11 Search Results for "Ramon, Jan"


Document
Compositional Active Learning of Synchronizing Systems Through Automated Alphabet Refinement

Authors: Léo Henry, Mohammad Reza Mousavi, Thomas Neele, and Matteo Sammartino

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Active automata learning infers automaton models of systems from behavioral observations, a technique successfully applied to a wide range of domains. Compositional approaches for concurrent systems have recently emerged. We take a significant step beyond available results, including those by the authors, and develop a general technique for compositional learning of a synchronizing parallel system with an unknown decomposition. Our approach automatically refines the global alphabet into component alphabets while learning the component models. We develop a theoretical treatment of distributions of alphabets, i.e., sets of possibly overlapping component alphabets. We characterize counter-examples that reveal inconsistencies with global observations, and show how to systematically update the distribution to restore consistency. We present a compositional learning algorithm implementing these ideas, where learning counterexamples precisely correspond to distribution counterexamples under well-defined conditions. We provide an implementation, called CoalA, using the state-of-the-art active learning library LearnLib. Our experiments show that in more than 630 subject systems, CoalA delivers orders of magnitude improvements (up to five orders) in membership queries and in systems with significant concurrency, it also achieves better scalability in the number of equivalence queries.

Cite as

Léo Henry, Mohammad Reza Mousavi, Thomas Neele, and Matteo Sammartino. Compositional Active Learning of Synchronizing Systems Through Automated Alphabet Refinement. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 20:1-20:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{henry_et_al:LIPIcs.CONCUR.2025.20,
  author =	{Henry, L\'{e}o and Mousavi, Mohammad Reza and Neele, Thomas and Sammartino, Matteo},
  title =	{{Compositional Active Learning of Synchronizing Systems Through Automated Alphabet Refinement}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{20:1--20:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.20},
  URN =		{urn:nbn:de:0030-drops-239700},
  doi =		{10.4230/LIPIcs.CONCUR.2025.20},
  annote =	{Keywords: Active learning, Compositional methods, Concurrency theory, Labelled transition systems, Formal methods}
}
Document
New Fault Domains for Conformance Testing of Finite State Machines

Authors: Frits Vaandrager and Ivo Melse

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
A fault domain reflects a tester’s assumptions about faults that may occur in an implementation and that need to be detected during testing. A fault domain that has been widely studied in the literature on black-box conformance testing is the class of finite state machines (FSMs) with at most m states. Numerous strategies for generating test suites have been proposed that guarantee fault coverage for this class. These so-called m-complete test suites grow exponentially in m-n, where n is the number of states of the specification, so one can only run them for small values of m-n. But the assumption that m-n is small is not realistic in practice. In his seminal paper from 1964, Hennie raised the challenge to design checking experiments in which the number of states may increase appreciably. In order to solve this long-standing open problem, we propose (much larger) fault domains that capture the assumption that all states in an implementation can be reached by first performing a sequence from some set A (typically a state cover for the specification), followed by k arbitrary inputs, for some small k. The number of states of FSMs in these fault domains grows exponentially in k. We present a sufficient condition for k-A-completeness of test suites with respect to these fault domains. Our condition implies k-A-completeness of two prominent m-complete test suite generation strategies, the Wp and HSI methods. Thus these strategies are complete for much larger fault domains than those for which they were originally designed, and thereby solve Hennie’s challenge. We show that three other prominent m-complete methods (H, SPY and SPYH) do not always generate k-A-complete test suites.

Cite as

Frits Vaandrager and Ivo Melse. New Fault Domains for Conformance Testing of Finite State Machines. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 34:1-34:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vaandrager_et_al:LIPIcs.CONCUR.2025.34,
  author =	{Vaandrager, Frits and Melse, Ivo},
  title =	{{New Fault Domains for Conformance Testing of Finite State Machines}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{34:1--34:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.34},
  URN =		{urn:nbn:de:0030-drops-239843},
  doi =		{10.4230/LIPIcs.CONCUR.2025.34},
  annote =	{Keywords: conformance testing, finite state machines, Mealy machines, apartness, observation tree, fault domains, k-A-complete test suites}
}
Document
Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

Authors: Konstantin Sidorov, Imko Marijnissen, and Emir Demirović

Published in: LIPIcs, Volume 340, 31st International Conference on Principles and Practice of Constraint Programming (CP 2025)


Abstract
Constraint programming solvers have seen much success in scheduling problems owing to their efficient reasoning over constraints to solve complex problems in practice. Many algorithms have been proposed for propagating information from a single constraint. However, inferring and exchanging information across multiple constraints can provide deeper insight into the global structure of a problem. In this work, we propose to exchange information amongst constraints by inferring the disjointness of tasks in scheduling problems from many constraints. We do this by (i) augmenting existing propagators, such as the Cumulative and nogoods, to report when pairs of tasks are disjoint, and (ii) leveraging this information by introducing the SelectiveDisjunctive propagator which generates a lower bound on the earliest completion time of cliques of disjoint tasks to determine conflicts. This allows us to aggregate disjointness information spanning multiple constraints to gain a better global overview of the problem, as well as more precise local information. We also identify a problem structure where an LCG solver reasoning over Cumulative constraints separately, without any reformulations, requires an exponential amount of time to prove infeasibility, which we both justify theoretically and show empirically; on the other hand, our approach solves those instances in polynomial time. On particular known RCPSP and RCPSP/max benchmarks, our approach significantly reduces the number of conflicts required to prove optimality when resource contention is high. Additionally, we discover new lower bounds for 16 RCPSP/max instances (closing six of them) and four RCPSP instances (closing one), as well as new upper bounds for two RCPSP/max instances and four RCPSP instances. Furthermore, we empirically analyse our proposed approach to determine which features are beneficial for performance, showing that finding cliques is one of the main bottlenecks and that detecting disjointness during search can lead to improved bounds on certain instances, but it generally negatively impacts learning. This work paves the way for reasoning over the disjointness of tasks inferred from a variety of standard constraints to discover novel information sourced from multiple constraints during search.

Cite as

Konstantin Sidorov, Imko Marijnissen, and Emir Demirović. Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems. In 31st International Conference on Principles and Practice of Constraint Programming (CP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 340, pp. 35:1-35:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sidorov_et_al:LIPIcs.CP.2025.35,
  author =	{Sidorov, Konstantin and Marijnissen, Imko and Demirovi\'{c}, Emir},
  title =	{{Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems}},
  booktitle =	{31st International Conference on Principles and Practice of Constraint Programming (CP 2025)},
  pages =	{35:1--35:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-380-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{340},
  editor =	{de la Banda, Maria Garcia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2025.35},
  URN =		{urn:nbn:de:0030-drops-238969},
  doi =		{10.4230/LIPIcs.CP.2025.35},
  annote =	{Keywords: Constraint Programming, Lazy Clause Generation, Propagation, Scheduling, Cumulative, Disjunctive}
}
Document
Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems

Authors: Joshua Bakita and James H. Anderson

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
As GPU-using tasks become more common in embedded, safety-critical systems, efficiency demands necessitate sharing a single GPU among multiple tasks. Unfortunately, existing ways to schedule multiple tasks onto a GPU often either result in a loss of ability to meet deadlines, or a loss of efficiency. In this work, we develop a system-level spatial compute partitioning mechanism for NVIDIA GPUs and demonstrate that it can be used to execute tasks efficiently without compromising timing predictability. Our tool, called nvtaskset, supports composable systems by not requiring task, driver, or hardware modifications. In our evaluation, we demonstrate sub-1-μs overheads, stronger partition enforcement, and finer-granularity partitioning when using our mechanism instead of NVIDIA’s Multi-Process Service (MPS) or Multi-instance GPU (MiG) features.

Cite as

Joshua Bakita and James H. Anderson. Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 21:1-21:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bakita_et_al:LIPIcs.ECRTS.2025.21,
  author =	{Bakita, Joshua and Anderson, James H.},
  title =	{{Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{21:1--21:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.21},
  URN =		{urn:nbn:de:0030-drops-235998},
  doi =		{10.4230/LIPIcs.ECRTS.2025.21},
  annote =	{Keywords: Real-time systems, composable systems, graphics processing units, CUDA}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Oblivious Subspace Embeddings with Near-Optimal Sparsity

Authors: Shabarish Chenakkod, Michał Dereziński, and Xiaoyu Dong

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
An oblivious subspace embedding is a random m× n matrix Π such that, for any d-dimensional subspace, with high probability Π preserves the norms of all vectors in that subspace within a 1±ε factor. In this work, we give an oblivious subspace embedding with the optimal dimension m = Θ(d/ε²) that has a near-optimal sparsity of Õ(1/ε) non-zero entries per column of Π. This is the first result to nearly match the conjecture of Nelson and Nguyen [FOCS 2013] in terms of the best sparsity attainable by an optimal oblivious subspace embedding, improving on a prior bound of Õ(1/ε⁶) non-zeros per column [Chenakkod et al., STOC 2024]. We further extend our approach to the non-oblivious setting, proposing a new family of Leverage Score Sparsified embeddings with Independent Columns, which yield faster runtimes for matrix approximation and regression tasks. In our analysis, we develop a new method which uses a decoupling argument together with the cumulant method for bounding the edge universality error of isotropic random matrices. To achieve near-optimal sparsity, we combine this general-purpose approach with new trace inequalities that leverage the specific structure of our subspace embedding construction.

Cite as

Shabarish Chenakkod, Michał Dereziński, and Xiaoyu Dong. Optimal Oblivious Subspace Embeddings with Near-Optimal Sparsity. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 55:1-55:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chenakkod_et_al:LIPIcs.ICALP.2025.55,
  author =	{Chenakkod, Shabarish and Derezi\'{n}ski, Micha{\l} and Dong, Xiaoyu},
  title =	{{Optimal Oblivious Subspace Embeddings with Near-Optimal Sparsity}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{55:1--55:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.55},
  URN =		{urn:nbn:de:0030-drops-234324},
  doi =		{10.4230/LIPIcs.ICALP.2025.55},
  annote =	{Keywords: Randomized linear algebra, matrix sketching, subspace embeddings}
}
Document
Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems

Authors: Ahmad Biniaz, Anil Maheshwari, Magnus Christian Ring Merrild, Joseph S. B. Mitchell, Saeed Odak, Valentin Polishchuk, Eliot W. Robson, Casper Moldrup Rysgaard, Jens Kristian Refsgaard Schou, Thomas Shermer, Jack Spalding-Jamieson, Rolf Svenning, and Da Wei Zheng

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We introduce the contiguous art gallery problem which is to guard the boundary of a simple polygon with a minimum number of guards such that each guard covers exactly one contiguous portion of the boundary. Art gallery problems are often NP-hard. In particular, it is NP-hard to minimize the number of guards to see the boundary of a simple polygon, without the contiguity constraint. This paper is a merge of three concurrent works [Ahmad Biniaz et al., 2024; Magnus Christian Ring Merrild et al., 2024; Eliot W. Robson et al., 2024] each showing that (surprisingly) the contiguous art gallery problem is solvable in polynomial time. The common idea of all three approaches is developing a greedy function that maps a point on the boundary to the furthest point on the boundary so that the contiguous interval along the boundary between them could be guarded by one guard. Repeatedly applying this function immediately leads to an OPT+1 approximation. By studying this greedy algorithm, we present three different approaches that achieve an optimal solution. The first and second approach apply this greedy algorithm from different points on the boundary that could be found in advance or on the fly while traversing along the boundary (respectively). The third approach represents this function as a piecewise linear rational function, which can be reduced to an abstract arc cover problem involving infinite families of arcs. We identify other problems that can be represented by similar functions, and solve them via the third approach. From the combinatorial point of view, we show that any n-vertex polygon can be guarded by at most ⌊(n-2)/2⌋ guards. This bound is tight because there are polygons that require this many guards.

Cite as

Ahmad Biniaz, Anil Maheshwari, Magnus Christian Ring Merrild, Joseph S. B. Mitchell, Saeed Odak, Valentin Polishchuk, Eliot W. Robson, Casper Moldrup Rysgaard, Jens Kristian Refsgaard Schou, Thomas Shermer, Jack Spalding-Jamieson, Rolf Svenning, and Da Wei Zheng. Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.20,
  author =	{Biniaz, Ahmad and Maheshwari, Anil and Merrild, Magnus Christian Ring and Mitchell, Joseph S. B. and Odak, Saeed and Polishchuk, Valentin and Robson, Eliot W. and Rysgaard, Casper Moldrup and Schou, Jens Kristian Refsgaard and Shermer, Thomas and Spalding-Jamieson, Jack and Svenning, Rolf and Zheng, Da Wei},
  title =	{{Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.20},
  URN =		{urn:nbn:de:0030-drops-231720},
  doi =		{10.4230/LIPIcs.SoCG.2025.20},
  annote =	{Keywords: Art Gallery Problem, Computational Geometry, Combinatorics, Discrete Algorithms}
}
Document
Survey
How Does Knowledge Evolve in Open Knowledge Graphs?

Authors: Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Openly available, collaboratively edited Knowledge Graphs (KGs) are key platforms for the collective management of evolving knowledge. The present work aims t o provide an analysis of the obstacles related to investigating and processing specifically this central aspect of evolution in KGs. To this end, we discuss (i) the dimensions of evolution in KGs, (ii) the observability of evolution in existing, open, collaboratively constructed Knowledge Graphs over time, and (iii) possible metrics to analyse this evolution. We provide an overview of relevant state-of-the-art research, ranging from metrics developed for Knowledge Graphs specifically to potential methods from related fields such as network science. Additionally, we discuss technical approaches - and their current limitations - related to storing, analysing and processing large and evolving KGs in terms of handling typical KG downstream tasks.

Cite as

Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs. How Does Knowledge Evolve in Open Knowledge Graphs?. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 11:1-11:59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{polleres_et_al:TGDK.1.1.11,
  author =	{Polleres, Axel and Pernisch, Romana and Bonifati, Angela and Dell'Aglio, Daniele and Dobriy, Daniil and Dumbrava, Stefania and Etcheverry, Lorena and Ferranti, Nicolas and Hose, Katja and Jim\'{e}nez-Ruiz, Ernesto and Lissandrini, Matteo and Scherp, Ansgar and Tommasini, Riccardo and Wachs, Johannes},
  title =	{{How Does Knowledge Evolve in Open Knowledge Graphs?}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{11:1--11:59},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.11},
  URN =		{urn:nbn:de:0030-drops-194855},
  doi =		{10.4230/TGDK.1.1.11},
  annote =	{Keywords: KG evolution, temporal KG, versioned KG, dynamic KG}
}
Document
Vision
Knowledge Engineering Using Large Language Models

Authors: Bradley P. Allen, Lise Stork, and Paul Groth

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.

Cite as

Bradley P. Allen, Lise Stork, and Paul Groth. Knowledge Engineering Using Large Language Models. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.1.1.3,
  author =	{Allen, Bradley P. and Stork, Lise and Groth, Paul},
  title =	{{Knowledge Engineering Using Large Language Models}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:19},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.3},
  URN =		{urn:nbn:de:0030-drops-194777},
  doi =		{10.4230/TGDK.1.1.3},
  annote =	{Keywords: knowledge engineering, large language models}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{04:1--04:34},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  URN =		{urn:nbn:de:0030-drops-192965},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
Linear Programs with Conjunctive Queries

Authors: Florent Capelli, Nicolas Crosetti, Joachim Niehren, and Jan Ramon

Published in: LIPIcs, Volume 220, 25th International Conference on Database Theory (ICDT 2022)


Abstract
In this paper, we study the problem of optimizing a linear program whose variables are the answers to a conjunctive query. For this we propose the language LP(CQ) for specifying linear programs whose constraints and objective functions depend on the answer sets of conjunctive queries. We contribute an efficient algorithm for solving programs in a fragment of LP(CQ). The naive approach constructs a linear program having as many variables as there are elements in the answer set of the queries. Our approach constructs a linear program having the same optimal value but fewer variables. This is done by exploiting the structure of the conjunctive queries using generalized hypertree decompositions of small width to factorize elements of the answer set together. We illustrate the various applications of LP(CQ) programs on three examples: optimizing deliveries of resources, minimizing noise for differential privacy, and computing the s-measure of patterns in graphs as needed for data mining.

Cite as

Florent Capelli, Nicolas Crosetti, Joachim Niehren, and Jan Ramon. Linear Programs with Conjunctive Queries. In 25th International Conference on Database Theory (ICDT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 220, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{capelli_et_al:LIPIcs.ICDT.2022.5,
  author =	{Capelli, Florent and Crosetti, Nicolas and Niehren, Joachim and Ramon, Jan},
  title =	{{Linear Programs with Conjunctive Queries}},
  booktitle =	{25th International Conference on Database Theory (ICDT 2022)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-223-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{220},
  editor =	{Olteanu, Dan and Vortmeier, Nils},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2022.5},
  URN =		{urn:nbn:de:0030-drops-158796},
  doi =		{10.4230/LIPIcs.ICDT.2022.5},
  annote =	{Keywords: Database queries, linear programming, hypergraph decomposition}
}
Document
Modeling Machine Learning and Data Mining Problems with FO(·)

Authors: Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre, Jan Ramon, and Sicco Verwer

Published in: LIPIcs, Volume 17, Technical Communications of the 28th International Conference on Logic Programming (ICLP'12) (2012)


Abstract
This paper reports on the use of the FO(·) language and the IDP framework for modeling and solving some machine learning and data mining tasks. The core component of a model in the IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the latter are basically logic programs where clause bodies can have arbitrary first order formulas. Hence, it is a small step for a well-versed computer scientist to start modeling. We describe some models resulting from the collaboration between IDP experts and domain experts solving machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. A second task is about a somewhat similar problem within biology where phylogenetic trees are used to represent the evolution of species. A third and final task is about learning a minimal automaton consistent with a given set of strings. For each task, we introduce the problem, present the IDP code and report on some experiments.

Cite as

Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre, Jan Ramon, and Sicco Verwer. Modeling Machine Learning and Data Mining Problems with FO(·). In Technical Communications of the 28th International Conference on Logic Programming (ICLP'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 17, pp. 14-25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{blockeel_et_al:LIPIcs.ICLP.2012.14,
  author =	{Blockeel, Hendrik and Bogaerts, Bart and Bruynooghe, Maurice and De Cat, Broes and De Pooter, Stef and Denecker, Marc and Labarre, Anthony and Ramon, Jan and Verwer, Sicco},
  title =	{{Modeling Machine Learning and Data Mining Problems with FO(·)}},
  booktitle =	{Technical Communications of the 28th International Conference on Logic Programming (ICLP'12)},
  pages =	{14--25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-43-9},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{17},
  editor =	{Dovier, Agostino and Santos Costa, V{\'\i}tor},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICLP.2012.14},
  URN =		{urn:nbn:de:0030-drops-36049},
  doi =		{10.4230/LIPIcs.ICLP.2012.14},
  annote =	{Keywords: Knowledge representation and reasoning, declarative modeling, logic programming, knowledge base systems, FO(·), IDP framework, stemmatology, phylogene}
}
  • Refine by Type
  • 11 Document/PDF
  • 8 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 2 2023
  • 2 2022
  • 1 2012

  • Refine by Author
  • 2 Ramon, Jan
  • 1 Allen, Bradley P.
  • 1 Anderson, James H.
  • 1 Bakita, Joshua
  • 1 Biniaz, Ahmad
  • Show More...

  • Refine by Series/Journal
  • 8 LIPIcs
  • 1 LITES
  • 2 TGDK

  • Refine by Classification
  • 1 Computer systems organization → Heterogeneous (hybrid) systems
  • 1 Computer systems organization → Real-time systems
  • 1 Computing methodologies → Concurrent computing methodologies
  • 1 Computing methodologies → Distributed programming languages
  • 1 Computing methodologies → Graphics processors
  • Show More...

  • Refine by Keyword
  • 1 Active Objects
  • 1 Active learning
  • 1 Art Gallery Problem
  • 1 CUDA
  • 1 Combinatorics
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail