11 Search Results for "Silwal, Sandeep"


Document
Polynomial-Time Constant-Approximation for Fair Sum-Of-Radii Clustering

Authors: Sina Bagheri Nezhad, Sayan Bandyapadhyay, and Tianzhi Chen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In a seminal work, Chierichetti et al. [Chierichetti et al., 2017] introduced the (t,k)-fair clustering problem: Given a set of red points and a set of blue points in a metric space, a clustering is called fair if the number of red points in each cluster is at most t times and at least 1/t times the number of blue points in that cluster. The goal is to compute a fair clustering with at most k clusters that optimizes certain objective function. Considering this problem, they designed a polynomial-time O(1)- and O(t)-approximation for the k-center and the k-median objective, respectively. Recently, Carta et al. [Carta et al., 2024] studied this problem with the sum-of-radii objective and obtained a (6+ε)-approximation with running time O((k log_{1+ε}(k/ε))^k n^O(1)), i.e., fixed-parameter tractable in k. Here n is the input size. In this work, we design the first polynomial-time O(1)-approximation for (t,k)-fair clustering with the sum-of-radii objective, improving the result of Carta et al. Our result places sum-of-radii in the same group of objectives as k-center, that admit polynomial-time O(1)-approximations. This result also implies a polynomial-time O(1)-approximation for the Euclidean version of the problem, for which an f(k)⋅n^O(1)-time (1+ε)-approximation was known due to Drexler et al. [Drexler et al., 2023]. Here f is an exponential function of k. We are also able to extend our result to any arbitrary 𝓁 ≥ 2 number of colors when t = 1. This matches known results for the k-center and k-median objectives in this case. The significant disparity of sum-of-radii compared to k-center and k-median presents several complex challenges, all of which we successfully overcome in our work. Our main contribution is a novel cluster-merging-based analysis technique for sum-of-radii that helps us achieve the constant-approximation bounds.

Cite as

Sina Bagheri Nezhad, Sayan Bandyapadhyay, and Tianzhi Chen. Polynomial-Time Constant-Approximation for Fair Sum-Of-Radii Clustering. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 62:1-62:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bagherinezhad_et_al:LIPIcs.ESA.2025.62,
  author =	{Bagheri Nezhad, Sina and Bandyapadhyay, Sayan and Chen, Tianzhi},
  title =	{{Polynomial-Time Constant-Approximation for Fair Sum-Of-Radii Clustering}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{62:1--62:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.62},
  URN =		{urn:nbn:de:0030-drops-245309},
  doi =		{10.4230/LIPIcs.ESA.2025.62},
  annote =	{Keywords: fair clustering, sum-of-radii clustering, approximation algorithms}
}
Document
Property Testing of Curve Similarity

Authors: Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We propose sublinear algorithms for probabilistic testing of the discrete and continuous Fréchet distance - a standard similarity measure for curves. We assume the algorithm is given access to the input curves via a query oracle: a query returns the set of vertices of the curve that lie within a radius δ of a specified vertex of the other curve. The goal is to use a small number of queries to determine with constant probability whether the two curves are similar (i.e., their discrete Fréchet distance is at most δ) or they are "ε-far" (for 0 < ε < 2) from being similar, i.e., more than an ε-fraction of the two curves must be ignored for them to become similar. We present two algorithms which are sublinear assuming that the curves are t-approximate shortest paths in the ambient metric space, for some t ≪ n. The first algorithm uses O(t/ε log t/ε) queries and is given the value of t in advance. The second algorithm does not have explicit knowledge of the value of t and therefore needs to gain implicit knowledge of the straightness of the input curves through its queries. We show that the discrete Fréchet distance can still be tested using roughly O({t³+t² log n}/ε) queries ignoring logarithmic factors in t. Our algorithms work in a matrix representation of the input and may be of independent interest to matrix testing. Our algorithms use a mild uniform sampling condition that constrains the edge lengths of the curves, similar to a polynomially bounded aspect ratio. Applied to testing the continuous Fréchet distance of t-straight curves, our algorithms can be used for (1+ε')-approximate testing using essentially the same bounds as stated above with an additional factor of poly(1/(ε')).

Cite as

Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong. Property Testing of Curve Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 84:1-84:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.ESA.2025.84,
  author =	{Afshani, Peyman and Buchin, Maike and Driemel, Anne and Richter, Marena and Wong, Sampson},
  title =	{{Property Testing of Curve Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{84:1--84:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.84},
  URN =		{urn:nbn:de:0030-drops-245522},
  doi =		{10.4230/LIPIcs.ESA.2025.84},
  annote =	{Keywords: Fr\'{e}chet distance, Trajectory Analysis, Curve Similarity, Property Testing, Monotonicity Testing}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Oblivious Subspace Embeddings with Near-Optimal Sparsity

Authors: Shabarish Chenakkod, Michał Dereziński, and Xiaoyu Dong

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
An oblivious subspace embedding is a random m× n matrix Π such that, for any d-dimensional subspace, with high probability Π preserves the norms of all vectors in that subspace within a 1±ε factor. In this work, we give an oblivious subspace embedding with the optimal dimension m = Θ(d/ε²) that has a near-optimal sparsity of Õ(1/ε) non-zero entries per column of Π. This is the first result to nearly match the conjecture of Nelson and Nguyen [FOCS 2013] in terms of the best sparsity attainable by an optimal oblivious subspace embedding, improving on a prior bound of Õ(1/ε⁶) non-zeros per column [Chenakkod et al., STOC 2024]. We further extend our approach to the non-oblivious setting, proposing a new family of Leverage Score Sparsified embeddings with Independent Columns, which yield faster runtimes for matrix approximation and regression tasks. In our analysis, we develop a new method which uses a decoupling argument together with the cumulant method for bounding the edge universality error of isotropic random matrices. To achieve near-optimal sparsity, we combine this general-purpose approach with new trace inequalities that leverage the specific structure of our subspace embedding construction.

Cite as

Shabarish Chenakkod, Michał Dereziński, and Xiaoyu Dong. Optimal Oblivious Subspace Embeddings with Near-Optimal Sparsity. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 55:1-55:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chenakkod_et_al:LIPIcs.ICALP.2025.55,
  author =	{Chenakkod, Shabarish and Derezi\'{n}ski, Micha{\l} and Dong, Xiaoyu},
  title =	{{Optimal Oblivious Subspace Embeddings with Near-Optimal Sparsity}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{55:1--55:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.55},
  URN =		{urn:nbn:de:0030-drops-234324},
  doi =		{10.4230/LIPIcs.ICALP.2025.55},
  annote =	{Keywords: Randomized linear algebra, matrix sketching, subspace embeddings}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Recourse in an Adaptive Balls and Bins Game

Authors: Adi Fine, Haim Kaplan, and Uri Stemmer

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We consider a simple load-balancing game between an algorithm and an adaptive adversary. In a simplified version of this game, the adversary observes the assignment of jobs to machines and selects a machine to kill. The algorithm must then restart the jobs from the failed machine on other machines. The adversary repeats this process, observing the new assignment and eliminating another machine, and so on. The adversary aims to force the algorithm to perform many restarts, while we seek a robust algorithm that minimizes restarts regardless of the adversary’s strategy. This game was recently introduced by Bhattacharya et al. for designing a 3-spanner with low recourse against an adaptive adversary. We prove that a simple algorithm, which assigns each job to a randomly chosen live bin, incurs O(n log n) recourse against an adaptive adversary. This enables us to construct a much simpler 3-spanner with a recourse that is smaller by a factor of O(log² n) compared to the previous construction, without increasing the update time or the size of the spanner. This motivates a careful examination of the range of attacks an adaptive adversary can deploy against simple algorithms before resorting to more complex ones. As our case study demonstrates, this attack space may not be as large as it initially appears, enabling the development of robust algorithms that are both simpler and easier to analyze.

Cite as

Adi Fine, Haim Kaplan, and Uri Stemmer. Minimizing Recourse in an Adaptive Balls and Bins Game. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 77:1-77:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fine_et_al:LIPIcs.ICALP.2025.77,
  author =	{Fine, Adi and Kaplan, Haim and Stemmer, Uri},
  title =	{{Minimizing Recourse in an Adaptive Balls and Bins Game}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{77:1--77:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.77},
  URN =		{urn:nbn:de:0030-drops-234544},
  doi =		{10.4230/LIPIcs.ICALP.2025.77},
  annote =	{Keywords: Adaptive adversary, load-balancing game, balls-and-bins, randomized algorithms, dynamic 3-spanner, dynamic graph algorithms, adversarial robustness}
}
Document
Track A: Algorithms, Complexity and Games
Even Faster Algorithm for the Chamfer Distance

Authors: Ying Feng and Piotr Indyk

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For two d-dimensional point sets A,B of size up to n, the Chamfer distance from A to B is defined as CH(A,B) = ∑_{a ∈ A} min_{b ∈ B} ‖a-b‖. The Chamfer distance is a widely used measure for quantifying dissimilarity between sets of points, used in many machine learning and computer vision applications. A recent work of Bakshi et al, NeuriPS'23, gave the first near-linear time (1+ε)-approximate algorithm, with a running time of 𝒪(nd log (n)/ε²). In this paper we improve the running time further, to 𝒪(nd(log log n+log1/(ε))/ε²)). When ε is a constant, this reduces the gap between the upper bound and the trivial Ω(dn) lower bound significantly, from 𝒪(log n) to 𝒪(log log n).

Cite as

Ying Feng and Piotr Indyk. Even Faster Algorithm for the Chamfer Distance. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 76:1-76:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.ICALP.2025.76,
  author =	{Feng, Ying and Indyk, Piotr},
  title =	{{Even Faster Algorithm for the Chamfer Distance}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{76:1--76:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.76},
  URN =		{urn:nbn:de:0030-drops-234531},
  doi =		{10.4230/LIPIcs.ICALP.2025.76},
  annote =	{Keywords: Chamfer distance}
}
Document
On Approximability of 𝓁₂² Min-Sum Clustering

Authors: Karthik C. S., Euiwoong Lee, Yuval Rabani, Chris Schwiegelshohn, and Samson Zhou

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The 𝓁₂² min-sum k-clustering problem is to partition an input set into clusters C_1,…,C_k to minimize ∑_{i=1}^k ∑_{p,q ∈ C_i} ‖p-q‖₂². Although 𝓁₂² min-sum k-clustering is NP-hard, it is not known whether it is NP-hard to approximate 𝓁₂² min-sum k-clustering beyond a certain factor. In this paper, we give the first hardness-of-approximation result for the 𝓁₂² min-sum k-clustering problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056 and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to approximate the objective to a factor better than 1.327. We then complement our hardness result by giving a fast PTAS for 𝓁₂² min-sum k-clustering. Specifically, our algorithm runs in time O(n^{1+o(1)}d⋅ 2^{(k/ε)^O(1)}), which is the first nearly linear time algorithm for this problem. We also consider a learning-augmented setting, where the algorithm has access to an oracle that outputs a label i ∈ [k] for input point, thereby implicitly partitioning the input dataset into k clusters that induce an approximately optimal solution, up to some amount of adversarial error α ∈ [0,1/2). We give a polynomial-time algorithm that outputs a (1+γα)/(1-α)²-approximation to 𝓁₂² min-sum k-clustering, for a fixed constant γ > 0.

Cite as

Karthik C. S., Euiwoong Lee, Yuval Rabani, Chris Schwiegelshohn, and Samson Zhou. On Approximability of 𝓁₂² Min-Sum Clustering. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 62:1-62:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{karthikc.s._et_al:LIPIcs.SoCG.2025.62,
  author =	{Karthik C. S. and Lee, Euiwoong and Rabani, Yuval and Schwiegelshohn, Chris and Zhou, Samson},
  title =	{{On Approximability of 𝓁₂² Min-Sum Clustering}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.62},
  URN =		{urn:nbn:de:0030-drops-232142},
  doi =		{10.4230/LIPIcs.SoCG.2025.62},
  annote =	{Keywords: Clustering, hardness of approximation, polynomial-time approximation schemes, learning-augmented algorithms}
}
Document
Learning-Augmented Streaming Algorithms for Approximating MAX-CUT

Authors: Yinhao Dong, Pan Peng, and Ali Vakilian

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study learning-augmented streaming algorithms for estimating the value of MAX-CUT in a graph. In the classical streaming model, while a 1/2-approximation for estimating the value of MAX-CUT can be trivially achieved with O(1) words of space, Kapralov and Krachun [STOC’19] showed that this is essentially the best possible: for any ε > 0, any (randomized) single-pass streaming algorithm that achieves an approximation ratio of at least 1/2 + ε requires Ω(n / 2^poly(1/ε)) space. We show that it is possible to surpass the 1/2-approximation barrier using just O(1) words of space by leveraging a (machine learned) oracle. Specifically, we consider streaming algorithms that are equipped with an ε-accurate oracle that for each vertex in the graph, returns its correct label in {-1, +1}, corresponding to an optimal MAX-CUT solution in the graph, with some probability 1/2 + ε, and the incorrect label otherwise. Within this framework, we present a single-pass algorithm that approximates the value of MAX-CUT to within a factor of 1/2 + Ω(ε²) with probability at least 2/3 for insertion-only streams, using only poly(1/ε) words of space. We also extend our algorithm to fully dynamic streams while maintaining a space complexity of poly(1/ε,log n) words.

Cite as

Yinhao Dong, Pan Peng, and Ali Vakilian. Learning-Augmented Streaming Algorithms for Approximating MAX-CUT. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 44:1-44:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.ITCS.2025.44,
  author =	{Dong, Yinhao and Peng, Pan and Vakilian, Ali},
  title =	{{Learning-Augmented Streaming Algorithms for Approximating MAX-CUT}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{44:1--44:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.44},
  URN =		{urn:nbn:de:0030-drops-226728},
  doi =		{10.4230/LIPIcs.ITCS.2025.44},
  annote =	{Keywords: Learning-Augmented Algorithms, Graph Streaming Algorithms, MAX-CUT}
}
Document
Data-Driven Solution Portfolios

Authors: Marina Drygala, Silvio Lattanzi, Andreas Maggiori, Miltiadis Stouras, Ola Svensson, and Sergei Vassilvitskii

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
In this paper, we consider a new problem of portfolio optimization using stochastic information. In a setting where there is some uncertainty, we ask how to best select k potential solutions, with the goal of optimizing the value of the best solution. More formally, given a combinatorial problem Π, a set of value functions 𝒱 over the solutions of Π, and a distribution 𝒟 over 𝒱, our goal is to select k solutions of Π that maximize or minimize the expected value of the best of those solutions. For a simple example, consider the classic knapsack problem: given a universe of elements each with unit weight and a positive value, the task is to select r elements maximizing the total value. Now suppose that each element’s weight comes from a (known) distribution. How should we select k different solutions so that one of them is likely to yield a high value? In this work, we tackle this basic problem, and generalize it to the setting where the underlying set system forms a matroid. On the technical side, it is clear that the candidate solutions we select must be diverse and anti-correlated; however, it is not clear how to do so efficiently. Our main result is a polynomial-time algorithm that constructs a portfolio within a constant factor of the optimal.

Cite as

Marina Drygala, Silvio Lattanzi, Andreas Maggiori, Miltiadis Stouras, Ola Svensson, and Sergei Vassilvitskii. Data-Driven Solution Portfolios. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 46:1-46:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{drygala_et_al:LIPIcs.ITCS.2025.46,
  author =	{Drygala, Marina and Lattanzi, Silvio and Maggiori, Andreas and Stouras, Miltiadis and Svensson, Ola and Vassilvitskii, Sergei},
  title =	{{Data-Driven Solution Portfolios}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{46:1--46:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.46},
  URN =		{urn:nbn:de:0030-drops-226740},
  doi =		{10.4230/LIPIcs.ITCS.2025.46},
  annote =	{Keywords: solution portfolios, data-driven algorithm design, matroids}
}
Document
RANDOM
Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

Authors: Rikhav Shah and Sandeep Silwal

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
Let M be an arbitrary n by n matrix of rank n-k. We study the condition number of M plus a low-rank perturbation UV^T where U, V are n by k random Gaussian matrices. Under some necessary assumptions, it is shown that M+UV^T is unlikely to have a large condition number. The main advantages of this kind of perturbation over the well-studied dense Gaussian perturbation, where every entry is independently perturbed, is the O(nk) cost to store U,V and the O(nk) increase in time complexity for performing the matrix-vector multiplication (M+UV^T)x. This improves the Ω(n²) space and time complexity increase required by a dense perturbation, which is especially burdensome if M is originally sparse. Our results also extend to the case where U and V have rank larger than k and to symmetric and complex settings. We also give an application to linear systems solving and perform some numerical experiments. Lastly, barriers in applying low-rank noise to other problems studied in the smoothed analysis framework are discussed.

Cite as

Rikhav Shah and Sandeep Silwal. Smoothed Analysis of the Condition Number Under Low-Rank Perturbations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 40:1-40:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{shah_et_al:LIPIcs.APPROX/RANDOM.2021.40,
  author =	{Shah, Rikhav and Silwal, Sandeep},
  title =	{{Smoothed Analysis of the Condition Number Under Low-Rank Perturbations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{40:1--40:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.40},
  URN =		{urn:nbn:de:0030-drops-147332},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.40},
  annote =	{Keywords: Smoothed analysis, condition number, low rank noise}
}
Document
Track A: Algorithms, Complexity and Games
Property Testing of LP-Type Problems

Authors: Rogers Epstein and Sandeep Silwal

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Given query access to a set of constraints S, we wish to quickly check if some objective function φ subject to these constraints is at most a given value k. We approach this problem using the framework of property testing where our goal is to distinguish the case φ(S) ≤ k from the case that at least an ε fraction of the constraints in S need to be removed for φ(S) ≤ k to hold. We restrict our attention to the case where (S,φ) are LP-Type problems which is a rich family of combinatorial optimization problems with an inherent geometric structure. By utilizing a simple sampling procedure which has been used previously to study these problems, we are able to create property testers for any LP-Type problem whose query complexities are independent of the number of constraints. To the best of our knowledge, this is the first work that connects the area of LP-Type problems and property testing in a systematic way. Among our results are property testers for a variety of LP-Type problems that are new and also problems that have been studied previously such as a tight upper bound on the query complexity of testing clusterability with one cluster considered by Alon, Dar, Parnas, and Ron (FOCS 2000). We also supply a corresponding tight lower bound for this problem and other LP-Type problems using geometric constructions.

Cite as

Rogers Epstein and Sandeep Silwal. Property Testing of LP-Type Problems. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 98:1-98:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{epstein_et_al:LIPIcs.ICALP.2020.98,
  author =	{Epstein, Rogers and Silwal, Sandeep},
  title =	{{Property Testing of LP-Type Problems}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{98:1--98:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.98},
  URN =		{urn:nbn:de:0030-drops-125056},
  doi =		{10.4230/LIPIcs.ICALP.2020.98},
  annote =	{Keywords: property pesting, LP-Type problems, random sampling}
}
Document
Testing Properties of Multiple Distributions with Few Samples

Authors: Maryam Aliakbarpour and Sandeep Silwal

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We propose a new setting for testing properties of distributions while receiving samples from several distributions, but few samples per distribution. Given samples from s distributions, p_1, p_2, …, p_s, we design testers for the following problems: (1) Uniformity Testing: Testing whether all the p_i’s are uniform or ε-far from being uniform in ℓ_1-distance (2) Identity Testing: Testing whether all the p_i’s are equal to an explicitly given distribution q or ε-far from q in ℓ_1-distance, and (3) Closeness Testing: Testing whether all the p_i’s are equal to a distribution q which we have sample access to, or ε-far from q in ℓ_1-distance. By assuming an additional natural condition about the source distributions, we provide sample optimal testers for all of these problems.

Cite as

Maryam Aliakbarpour and Sandeep Silwal. Testing Properties of Multiple Distributions with Few Samples. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 69:1-69:41, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aliakbarpour_et_al:LIPIcs.ITCS.2020.69,
  author =	{Aliakbarpour, Maryam and Silwal, Sandeep},
  title =	{{Testing Properties of Multiple Distributions with Few Samples}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{69:1--69:41},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.69},
  URN =		{urn:nbn:de:0030-drops-117545},
  doi =		{10.4230/LIPIcs.ITCS.2020.69},
  annote =	{Keywords: Hypothesis Testing, Property Testing, Distribution Testing, Identity Testing, Closeness Testing, Multiple Sources}
}
  • Refine by Type
  • 11 Document/PDF
  • 8 Document/HTML

  • Refine by Publication Year
  • 8 2025
  • 1 2021
  • 2 2020

  • Refine by Author
  • 3 Silwal, Sandeep
  • 1 Afshani, Peyman
  • 1 Aliakbarpour, Maryam
  • 1 Bagheri Nezhad, Sina
  • 1 Bandyapadhyay, Sayan
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs

  • Refine by Classification
  • 3 Theory of computation → Design and analysis of algorithms
  • 1 Mathematics of computing → Hypothesis testing and confidence interval computation
  • 1 Mathematics of computing → Numerical analysis
  • 1 Theory of computation
  • 1 Theory of computation → Adversary models
  • Show More...

  • Refine by Keyword
  • 2 Property Testing
  • 1 Adaptive adversary
  • 1 Chamfer distance
  • 1 Closeness Testing
  • 1 Clustering
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail