3 Search Results for "Lu, Yi"


Document
Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting

Authors: Shangqi Lu and Yufei Tao

Published in: LIPIcs, Volume 186, 24th International Conference on Database Theory (ICDT 2021)


Abstract
In ICDT'19, Kara, Ngo, Nikolic, Olteanu, and Zhang gave a structure which maintains the number T of triangles in an undirected graph G = (V, E) along with the edge insertions/deletions in G. Using O(m) space (m = |E|), their structure supports an update in O(√m log m) amortized time which is optimal (up to polylog factors) subject to the OMv-conjecture (Henzinger, Krinninger, Nanongkai, and Saranurak, STOC'15). Aiming to improve the update efficiency, we study: - the optimal tradeoff between update time and approximation quality. We require a structure to provide the (ε, Γ)-guarantee: when queried, it should return an estimate t of T that has relative error at most ε if T ≥ Γ, or an absolute error at most ε ⋅ Γ, otherwise. We prove that, under any ε ≤ 0.49 and subject to the OMv-conjecture, no structure can guarantee O(m^{0.5-δ}/Γ) expected amortized update time and O(m^{2/3-δ}) query time simultaneously for any constant δ > 0; this is true for Γ = m^c of any constant c in [0, 1/2). We match the lower bound with a structure that ensures Õ((1/ε)³ ⋅ √m/Γ) amortized update time with high probability, and O(1) query time. - (for exact counting) how to achieve arboricity-sensitive update time. For any 1 ≤ Γ ≤ √m, we describe a structure of O(min{α m + m log m, (m/Γ)²}) space that maintains T precisely, and supports an update in Õ(min{α + Γ, √m}) amortized time, where α is the largest arboricity of G in history (and does not need to be known). Our structure reconstructs the aforementioned ICDT'19 result up to polylog factors by setting Γ = √m, but achieves Õ(m^{0.5-δ}) update time as long as α = O(m^{0.5-δ}).

Cite as

Shangqi Lu and Yufei Tao. Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting. In 24th International Conference on Database Theory (ICDT 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 186, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lu_et_al:LIPIcs.ICDT.2021.6,
  author =	{Lu, Shangqi and Tao, Yufei},
  title =	{{Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting}},
  booktitle =	{24th International Conference on Database Theory (ICDT 2021)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-179-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{186},
  editor =	{Yi, Ke and Wei, Zhewei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2021.6},
  URN =		{urn:nbn:de:0030-drops-137146},
  doi =		{10.4230/LIPIcs.ICDT.2021.6},
  annote =	{Keywords: Triangle Counting, Data Structures, Lower Bounds, Graph Algorithms}
}
Document
Approximability of the Eight-Vertex Model

Authors: Jin-Yi Cai, Tianyu Liu, Pinyan Lu, and Jing Yu

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We initiate a study of the classification of approximation complexity of the eight-vertex model defined over 4-regular graphs. The eight-vertex model, together with its special case the six-vertex model, is one of the most extensively studied models in statistical physics, and can be stated as a problem of counting weighted orientations in graph theory. Our result concerns the approximability of the partition function on all 4-regular graphs, classified according to the parameters of the model. Our complexity results conform to the phase transition phenomenon from physics. We introduce a quantum decomposition of the eight-vertex model and prove a set of closure properties in various regions of the parameter space. Furthermore, we show that there are extra closure properties on 4-regular planar graphs. These regions of the parameter space are concordant with the phase transition threshold. Using these closure properties, we derive polynomial time approximation algorithms via Markov chain Monte Carlo. We also show that the eight-vertex model is NP-hard to approximate on the other side of the phase transition threshold.

Cite as

Jin-Yi Cai, Tianyu Liu, Pinyan Lu, and Jing Yu. Approximability of the Eight-Vertex Model. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.CCC.2020.4,
  author =	{Cai, Jin-Yi and Liu, Tianyu and Lu, Pinyan and Yu, Jing},
  title =	{{Approximability of the Eight-Vertex Model}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{4:1--4:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.4},
  URN =		{urn:nbn:de:0030-drops-125564},
  doi =		{10.4230/LIPIcs.CCC.2020.4},
  annote =	{Keywords: Approximate complexity, the eight-vertex model, Markov chain Monte Carlo}
}
Document
Short Paper
The Use of Particle Swarm Optimization for a Vector Cellular Automata Model of Land Use Change (Short Paper)

Authors: Yi Lu and Shawn Laffan

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
Cellular automata (CA) is an important area of research in GIScience, with recent research developing vector-based models in addition to the traditional raster data formats. One active area of research is the calibration of transition rules, particularly when applied to vector CA. Here we evaluate a particle swarm optimization (PSO) process to calibrate a vector CA model of land use change for a sub-region of Ipswich in Queensland, Australia, for the period 1999-2016. We compare the results with those for a raster CA of the same dataset. The spatial indices of the vector PSO-CA model exceed that of the raster model, with spatial accuracies being 82.45% and 76.47%, respectively. In addition, the vector PSO-CA model achieved a higher kappa coefficient. Vector-based PSO-CA model can be used for the exploration of urbanization process and provide a better understanding of land use change.

Cite as

Yi Lu and Shawn Laffan. The Use of Particle Swarm Optimization for a Vector Cellular Automata Model of Land Use Change (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 42:1-42:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{lu_et_al:LIPIcs.GISCIENCE.2018.42,
  author =	{Lu, Yi and Laffan, Shawn},
  title =	{{The Use of Particle Swarm Optimization for a Vector Cellular Automata Model of Land Use Change}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{42:1--42:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.42},
  URN =		{urn:nbn:de:0030-drops-93702},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.42},
  annote =	{Keywords: Vector cellular automata (CA), Particle swarm optimization (PSO), Land use simulation, Ipswich}
}
  • Refine by Author
  • 1 Cai, Jin-Yi
  • 1 Laffan, Shawn
  • 1 Liu, Tianyu
  • 1 Lu, Pinyan
  • 1 Lu, Shangqi
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Modeling methodologies
  • 1 Theory of computation → Database query processing and optimization (theory)
  • 1 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 1 Approximate complexity
  • 1 Data Structures
  • 1 Graph Algorithms
  • 1 Ipswich
  • 1 Land use simulation
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail