45 Search Results for "Pientka, Brigitte"


Volume

LIPIcs, Volume 52

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)

FSCD 2016, June 22-26, 2016, Porto, Portugal

Editors: Delia Kesner and Brigitte Pientka

Document
Invited Talk
A Modal Analysis of Metaprogramming, Revisited (Invited Talk)

Authors: Brigitte Pientka

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
Metaprogramming is the art of writing programs that produce or manipulate other programs. This opens the possibility to eliminate boilerplate code and exploit domain-specific knowledge to build high-performance programs. Unfortunately, designing language extensions to support type-safe multi-staged metaprogramming remains very challenging. In this talk, we outline a modal type-theoretic foundation for multi-staged metaprogramming which supports the generation and the analysis of polymorphic code. It has two main ingredients: first, we exploit contextual modal types to describe open code together with the context in which it is meaningful; second, we model code as a higher-order abstract syntax (HOAS) tree within a context. These two ideas provide the appropriate abstractions for both generating and pattern matching on open code without committing to a concrete representation of variable binding and contexts. Our work is a first step towards building a general type-theoretic foundation for multi-staged metaprogramming which on the one hand enforces strong type guarantees and on the other hand makes it easy to generate and manipulate code. This will allow us to exploit the full potential of metaprogramming without sacrificing reliability of and trust in the code we are producing and running.

Cite as

Brigitte Pientka. A Modal Analysis of Metaprogramming, Revisited (Invited Talk). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 2:1-2:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{pientka:LIPIcs.FSCD.2020.2,
  author =	{Pientka, Brigitte},
  title =	{{A Modal Analysis of Metaprogramming, Revisited}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{2:1--2:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.2},
  URN =		{urn:nbn:de:0030-drops-123242},
  doi =		{10.4230/LIPIcs.FSCD.2020.2},
  annote =	{Keywords: Type systems, Metaprogramming, Modal Type System}
}
Document
Index-Stratified Types

Authors: Rohan Jacob-Rao, Brigitte Pientka, and David Thibodeau

Published in: LIPIcs, Volume 108, 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)


Abstract
We present Tores, a core language for encoding metatheoretic proofs. The novel features we introduce are well-founded Mendler-style (co)recursion over indexed data types and a form of recursion over objects in the index language to build new types. The latter, which we call index-stratified types, are analogue to the concept of large elimination in dependently typed languages. These features combined allow us to encode sophisticated case studies such as normalization for lambda calculi and normalization by evaluation. We prove the soundness of Tores as a programming and proof language via the key theorems of subject reduction and termination.

Cite as

Rohan Jacob-Rao, Brigitte Pientka, and David Thibodeau. Index-Stratified Types. In 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 108, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{jacobrao_et_al:LIPIcs.FSCD.2018.19,
  author =	{Jacob-Rao, Rohan and Pientka, Brigitte and Thibodeau, David},
  title =	{{Index-Stratified Types}},
  booktitle =	{3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-077-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{108},
  editor =	{Kirchner, H\'{e}l\`{e}ne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2018.19},
  URN =		{urn:nbn:de:0030-drops-91891},
  doi =		{10.4230/LIPIcs.FSCD.2018.19},
  annote =	{Keywords: Indexed types, (co)recursive types, logical relations}
}
Document
Relating System F and Lambda2: A Case Study in Coq, Abella and Beluga

Authors: Jonas Kaiser, Brigitte Pientka, and Gert Smolka

Published in: LIPIcs, Volume 84, 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017)


Abstract
We give three formalisations of a proof of the equivalence of the usual, two-sorted presentation of System F and its single-sorted pure type system (PTS) variant Lambda2. This is established by reducing the typability problem of F to Lambda2 and vice versa. A key challenge is the treatment of variable binding and contextual information. The formalisations all share the same high level proof structure using relations to connect the type systems. They do, however, differ significantly in their representation and manipulation of variables and contextual information. In Coq, we use pure de Bruijn indices and parallel substitutions. In Abella, we use higher-order abstract syntax (HOAS) and nominal constants of the ambient reasoning logic. In Beluga, we also use HOAS but within contextual modal type theory. Our contribution is twofold. First, we present and compare a collection of machine-checked solutions to a non-trivial theoretical result. Second, we propose our proof as a benchmark, complementing the POPLmark and ORBI challenges by testing how well a given proof assistant or framework handles complex contextual information involving multiple type systems.

Cite as

Jonas Kaiser, Brigitte Pientka, and Gert Smolka. Relating System F and Lambda2: A Case Study in Coq, Abella and Beluga. In 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 84, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{kaiser_et_al:LIPIcs.FSCD.2017.21,
  author =	{Kaiser, Jonas and Pientka, Brigitte and Smolka, Gert},
  title =	{{Relating System F and Lambda2: A Case Study in Coq, Abella and Beluga}},
  booktitle =	{2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017)},
  pages =	{21:1--21:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-047-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{84},
  editor =	{Miller, Dale},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2017.21},
  URN =		{urn:nbn:de:0030-drops-77248},
  doi =		{10.4230/LIPIcs.FSCD.2017.21},
  annote =	{Keywords: Pure Type Systems, System F, de Bruijn Syntax, Higher-Order Abstract Syntax, Contextual Reasoning}
}
Document
Universality of Proofs (Dagstuhl Seminar 16421)

Authors: Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

Published in: Dagstuhl Reports, Volume 6, Issue 10 (2017)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16421 "Universality of Proofs" which took place October 16-21, 2016. The seminar was motivated by the fact that it is nowadays difficult to exchange proofs from one proof assistant to another one. Thus a formal proof cannot be considered as a universal proof, reusable in different contexts. The seminar aims at providing a comprehensive overview of the existing techniques for interoperability and going further into the development of a common objective and framework for proof developments that support the communication, reuse and interoperability of proofs. The seminar included participants coming from different fields of computer science such as logic, proof engineering, program verification, formal mathematics. It included overview talks, technical talks and breakout sessions. This report collects the abstracts of talks and summarizes the outcomes of the breakout sessions.

Cite as

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe. Universality of Proofs (Dagstuhl Seminar 16421). In Dagstuhl Reports, Volume 6, Issue 10, pp. 75-98, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{dowek_et_al:DagRep.6.10.75,
  author =	{Dowek, Gilles and Dubois, Catherine and Pientka, Brigitte and Rabe, Florian},
  title =	{{Universality of Proofs (Dagstuhl Seminar 16421)}},
  pages =	{75--98},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{6},
  number =	{10},
  editor =	{Dowek, Gilles and Dubois, Catherine and Pientka, Brigitte and Rabe, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.6.10.75},
  URN =		{urn:nbn:de:0030-drops-69514},
  doi =		{10.4230/DagRep.6.10.75},
  annote =	{Keywords: Formal proofs, Interoperability, Logical frameworks, Logics, Proof formats, Provers, Reusability}
}
Document
Complete Volume
LIPIcs, Volume 52, FSCD'16, Complete Volume

Authors: Delia Kesner and Brigitte Pientka

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
LIPIcs, Volume 52, FSCD'16, Complete Volume

Cite as

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Proceedings{kesner_et_al:LIPIcs.FSCD.2016,
  title =	{{LIPIcs, Volume 52, FSCD'16, Complete Volume}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016},
  URN =		{urn:nbn:de:0030-drops-60595},
  doi =		{10.4230/LIPIcs.FSCD.2016},
  annote =	{Keywords: Theory of Computation, Computation by abstract devices, Analysis of algorithms and problem complexity, Logics and meanings of programs, Mathematical logic and formal languages, Programming techniques, Software/Program Verification, Programming languages, Deduction and Theorem Proving}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Steering Committee, Program Committee, External Reviewers, Organising Commitee

Authors: Delia Kesner and Brigitte Pientka

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Front Matter, Table of Contents, Preface, Steering Committee, Program Committee, External Reviewers, Organising Commitee

Cite as

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 0:i-0:xviii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.FSCD.2016.0,
  author =	{Kesner, Delia and Pientka, Brigitte},
  title =	{{Front Matter, Table of Contents, Preface, Steering Committee, Program Committee, External Reviewers, Organising Commitee}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.0},
  URN =		{urn:nbn:de:0030-drops-59672},
  doi =		{10.4230/LIPIcs.FSCD.2016.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Steering Committee, Program Committee, External Reviewers, Organising Commitee}
}
Document
Compositional Compiler Verification for a Multi-Language World

Authors: Amal Ahmed

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Verified compilers are typically proved correct under severe restrictions on what the compiler's output may be linked with, from no linking at all to linking only with code compiled from the same source language. Such assumptions contradict the reality of how we use these compilers since most software systems today are comprised of components written in different languages compiled by different compilers to a common target, as well as low-level libraries that may be handwritten in the target language. The key challenge in verifying compilers for today's world of multi-language software is how to formally state a compiler correctness theorem that is compositional along two dimensions. First, the theorem must guarantee correct compilation of components while allowing compiled code to be composed (linked) with target-language components of arbitrary provenance, including those compiled from other languages. Second, the theorem must support verification of multi-pass compilers by composing correctness proofs for individual passes. In this talk, I will describe a methodology for verifying compositional compiler correctness for a higher-order typed language and discuss the challenges that lie ahead. I will argue that compositional compiler correctness is, in essence, a language interoperability problem: for viable solutions in the long term, high-level languages must be equipped with principled foreign-function interfaces that specify safe interoperability between high-level and low-level components, and between more precisely and less precisely typed code.

Cite as

Amal Ahmed. Compositional Compiler Verification for a Multi-Language World. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{ahmed:LIPIcs.FSCD.2016.1,
  author =	{Ahmed, Amal},
  title =	{{Compositional Compiler Verification for a Multi-Language World}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.1},
  URN =		{urn:nbn:de:0030-drops-59680},
  doi =		{10.4230/LIPIcs.FSCD.2016.1},
  annote =	{Keywords: verified compilation; compositional compiler correctness, multi-language semantics, typed low-level languages}
}
Document
Coalgebras and Higher-Order Computation: a GoI Approach

Authors: Ichiro Hasuo

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Girard's geometry of interaction (GoI) can be seen---in one practical aspect of it---as a compositional compilation method from functional programs to sequential machines. There tokens move around and express interactions between (parts of) programs. Intrigued by the combination of abstract structures and concrete dynamics in GoI, our line of work has aimed at exploiting, in GoI, results from the theory of coalgebra---a categorical abstraction of state-based transition systems that has found its use principally in concurrency theory. Such reinforced connection between higher-order computation and state-based dynamics is made possible thanks to an elegant categorical axiomatization of GoI by Abramsky, Haghverdi and Scott, where traced monoidal categories are identified to be the essential structure behind. In the talk I shall lay out these basic ideas, together with some of our results on: GoI semantics for a quantum programming language; and our ``memoryful'' extension of GoI with algebraic effects. The talk is based on my joint work with my colleague Naohiko Hoshino (RIMS, Kyoto Univer- sity) and my (former) students Koko Muroya (University of Birmingham) and Toshiki Kataoka (University of Tokyo), to whom I owe special thanks.

Cite as

Ichiro Hasuo. Coalgebras and Higher-Order Computation: a GoI Approach. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 2:1-2:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{hasuo:LIPIcs.FSCD.2016.2,
  author =	{Hasuo, Ichiro},
  title =	{{Coalgebras and Higher-Order Computation: a GoI Approach}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{2:1--2:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.2},
  URN =		{urn:nbn:de:0030-drops-59698},
  doi =		{10.4230/LIPIcs.FSCD.2016.2},
  annote =	{Keywords: functional programming, geometry of interaction, categorical semantics, coalgebra}
}
Document
Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization

Authors: Gérard Huet

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
We describe experiments in teaching fundamental informatics notions around mathematical structures for formal concepts, and effective algorithms to manipulate them. The major themes of lambda-calculus and type theory served as guides for the effective implementation of functional programming languages and higher-order proof assistants, appropriate for reflecting the theoretical material into effective tools to represent constructively the concepts and formally certify the proofs of their properties. Progressively, a literate programming and proving style replaced informal mathematics in the presentation of the material as executable course notes. The talk will evoke the various stages of (in)completion of the corresponding set of notes along the years, and tell how their elaboration proved to be essential to the discovery of fundamental results.

Cite as

Gérard Huet. Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{huet:LIPIcs.FSCD.2016.3,
  author =	{Huet, G\'{e}rard},
  title =	{{Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.3},
  URN =		{urn:nbn:de:0030-drops-60020},
  doi =		{10.4230/LIPIcs.FSCD.2016.3},
  annote =	{Keywords: Foundations, Computation, Deduction, Programming, Proofs}
}
Document
Verified Analysis of Functional Data Structures

Authors: Tobias Nipkow

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
In recent work the author has analyzed a number of classical functional search tree and priority queue implementations with the help of the theorem prover Isabelle/HOL. The functional correctness proofs of AVL trees, red-black trees, 2-3 trees, 2-3-4 trees, 1-2 brother trees, AA trees and splay trees could be automated. The amortized logarithmic complexity of skew heaps, splay trees, splay heaps and pairing heaps had to be proved manually.

Cite as

Tobias Nipkow. Verified Analysis of Functional Data Structures. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 4:1-4:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{nipkow:LIPIcs.FSCD.2016.4,
  author =	{Nipkow, Tobias},
  title =	{{Verified Analysis of Functional Data Structures}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{4:1--4:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.4},
  URN =		{urn:nbn:de:0030-drops-59701},
  doi =		{10.4230/LIPIcs.FSCD.2016.4},
  annote =	{Keywords: Program Verification, Algorithm Analysis, Functional Programming}
}
Document
Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus Based on the Omega-Rule.

Authors: Ryota Akiyoshi and Kazushige Terui

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Following Aehlig, we consider a hierarchy F^p= { F^p_n }_{n in Nat} of parameter-free subsystems of System F, where each F^p_n corresponds to ID_n, the theory of n-times iterated inductive definitions (thus our F^p_n corresponds to the n+1th system of Aehlig). We here present two proofs of strong normalization for F^p_n, which are directly formalizable with inductive definitions. The first one, based on the Joachimski-Matthes method, can be fully formalized in ID_n+1. This provides a tight upper bound on the complexity of the normalization theorem for System F^p_n. The second one, based on the Godel-Tait method, can be locally formalized in ID_n. This provides a direct proof to the known result that the representable functions in F^p_n are provably total in ID_n. In both cases, Buchholz' Omega-rule plays a central role.

Cite as

Ryota Akiyoshi and Kazushige Terui. Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus Based on the Omega-Rule.. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{akiyoshi_et_al:LIPIcs.FSCD.2016.5,
  author =	{Akiyoshi, Ryota and Terui, Kazushige},
  title =	{{Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus Based on the Omega-Rule.}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.5},
  URN =		{urn:nbn:de:0030-drops-59718},
  doi =		{10.4230/LIPIcs.FSCD.2016.5},
  annote =	{Keywords: Polymorphic Lambda Calculus, Strong Normalization, Computability Predicate, Infinitary Proof Theory}
}
Document
Normalisation by Evaluation for Dependent Types

Authors: Thorsten Altenkirch and Ambrus Kaposi

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated using internal type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction. NBE for simple types is using a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We have formalized parts of the construction in Agda.

Cite as

Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Dependent Types. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{altenkirch_et_al:LIPIcs.FSCD.2016.6,
  author =	{Altenkirch, Thorsten and Kaposi, Ambrus},
  title =	{{Normalisation by Evaluation for Dependent Types}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.6},
  URN =		{urn:nbn:de:0030-drops-59727},
  doi =		{10.4230/LIPIcs.FSCD.2016.6},
  annote =	{Keywords: normalisation by evaluation, dependent types, internal type theory, logical relations, Agda}
}
Document
Minimal Paradefinite Logics for Reasoning with Incompleteness and Inconsistency

Authors: Ofer Arieli and Arnon Avron

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Paradefinite (`beyond the definite') logics are logics that can be used for handling contradictory or partial information. As such, paradefinite logics should be both paraconsistent and paracomplete. In this paper we consider the simplest semantic framework for defining paradefinite logics, consisting of four-valued matrices, and study the better accepted logics that are induced by these matrices.

Cite as

Ofer Arieli and Arnon Avron. Minimal Paradefinite Logics for Reasoning with Incompleteness and Inconsistency. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{arieli_et_al:LIPIcs.FSCD.2016.7,
  author =	{Arieli, Ofer and Avron, Arnon},
  title =	{{Minimal Paradefinite Logics for Reasoning with Incompleteness and Inconsistency}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.7},
  URN =		{urn:nbn:de:0030-drops-59731},
  doi =		{10.4230/LIPIcs.FSCD.2016.7},
  annote =	{Keywords: Paraconsistecy, Paracompleteness, 4-valued logics}
}
Document
Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

Authors: Ryuta Arisaka

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
Development of a contraction-free BI sequent calculus, be the contraction-freeness implicit or explicit, has not been successful in the literature. We address this problem by presenting such a sequent system. Our calculus involves no structural rules. It should be an insight into non-formula contraction absorption in other non-classical logics. Contraction absorption in sequent calculus is associated to simpler cut elimination and to efficient proof searches.

Cite as

Ryuta Arisaka. Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{arisaka:LIPIcs.FSCD.2016.8,
  author =	{Arisaka, Ryuta},
  title =	{{Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.8},
  URN =		{urn:nbn:de:0030-drops-59742},
  doi =		{10.4230/LIPIcs.FSCD.2016.8},
  annote =	{Keywords: cut-elimination, contraction-free, sequent calculus, proof theory, BI, logic combination}
}
  • Refine by Author
  • 8 Pientka, Brigitte
  • 2 Kesner, Delia
  • 2 Toyama, Yoshihito
  • 1 Abel, Andreas
  • 1 Ahmed, Amal
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Type theory
  • 1 Theory of computation → Lambda calculus
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Modal and temporal logics
  • 1 Theory of computation → Type structures

  • Refine by Keyword
  • 3 Type systems
  • 3 functional programming
  • 2 Dependent Types
  • 2 Graph Rewriting
  • 2 Logical Frameworks
  • Show More...

  • Refine by Type
  • 44 document
  • 1 volume

  • Refine by Publication Year
  • 39 2016
  • 2 2015
  • 2 2017
  • 1 2018
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail