12 Search Results for "Podder, Supartha"


Document
RANDOM
Consumable Data via Quantum Communication

Authors: Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Classical data can be copied and re-used for computation, with adverse consequences economically and in terms of data privacy. Motivated by this, we formulate problems in one-way communication complexity where Alice holds some data x and Bob holds m inputs y_1, …, y_m. They want to compute m instances of a bipartite relation R(⋅,⋅) on every pair (x, y_1), …, (x, y_m). We call this the asymmetric direct sum question for one-way communication. We give examples where the quantum communication complexity of such problems scales polynomially with m, while the classical communication complexity depends at most logarithmically on m. Thus, for such problems, data behaves like a consumable resource that is effectively destroyed upon use when the owner stores and transmits it as quantum states, but not when transmitted classically. We show an application to a strategic data-selling game, and discuss other potential economic implications.

Cite as

Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean. Consumable Data via Quantum Communication. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 39:1-39:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gilboa_et_al:LIPIcs.APPROX/RANDOM.2025.39,
  author =	{Gilboa, Dar and Jain, Siddhartha and McClean, Jarrod R.},
  title =	{{Consumable Data via Quantum Communication}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{39:1--39:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  URN =		{urn:nbn:de:0030-drops-244059},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  annote =	{Keywords: quantum communication, one-time programs, data markets}
}
Document
RANDOM
Quantum Property Testing in Sparse Directed Graphs

Authors: Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We initiate the study of quantum property testing in sparse directed graphs, and more particularly in the unidirectional model, where the algorithm is allowed to query only the outgoing edges of a vertex. In the classical unidirectional model, the problem of testing k-star-freeness, and more generally k-source-subgraph-freeness, is almost maximally hard for large k. We prove that this problem has almost quadratic advantage in the quantum setting. Moreover, we show that this advantage is nearly tight, by showing a quantum lower bound using the method of dual polynomials on an intermediate problem for a new, property testing version of the k-collision problem that was not studied before. To illustrate that not all problems in graph property testing admit such a quantum speedup, we consider the problem of 3-colorability in the related undirected bounded-degree model, when graphs are now undirected. This problem is maximally hard to test classically, and we show that also quantumly it requires a linear number of queries.

Cite as

Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó. Quantum Property Testing in Sparse Directed Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 32:1-32:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.APPROX/RANDOM.2025.32,
  author =	{Apers, Simon and Magniez, Fr\'{e}d\'{e}ric and Sen, Sayantan and Szab\'{o}, D\'{a}niel},
  title =	{{Quantum Property Testing in Sparse Directed Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{32:1--32:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  URN =		{urn:nbn:de:0030-drops-243987},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  annote =	{Keywords: property testing, quantum computing, bounded-degree directed graphs, dual polynomial method, collision finding}
}
Document
Revocable Encryption, Programs, and More: The Case of Multi-Copy Security

Authors: Prabhanjan Ananth, Saachi Mutreja, and Alexander Poremba

Published in: LIPIcs, Volume 343, 6th Conference on Information-Theoretic Cryptography (ITC 2025)


Abstract
Fundamental principles of quantum mechanics have inspired many new research directions, particularly in quantum cryptography. One such principle is quantum no-cloning which has led to the emerging field of revocable cryptography. Roughly speaking, in a revocable cryptographic primitive, a cryptographic object (such as a ciphertext or program) is represented as a quantum state in such a way that surrendering it effectively translates into losing the capability to use this cryptographic object. All of the revocable cryptographic systems studied so far have a major drawback: the recipient only receives one copy of the quantum state. Worse yet, the schemes become completely insecure if the recipient receives many identical copies of the same quantum state - a property that is clearly much more desirable in practice. While multi-copy security has been extensively studied for a number of other quantum cryptographic primitives, it has so far received only little treatment in context of unclonable primitives. Our work, for the first time, shows the feasibility of revocable primitives, such as revocable encryption and revocable programs, which satisfy multi-copy security in oracle models. This suggest that the stronger notion of multi-copy security is within reach in unclonable cryptography more generally, and therefore could lead to a new research direction in the field.

Cite as

Prabhanjan Ananth, Saachi Mutreja, and Alexander Poremba. Revocable Encryption, Programs, and More: The Case of Multi-Copy Security. In 6th Conference on Information-Theoretic Cryptography (ITC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 343, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ananth_et_al:LIPIcs.ITC.2025.9,
  author =	{Ananth, Prabhanjan and Mutreja, Saachi and Poremba, Alexander},
  title =	{{Revocable Encryption, Programs, and More: The Case of Multi-Copy Security}},
  booktitle =	{6th Conference on Information-Theoretic Cryptography (ITC 2025)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-385-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{343},
  editor =	{Gilboa, Niv},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2025.9},
  URN =		{urn:nbn:de:0030-drops-243592},
  doi =		{10.4230/LIPIcs.ITC.2025.9},
  annote =	{Keywords: quantum cryptography, unclonable primitives}
}
Document
New Lower-Bounds for Quantum Computation with Non-Collapsing Measurements

Authors: David Miloschewsky and Supartha Podder

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Aaronson, Bouland, Fitzsimons and Lee [Scott Aaronson et al., 2014] introduced the complexity class PDQP (which was original labeled naCQP), an alteration of BQP enhanced with the ability to obtain non-collapsing measurements, samples of quantum states without collapsing them. Although SZK ⊆ PDQP, it still requires Ω(N^(1/4)) queries to solve unstructured search. We formulate an alternative equivalent definition of PDQP, which we use to prove the positive weighted adversary lower-bounding method, establishing multiple tighter bounds and a trade-off between queries and non-collapsing measurements. We utilize the technique in order to analyze the query complexity of the well-studied majority and element distinctness problems. Additionally, we prove a tight Θ(N^(1/3)) bound on search. Furthermore, we use the lower-bound to explore PDQP under query restrictions, finding that when combined with non-adaptive queries, we limit the speed-up in several cases.

Cite as

David Miloschewsky and Supartha Podder. New Lower-Bounds for Quantum Computation with Non-Collapsing Measurements. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{miloschewsky_et_al:LIPIcs.CCC.2025.12,
  author =	{Miloschewsky, David and Podder, Supartha},
  title =	{{New Lower-Bounds for Quantum Computation with Non-Collapsing Measurements}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{12:1--12:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.12},
  URN =		{urn:nbn:de:0030-drops-237067},
  doi =		{10.4230/LIPIcs.CCC.2025.12},
  annote =	{Keywords: Non-collapsing measurements, Quantum lower-bounds, Quantum adversary method}
}
Document
Catalytic Communication

Authors: Edward Pyne, Nathan S. Sheffield, and William Wang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
The study of space-bounded computation has drawn extensively from ideas and results in the field of communication complexity. Catalytic Computation (Buhrman, Cleve, Koucký, Loff and Speelman, STOC 2013) studies the power of bounded space augmented with a pre-filled hard drive that can be used non-destructively during the computation. Presently, many structural questions in this model remain open. Towards a better understanding of catalytic space, we define a model of catalytic communication complexity and prove new upper and lower bounds. In our model, Alice and Bob share a blackboard with a tiny number of free bits, and a larger section with an arbitrary initial configuration. They must jointly compute a function of their inputs, communicating only via the blackboard, and must always reset the blackboard to its initial configuration. We prove several upper and lower bounds: 1) We characterize the simplest nontrivial model, that of one bit of free space and three rounds, in terms of 𝔽₂ rank. In particular, we give natural problems that are solvable with a minimal-sized blackboard that require near-maximal (randomized) communication complexity, and vice versa. 2) We show that allowing constantly many free bits, as opposed to one, allows an exponential improvement on the size of the blackboard for natural problems. To do so, we connect the problem to existence questions in extremal graph theory. 3) We give tight connections between our model and standard notions of non-uniform catalytic computation. Using this connection, we show that with an arbitrary constant number of rounds and bits of free space, one can compute all functions in TC⁰. We view this model as a step toward understanding the value of filled space in computation.

Cite as

Edward Pyne, Nathan S. Sheffield, and William Wang. Catalytic Communication. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 79:1-79:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pyne_et_al:LIPIcs.ITCS.2025.79,
  author =	{Pyne, Edward and Sheffield, Nathan S. and Wang, William},
  title =	{{Catalytic Communication}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{79:1--79:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.79},
  URN =		{urn:nbn:de:0030-drops-227076},
  doi =		{10.4230/LIPIcs.ITCS.2025.79},
  annote =	{Keywords: Catalytic computation, Branching programs, Communication complexity}
}
Document
Quantum Merlin-Arthur and Proofs Without Relative Phase

Authors: Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study a variant of QMA where quantum proofs have no relative phase (i.e. non-negative amplitudes, up to a global phase). If only completeness is modified, this class is equal to QMA [Grilo et al., 2014]; but if both completeness and soundness are modified, the class (named QMA+ by Jeronimo and Wu [Jeronimo and Wu, 2023]) can be much more powerful. We show that QMA+ with some constant gap is equal to NEXP, yet QMA+ with some other constant gap is equal to QMA. One interpretation is that Merlin’s ability to "deceive" originates from relative phase at least as much as from entanglement, since QMA(2) ⊆ NEXP.

Cite as

Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. Quantum Merlin-Arthur and Proofs Without Relative Phase. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bassirian_et_al:LIPIcs.ITCS.2024.9,
  author =	{Bassirian, Roozbeh and Fefferman, Bill and Marwaha, Kunal},
  title =	{{Quantum Merlin-Arthur and Proofs Without Relative Phase}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.9},
  URN =		{urn:nbn:de:0030-drops-195370},
  doi =		{10.4230/LIPIcs.ITCS.2024.9},
  annote =	{Keywords: quantum complexity, QMA(2), PCPs}
}
Document
Decision Tree Complexity Versus Block Sensitivity and Degree

Authors: Rahul Chugh, Supartha Podder, and Swagato Sanyal

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
Relations between the decision tree complexity and various other complexity measures of Boolean functions is a thriving topic of research in computational complexity. While decision tree complexity is long known to be polynomially related with many other measures, the optimal exponents of many of these relations are not known. It is known that decision tree complexity is bounded above by the cube of block sensitivity, and the cube of polynomial degree. However, the widest separation between decision tree complexity and each of block sensitivity and degree that is witnessed by known Boolean functions is quadratic. Proving quadratic relations between these measures would resolve several open questions in decision tree complexity. For example, it will imply a tight relation between decision tree complexity and square of randomized decision tree complexity and a tight relation between zero-error randomized decision tree complexity and square of fractional block sensitivity, resolving an open question raised by Aaronson [Aaronson, 2008]. In this work, we investigate the tightness of the existing cubic upper bounds. We improve the cubic upper bounds for many interesting classes of Boolean functions. We show that for graph properties and for functions with a constant number of alternations, the cubic upper bounds can be improved to quadratic. We define a class of Boolean functions, which we call the zebra functions, that comprises Boolean functions where each monotone path from 0ⁿ to 1ⁿ has an equal number of alternations. This class contains the symmetric and monotone functions as its subclasses. We show that for any zebra function, decision tree complexity is at most the square of block sensitivity, and certificate complexity is at most the square of degree. Finally, we show using a lifting theorem of communication complexity by Göös, Pitassi and Watson [Göös et al., 2017] that the task of proving an improved upper bound on the decision tree complexity for all functions is in a sense equivalent to the potentially easier task of proving a similar upper bound on communication complexity for each bi-partition of the input variables, for all functions. In particular, this implies that to bound the decision tree complexity it suffices to bound smaller measures like parity decision tree complexity, subcube decision tree complexity and decision tree rank, that are defined in terms of models that can be efficiently simulated by communication protocols.

Cite as

Rahul Chugh, Supartha Podder, and Swagato Sanyal. Decision Tree Complexity Versus Block Sensitivity and Degree. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 27:1-27:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chugh_et_al:LIPIcs.FSTTCS.2023.27,
  author =	{Chugh, Rahul and Podder, Supartha and Sanyal, Swagato},
  title =	{{Decision Tree Complexity Versus Block Sensitivity and Degree}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{27:1--27:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.27},
  URN =		{urn:nbn:de:0030-drops-194001},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.27},
  annote =	{Keywords: Query complexity, Graph Property, Boolean functions}
}
Document
On the Fine-Grained Query Complexity of Symmetric Functions

Authors: Supartha Podder, Penghui Yao, and Zekun Ye

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Watrous conjectured that the randomized and quantum query complexities of symmetric functions are polynomially equivalent, which was resolved by Ambainis and Aaronson [Scott Aaronson and Andris Ambainis, 2014], and was later improved in [André Chailloux, 2019; Shalev Ben-David et al., 2020]. This paper explores a fine-grained version of the Watrous conjecture, including the randomized and quantum algorithms with success probabilities arbitrarily close to 1/2. Our contributions include the following: 1) An analysis of the optimal success probability of quantum and randomized query algorithms of two fundamental partial symmetric Boolean functions given a fixed number of queries. We prove that for any quantum algorithm computing these two functions using T queries, there exist randomized algorithms using poly(T) queries that achieve the same success probability as the quantum algorithm, even if the success probability is arbitrarily close to 1/2. These two classes of functions are instrumental in analyzing general symmetric functions. 2) We establish that for any total symmetric Boolean function f, if a quantum algorithm uses T queries to compute f with success probability 1/2+β, then there exists a randomized algorithm using O(T²) queries to compute f with success probability 1/2 + Ω(δβ²) on a 1-δ fraction of inputs, where β,δ can be arbitrarily small positive values. As a corollary, we prove a randomized version of Aaronson-Ambainis Conjecture [Scott Aaronson and Andris Ambainis, 2014] for total symmetric Boolean functions in the regime where the success probability of algorithms can be arbitrarily close to 1/2. 3) We present polynomial equivalences for several fundamental complexity measures of partial symmetric Boolean functions. Specifically, we first prove that for certain partial symmetric Boolean functions, quantum query complexity is at most quadratic in approximate degree for any error arbitrarily close to 1/2. Next, we show exact quantum query complexity is at most quadratic in degree. Additionally, we give the tight bounds of several complexity measures, indicating their polynomial equivalence. Conversely, we exhibit an exponential separation between randomized and exact quantum query complexity for certain partial symmetric Boolean functions.

Cite as

Supartha Podder, Penghui Yao, and Zekun Ye. On the Fine-Grained Query Complexity of Symmetric Functions. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 55:1-55:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{podder_et_al:LIPIcs.ISAAC.2023.55,
  author =	{Podder, Supartha and Yao, Penghui and Ye, Zekun},
  title =	{{On the Fine-Grained Query Complexity of Symmetric Functions}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{55:1--55:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.55},
  URN =		{urn:nbn:de:0030-drops-193570},
  doi =		{10.4230/LIPIcs.ISAAC.2023.55},
  annote =	{Keywords: Query complexity, Symmetric functions, Quantum advantages}
}
Document
Communication Memento: Memoryless Communication Complexity

Authors: Srinivasan Arunachalam and Supartha Podder

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We study the communication complexity of computing functions F: {0,1}ⁿ × {0,1}ⁿ → {0,1} in the memoryless communication model. Here, Alice is given x ∈ {0,1}ⁿ, Bob is given y ∈ {0,1}ⁿ and their goal is to compute F(x,y) subject to the following constraint: at every round, Alice receives a message from Bob and her reply to Bob solely depends on the message received and her input x (in particular, her reply is independent of the information from the previous rounds); the same applies to Bob. The cost of computing F in this model is the maximum number of bits exchanged in any round between Alice and Bob (on the worst case input x,y). In this paper, we also consider variants of our memoryless model wherein one party is allowed to have memory, the parties are allowed to communicate quantum bits, only one player is allowed to send messages. We show that some of these different variants of our memoryless communication model capture the garden-hose model of computation by Buhrman et al. (ITCS'13), space-bounded communication complexity by Brody et al. (ITCS'13) and the overlay communication complexity by Papakonstantinou et al. (CCC'14). Thus the memoryless communication complexity model provides a unified framework to study all these space-bounded communication complexity models. We establish the following main results: (1) We show that the memoryless communication complexity of F equals the logarithm of the size of the smallest bipartite branching program computing F (up to a factor 2); (2) We show that memoryless communication complexity equals garden-hose model of computation; (3) We exhibit various exponential separations between these memoryless communication models. We end with an intriguing open question: can we find an explicit function F and universal constant c > 1 for which the memoryless communication complexity is at least c log n? Note that c ≥ 2+ε would imply a Ω(n^{2+ε}) lower bound for general formula size, improving upon the best lower bound by [Nečiporuk, 1966].

Cite as

Srinivasan Arunachalam and Supartha Podder. Communication Memento: Memoryless Communication Complexity. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ITCS.2021.61,
  author =	{Arunachalam, Srinivasan and Podder, Supartha},
  title =	{{Communication Memento: Memoryless Communication Complexity}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.61},
  URN =		{urn:nbn:de:0030-drops-136007},
  doi =		{10.4230/LIPIcs.ITCS.2021.61},
  annote =	{Keywords: Communication complexity, space complexity, branching programs, garden-hose model, quantum computing}
}
Document
Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

Authors: Nikhil Balaji, Samir Datta, Raghav Kulkarni, and Supartha Podder

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
The query complexity of graph properties is well-studied when queries are on the edges. We investigate the same when queries are on the nodes. In this setting a graph G = (V,E) on n vertices and a property P are given. A black-box access to an unknown subset S of V is provided via queries of the form "Does i belong to S?". We are interested in the minimum number of queries needed in the worst case in order to determine whether G[S] - the subgraph of G induced on S - satisfies P. Our primary motivation to study this model comes from the fact that it allows us to initiate a systematic study of breaking symmetry in the context of query complexity of graph properties. In particular, we focus on the hereditary graph properties - properties that are closed under deletion of vertices as well as edges. The famous Evasiveness Conjecture asserts that even with a minimal symmetry assumption on G, namely that of vertex-transitivity, the query complexity for any hereditary graph property in our setting is the worst possible, i.e., n. We show that in the absence of any symmetry on G it can fall as low as O(n^{1/(d + 1)}) where d denotes the minimum possible degree of a minimal forbidden sub-graph for P. In particular, every hereditary property benefits at least quadratically. The main question left open is: Can it go exponentially low for some hereditary property? We show that the answer is no for any hereditary property with finitely many forbidden subgraphs by exhibiting a bound of Omega(n^{1/k}) for a constant k depending only on the property. For general ones we rule out the possibility of the query complexity falling down to constant by showing Omega(log(n)*log(log(n))) bound. Interestingly, our lower bound proofs rely on the famous Sunflower Lemma due to Erdos and Rado.

Cite as

Nikhil Balaji, Samir Datta, Raghav Kulkarni, and Supartha Podder. Graph Properties in Node-Query Setting: Effect of Breaking Symmetry. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 17:1-17:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{balaji_et_al:LIPIcs.MFCS.2016.17,
  author =	{Balaji, Nikhil and Datta, Samir and Kulkarni, Raghav and Podder, Supartha},
  title =	{{Graph Properties in Node-Query Setting: Effect of Breaking Symmetry}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.17},
  URN =		{urn:nbn:de:0030-drops-64329},
  doi =		{10.4230/LIPIcs.MFCS.2016.17},
  annote =	{Keywords: query complexity, graph properties, symmetry and computation, forbidden subgraph}
}
Document
Quantum Query Complexity of Subgraph Isomorphism and Homomorphism

Authors: Raghav Kulkarni and Supartha Podder

Published in: LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)


Abstract
Let H be a (non-empty) graph on n vertices, possibly containing isolated vertices. Let f_H(G) = 1 iff the input graph G on n vertices contains H as a (not necessarily induced) subgraph. Let alpha_H denote the cardinality of a maximum independent set of H. In this paper we show: Q(f_H) = Omega( sqrt{alpha_H * n}), where Q(f_H) denotes the quantum query complexity of f_H. As a consequence we obtain lower bounds for Q(f_H) in terms of several other parameters of H such as the average degree, minimum vertex cover, chromatic number, and the critical probability. We also use the above bound to show that Q(f_H) = Omega(n^{3/4}) for any H, improving on the previously best known bound of Omega(n^{2/3}) [M. Santha/A. Chi-Chih Yao, unpublished manuscript]. Until very recently, it was believed that the quantum query complexity is at least square root of the randomized one. Our Omega(n^{3/4}) bound for Q(f_H) matches the square root of the current best known bound for the randomized query complexity of f_H, which is Omega(n^{3/2}) due to Groger. Interestingly, the randomized bound of Omega(alpha_H * n) for f_H still remains open. We also study the Subgraph Homomorphism Problem, denoted by f_{[H]}, and show that Q(f_{[H]}) = Omega(n). Finally we extend our results to the 3-uniform hypergraphs. In particular, we show an Omega(n^{4/5}) bound for quantum query complexity of the Subgraph Isomorphism, improving on the previously known Omega(n^{3/4}) bound. For the Subgraph Homomorphism, we obtain an Omega(n^{3/2}) bound for the same.

Cite as

Raghav Kulkarni and Supartha Podder. Quantum Query Complexity of Subgraph Isomorphism and Homomorphism. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 48:1-48:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{kulkarni_et_al:LIPIcs.STACS.2016.48,
  author =	{Kulkarni, Raghav and Podder, Supartha},
  title =	{{Quantum Query Complexity of Subgraph Isomorphism and Homomorphism}},
  booktitle =	{33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
  pages =	{48:1--48:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-001-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{47},
  editor =	{Ollinger, Nicolas and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.48},
  URN =		{urn:nbn:de:0030-drops-57495},
  doi =		{10.4230/LIPIcs.STACS.2016.48},
  annote =	{Keywords: quantum query complexity, subgraph isomorphism, monotone graph properties}
}
Document
New Bounds for the Garden-Hose Model

Authors: Hartmut Klauck and Supartha Podder

Published in: LIPIcs, Volume 29, 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)


Abstract
We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(n * log^3(n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the garden-hose model, which implies that lower bounds on the garden-hose complexity GH(f) of the order Omega(n^{2+epsilon}) will be hard to obtain for explicit functions. Furthermore we study a time-bounded variant of the model, in which even modest savings in time can lead to exponential lower bounds on the size of garden-hose protocols.

Cite as

Hartmut Klauck and Supartha Podder. New Bounds for the Garden-Hose Model. In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 29, pp. 481-492, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{klauck_et_al:LIPIcs.FSTTCS.2014.481,
  author =	{Klauck, Hartmut and Podder, Supartha},
  title =	{{New Bounds for the Garden-Hose Model}},
  booktitle =	{34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)},
  pages =	{481--492},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-77-4},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{29},
  editor =	{Raman, Venkatesh and Suresh, S. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2014.481},
  URN =		{urn:nbn:de:0030-drops-48657},
  doi =		{10.4230/LIPIcs.FSTTCS.2014.481},
  annote =	{Keywords: Space Complexity, Communication Complexity, Garden-Hose Model}
}
  • Refine by Type
  • 12 Document/PDF
  • 5 Document/HTML

  • Refine by Publication Year
  • 5 2025
  • 1 2024
  • 2 2023
  • 1 2021
  • 2 2016
  • Show More...

  • Refine by Author
  • 7 Podder, Supartha
  • 2 Kulkarni, Raghav
  • 1 Ananth, Prabhanjan
  • 1 Apers, Simon
  • 1 Arunachalam, Srinivasan
  • Show More...

  • Refine by Series/Journal
  • 12 LIPIcs

  • Refine by Classification
  • 3 Theory of computation → Communication complexity
  • 2 Theory of computation → Quantum complexity theory
  • 2 Theory of computation → Quantum query complexity
  • 1 Security and privacy → Information-theoretic techniques
  • 1 Theory of computation → Computational pricing and auctions
  • Show More...

  • Refine by Keyword
  • 2 Communication complexity
  • 2 Query complexity
  • 2 quantum computing
  • 1 Boolean functions
  • 1 Branching programs
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail