Criteria Optimization in Answer Set Programming}},
  booktitle =	{Technical Communications of the 27th International Conference on Logic Programming (ICLP'11)},
  pages =	{1--10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-31-6},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{11},
  editor =	{Gallagher, John P. and Gelfond, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICLP.2011.1},
  URN =		{urn:nbn:de:0030-drops-31617},
  doi =		{10.4230/LIPIcs.ICLP.2011.1},
  annote =	{Keywords: Answer Set Programming, Multi-Criteria Optimization, Linux Package Configuration}
}
  • Refine by Author
  • 1 Gebser, Martin
  • 1 Kaminski, Michael
  • 1 Kaminski, Roland
  • 1 Kaufmann, Benjamin
  • 1 Kupferman, Orna
  • Show More...

  • Refine by Classification
  • 1 Information systems → Data model extensions
  • 1 Information systems → Information extraction
  • 1 Information systems → Relational database model
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Automata over infinite objects

  • Refine by Keyword
  • 1 Answer Set Programming
  • 1 Büchi automata
  • 1 Constant-Delay Enumeration
  • 1 Context-Free Grammars
  • 1 Document Spanners
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2021
  • 1 2011
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail