16 Search Results for "Strash, Darren"


Document
Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Authors: Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The current landscape of balanced graph partitioning is divided into high-quality but expensive multilevel algorithms and cheaper approaches with linear running time, such as single-level algorithms and streaming algorithms. We demonstrate how to achieve the best of both worlds with a linear time multilevel algorithm. Multilevel algorithms construct a hierarchy of increasingly smaller graphs by repeatedly contracting clusters of nodes. Our approach preserves their distinct advantage, allowing refinement of the partition over multiple levels with increasing detail. At the same time, we use edge sparsification to guarantee geometric size reduction between the levels and thus linear running time. We provide a proof of the linear running time as well as additional insights into the behavior of multilevel algorithms, showing that graphs with low modularity are most likely to trigger worst-case running time. We evaluate multiple approaches for edge sparsification and integrate our algorithm into the state-of-the-art multilevel partitioner KaMinPar, maintaining its excellent parallel scalability. As demonstrated in detailed experiments, this results in a 1.49× average speedup (up to 4× for some instances) with only 1% loss in solution quality. Moreover, our algorithm clearly outperforms state-of-the-art single-level and streaming approaches.

Cite as

Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier. Linear-Time Multilevel Graph Partitioning via Edge Sparsification. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 32:1-32:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2025.32,
  author =	{Gottesb\"{u}ren, Lars and Maas, Nikolai and Rosch, Dominik and Sanders, Peter and Seemaier, Daniel},
  title =	{{Linear-Time Multilevel Graph Partitioning via Edge Sparsification}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{32:1--32:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.32},
  URN =		{urn:nbn:de:0030-drops-245007},
  doi =		{10.4230/LIPIcs.ESA.2025.32},
  annote =	{Keywords: Graph Partitioning, Graph Algorithms, Linear Time Algorithms, Graph Sparsification}
}
Document
Edge Clique Partition and Cover Beyond Independence

Authors: Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Covering and partitioning the edges of a graph into cliques are classical problems at the intersection of combinatorial optimization and graph theory, having been studied through a range of algorithmic and complexity-theoretic lenses. Despite the well-known fixed-parameter tractability of these problems when parameterized by the total number of cliques, such a parameterization often fails to be meaningful for sparse graphs. In many real-world instances, on the other hand, the minimum number of cliques in an edge cover or partition can be very close to the size of a maximum independent set α(G). Motivated by this observation, we investigate above-α parameterizations of the edge clique cover and partition problems. Concretely, we introduce and study Edge Clique Cover Above Independent Set (ECC/α) and Edge Clique Partition Above Independent Set (ECP/α), where the goal is to cover or partition all edges of a graph using at most α(G) + k cliques, and k is the parameter. Our main results reveal a distinct complexity landscape for the two variants. We show that ECP/α is fixed-parameter tractable, whereas ECC/α is NP-complete for all k ≥ 2, yet can be solved in polynomial time for k ∈ {0,1}. These findings highlight intriguing differences between the two problems when viewed through the lens of parameterization above a natural lower bound. Finally, we demonstrate that ECC/α becomes fixed-parameter tractable when parameterized by k + ω(G), where ω(G) is the size of a maximum clique of the graph G. This result is particularly relevant for sparse graphs, in which ω is typically small. For H-minor free graphs, we design a subexponential algorithm of running time f(H)^√k ⋅ n^𝒪(1).

Cite as

Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Edge Clique Partition and Cover Beyond Independence. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2025.43,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Sagunov, Danil and Simonov, Kirill},
  title =	{{Edge Clique Partition and Cover Beyond Independence}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.43},
  URN =		{urn:nbn:de:0030-drops-245113},
  doi =		{10.4230/LIPIcs.ESA.2025.43},
  annote =	{Keywords: edge clique partition, edge clique cover, independence number, parameterized complexity, above guarantee}
}
Document
Kernelization in Almost Linear Time for Clustering into Bounded Vertex Cover Components

Authors: Sriram Bhyravarapu, Pritesh Kumar, Madhumita Kundu, Shivesh K. Roy, Sahiba, and Saket Saurabh

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Motivated by the growing interest in graph clustering and the framework proposed during the Dagstuhl Seminar 23331, we consider a natural specialization of this general approach (as also suggested during the seminar). The seminar introduced a broad perspective on clustering, where the goal is to partition a graph into connected components (or "clusters") that satisfy simple structural integrity constraints - not necessarily limited to cliques. In our work, we focus on the case where each cluster is required to have bounded vertex cover number. Specifically, a connected component C satisfies this condition if there exists a set S ⊆ V(C) with |S| ≤ d such that C - S is an independent set. We study this within the framework of the {Vertex Deletion to d-Vertex Cover Components} ({Vertex Deletion to d-VCC}) problem: given a graph G and an integer k, the task is to determine whether there exists a vertex set S ⊆ V(G) of size at most k such that every connected component of G - S has vertex cover number at most d. We also examine the edge-deletion variant, {Edge Deletion to d-Vertex Cover Components} ({Edge Deletion to d-VCC}), where the goal is to delete at most k edges so that each connected component of the resulting graph has vertex cover number at most d. We obtain following results. 1) {Vertex Deletion to d-VCC} admits a kernel with {𝒪}(d⁶k³) vertices and {𝒪}(d⁹k⁴) edges. 2) {Edge Deletion to d-VCC}, admits a kernel with {𝒪}(d⁴k) vertices and {𝒪}(d⁵k) edges. Both of our kernelization algorithms run in time 𝒪(1.253^d ⋅ (kd)^{𝒪(1)} ⋅ n log n). It is important to note that, unless the Exponential Time Hypothesis (ETH) fails, the dependence on d cannot be improved to 2^{o(d)}, as the case k = 0 reduces to solving the classical Vertex Cover problem, which is known to require 2^{Ω(d)} time under ETH. A key ingredient in our kernelization algorithms is a structural result about the hereditary graph class 𝒢_d, consisting of graphs in which every connected component has vertex cover number at most d. We show that 𝒢_d admits a finite obstruction set (with respect to the induced subgraph relation) of size 2^{𝒪(d²)}, where each obstruction graph has at most 3d + 2 vertices. This combinatorial result may be of independent interest.

Cite as

Sriram Bhyravarapu, Pritesh Kumar, Madhumita Kundu, Shivesh K. Roy, Sahiba, and Saket Saurabh. Kernelization in Almost Linear Time for Clustering into Bounded Vertex Cover Components. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhyravarapu_et_al:LIPIcs.MFCS.2025.20,
  author =	{Bhyravarapu, Sriram and Kumar, Pritesh and Kundu, Madhumita and Roy, Shivesh K. and Sahiba and Saurabh, Saket},
  title =	{{Kernelization in Almost Linear Time for Clustering into Bounded Vertex Cover Components}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.20},
  URN =		{urn:nbn:de:0030-drops-241276},
  doi =		{10.4230/LIPIcs.MFCS.2025.20},
  annote =	{Keywords: Parameterized complexity, Polynomial Kernels, Vertex Cover, Finite Forbidden Characterization}
}
Document
Research
Designing Output Sensitive Algorithms for Subgraph Enumeration

Authors: Alessio Conte, Kazuhiro Kurita, Andrea Marino, Giulia Punzi, Takeaki Uno, and Kunihiro Wasa

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
The enumeration of all subgraphs respecting some structural property is a fundamental task in theoretical computer science, with practical applications in many branches of data mining and network analysis. It is often of interest to only consider solutions (subgraphs) that are maximal under inclusion, and to achieve output-sensitive complexity, i.e., bounding the running time with respect to the number of subgraphs produced. In this paper, we provide a survey of techniques for designing output-sensitive algorithms for subgraph enumeration, including partition-based approaches such as flashlight search, solution-graph traversal methods such as reverse search, and cost amortization strategies such as push-out amortization. We also briefly discuss classes of efficiency, hardness of enumeration, and variants such as approximate enumeration. The paper is meant as an accessible handbook for learning the basics of the field and as a practical reference for selecting state-of-the-art subgraph enumeration strategies fitting to one’s needs.

Cite as

Alessio Conte, Kazuhiro Kurita, Andrea Marino, Giulia Punzi, Takeaki Uno, and Kunihiro Wasa. Designing Output Sensitive Algorithms for Subgraph Enumeration. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 19:1-19:40, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{conte_et_al:OASIcs.Grossi.19,
  author =	{Conte, Alessio and Kurita, Kazuhiro and Marino, Andrea and Punzi, Giulia and Uno, Takeaki and Wasa, Kunihiro},
  title =	{{Designing Output Sensitive Algorithms for Subgraph Enumeration}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{19:1--19:40},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.19},
  URN =		{urn:nbn:de:0030-drops-238180},
  doi =		{10.4230/OASIcs.Grossi.19},
  annote =	{Keywords: Graph algorithms, Graph enumeration, Output sensitive enumeration}
}
Document
Concurrent Iterated Local Search for the Maximum Weight Independent Set Problem

Authors: Ernestine Großmann, Kenneth Langedal, and Christian Schulz

Published in: LIPIcs, Volume 338, 23rd International Symposium on Experimental Algorithms (SEA 2025)


Abstract
The Maximum Weight Independent Set problem is a fundamental NP-hard problem in combinatorial optimization with several real-world applications. Given an undirected vertex-weighted graph, the problem is to find a subset of the vertices with the highest possible weight under the constraint that no two vertices in the set can share an edge. This work presents a new iterated local search heuristic called CHILS (Concurrent Hybrid Iterated Local Search). The implementation of CHILS is specifically designed to handle large graphs of varying densities. CHILS outperforms the current state-of-the-art on commonly used benchmark instances, especially on the largest instances. As an added benefit, CHILS can run in parallel to leverage the power of multicore processors. The general technique used in CHILS is a new concurrent metaheuristic called Concurrent Difference-Core Heuristic that can also be applied to other combinatorial problems.

Cite as

Ernestine Großmann, Kenneth Langedal, and Christian Schulz. Concurrent Iterated Local Search for the Maximum Weight Independent Set Problem. In 23rd International Symposium on Experimental Algorithms (SEA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 338, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gromann_et_al:LIPIcs.SEA.2025.22,
  author =	{Gro{\ss}mann, Ernestine and Langedal, Kenneth and Schulz, Christian},
  title =	{{Concurrent Iterated Local Search for the Maximum Weight Independent Set Problem}},
  booktitle =	{23rd International Symposium on Experimental Algorithms (SEA 2025)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-375-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{338},
  editor =	{Mutzel, Petra and Prezza, Nicola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2025.22},
  URN =		{urn:nbn:de:0030-drops-232600},
  doi =		{10.4230/LIPIcs.SEA.2025.22},
  annote =	{Keywords: Randomized Local Search, Heuristics, Maximum Weight Independent Set, Algorithm Engineering, Parallel Computing}
}
Document
Shelling and Sinking Graphs on the Sphere

Authors: Jeff Erickson and Christian Howard

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We describe a promising approach to efficiently morph spherical graphs, extending earlier approaches of Awartani and Henderson [Trans. AMS 1987] and Kobourov and Landis [JGAA 2006]. Specifically, we describe two methods to morph shortest-path triangulations of the sphere by moving their vertices along longitudes into the southern hemisphere; we call a triangulation sinkable if such a morph exists. Our first method generalizes a longitudinal shelling construction of Awartani and Henderson; a triangulation is sinkable if a specific orientation of its dual graph is acyclic. We describe a simple polynomial-time algorithm to find a longitudinally shellable rotation of a given spherical triangulation, if one exists; we also construct a spherical triangulation that has no longitudinally shellable rotation. Our second method is based on a linear-programming characterization of sinkability. By identifying its optimal basis, we show that this linear program can be solved in O(n^{ω/2}) time, where ω is the matrix-multiplication exponent, assuming the underlying linear system is non-singular. Finally, we pose several conjectures and describe experimental results that support them.

Cite as

Jeff Erickson and Christian Howard. Shelling and Sinking Graphs on the Sphere. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{erickson_et_al:LIPIcs.SoCG.2025.47,
  author =	{Erickson, Jeff and Howard, Christian},
  title =	{{Shelling and Sinking Graphs on the Sphere}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.47},
  URN =		{urn:nbn:de:0030-drops-231996},
  doi =		{10.4230/LIPIcs.SoCG.2025.47},
  annote =	{Keywords: morphing, planar graphs, spherical graph drawing, longitudinal shelling}
}
Document
Residue Domination in Bounded-Treewidth Graphs

Authors: Jakob Greilhuber, Philipp Schepper, and Philip Wellnitz

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
For the vertex selection problem (σ,ρ)-DomSet one is given two fixed sets σ and ρ of integers and the task is to decide whether we can select vertices of the input graph such that, for every selected vertex, the number of selected neighbors is in σ and, for every unselected vertex, the number of selected neighbors is in ρ [Telle, Nord. J. Comp. 1994]. This framework covers many fundamental graph problems such as Independent Set and Dominating Set. We significantly extend the recent result by Focke et al. [SODA 2023] to investigate the case when σ and ρ are two (potentially different) residue classes modulo m ≥ 2. We study the problem parameterized by treewidth and present an algorithm that solves in time m^tw ⋅ n^O(1) the decision, minimization and maximization version of the problem. This significantly improves upon the known algorithms where for the case m ≥ 3 not even an explicit running time is known. We complement our algorithm by providing matching lower bounds which state that there is no (m-ε)^pw ⋅ n^O(1)-time algorithm parameterized by pathwidth pw, unless SETH fails. For m = 2, we extend these bounds to the minimization version as the decision version is efficiently solvable.

Cite as

Jakob Greilhuber, Philipp Schepper, and Philip Wellnitz. Residue Domination in Bounded-Treewidth Graphs. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 41:1-41:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{greilhuber_et_al:LIPIcs.STACS.2025.41,
  author =	{Greilhuber, Jakob and Schepper, Philipp and Wellnitz, Philip},
  title =	{{Residue Domination in Bounded-Treewidth Graphs}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{41:1--41:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.41},
  URN =		{urn:nbn:de:0030-drops-228675},
  doi =		{10.4230/LIPIcs.STACS.2025.41},
  annote =	{Keywords: Parameterized Complexity, Treewidth, Generalized Dominating Set, Strong Exponential Time Hypothesis}
}
Document
Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331)

Authors: George Karypis, Christian Schulz, Darren Strash, Deepak Ajwani, Rob H. Bisseling, Katrin Casel, Ümit V. Çatalyürek, Cédric Chevalier, Florian Chudigiewitsch, Marcelo Fonseca Faraj, Michael Fellows, Lars Gottesbüren, Tobias Heuer, Kamer Kaya, Jakub Lacki, Johannes Langguth, Xiaoye Sherry Li, Ruben Mayer, Johannes Meintrup, Yosuke Mizutani, François Pellegrini, Fabrizio Petrini, Frances Rosamond, Ilya Safro, Sebastian Schlag, Roohani Sharma, Blair D. Sullivan, Bora Uçar, and Albert-Jan Yzelman

Published in: Dagstuhl Reports, Volume 13, Issue 8 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23331 "Recent Trends in Graph Decomposition", which took place from 13. August to 18. August, 2023. The seminar brought together 33 experts from academia and industry to discuss graph decomposition, a pivotal technique for handling massive graphs in applications such as social networks and scientific simulations. The seminar addressed the challenges posed by contemporary hardware designs, the potential of deep neural networks and reinforcement learning in developing heuristics, the unique optimization requirements of large sparse data, and the need for scalable algorithms suitable for emerging architectures. Through presentations, discussions, and collaborative sessions, the event fostered an exchange of innovative ideas, leading to the creation of community notes highlighting key open problems in the field.

Cite as

George Karypis, Christian Schulz, Darren Strash, Deepak Ajwani, Rob H. Bisseling, Katrin Casel, Ümit V. Çatalyürek, Cédric Chevalier, Florian Chudigiewitsch, Marcelo Fonseca Faraj, Michael Fellows, Lars Gottesbüren, Tobias Heuer, Kamer Kaya, Jakub Lacki, Johannes Langguth, Xiaoye Sherry Li, Ruben Mayer, Johannes Meintrup, Yosuke Mizutani, François Pellegrini, Fabrizio Petrini, Frances Rosamond, Ilya Safro, Sebastian Schlag, Roohani Sharma, Blair D. Sullivan, Bora Uçar, and Albert-Jan Yzelman. Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331). In Dagstuhl Reports, Volume 13, Issue 8, pp. 1-45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{karypis_et_al:DagRep.13.8.1,
  author =	{Karypis, George and Schulz, Christian and Strash, Darren and Ajwani, Deepak and Bisseling, Rob H. and Casel, Katrin and \c{C}ataly\"{u}rek, \"{U}mit V. and Chevalier, C\'{e}dric and Chudigiewitsch, Florian and Faraj, Marcelo Fonseca and Fellows, Michael and Gottesb\"{u}ren, Lars and Heuer, Tobias and Kaya, Kamer and Lacki, Jakub and Langguth, Johannes and Li, Xiaoye Sherry and Mayer, Ruben and Meintrup, Johannes and Mizutani, Yosuke and Pellegrini, Fran\c{c}ois and Petrini, Fabrizio and Rosamond, Frances and Safro, Ilya and Schlag, Sebastian and Sharma, Roohani and Sullivan, Blair D. and U\c{c}ar, Bora and Yzelman, Albert-Jan},
  title =	{{Recent Trends in Graph Decomposition (Dagstuhl Seminar 23331)}},
  pages =	{1--45},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{8},
  editor =	{Karypis, George and Schulz, Christian and Strash, Darren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.8.1},
  URN =		{urn:nbn:de:0030-drops-198114},
  doi =		{10.4230/DagRep.13.8.1},
  annote =	{Keywords: combinatorial optimization, experimental algorithmics, parallel algorithms}
}
Document
Solving Edge Clique Cover Exactly via Synergistic Data Reduction

Authors: Anthony Hevia, Benjamin Kallus, Summer McClintic, Samantha Reisner, Darren Strash, and Johnathan Wilson

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The edge clique cover (ECC) problem - where the goal is to find a minimum cardinality set of cliques that cover all the edges of a graph - is a classic NP-hard problem that has received much attention from both the theoretical and experimental algorithms communities. While small sparse graphs can be solved exactly via the branch-and-reduce algorithm of Gramm et al. [JEA 2009], larger instances can currently only be solved inexactly using heuristics with unknown overall solution quality. We revisit computing minimum ECCs exactly in practice by combining data reduction for both the ECC and vertex clique cover (VCC) problems. We do so by modifying the polynomial-time reduction of Kou et al. [Commun. ACM 1978] to transform a reduced ECC instance to a VCC instance; alternatively, we show it is possible to "lift" some VCC reductions to the ECC problem. Our experiments show that combining data reduction for both problems (which we call synergistic data reduction) enables finding exact minimum ECCs orders of magnitude faster than the technique of Gramm et al., and allows solving large sparse graphs on up to millions of vertices and edges that have never before been solved. With these new exact solutions, we evaluate the quality of recent heuristic algorithms on large instances for the first time. The most recent of these, EO-ECC by Abdullah et al. [ICCS 2022], solves 8 of the 27 instances for which we have exact solutions. It is our hope that our strategy rallies researchers to seek improved algorithms for the ECC problem.

Cite as

Anthony Hevia, Benjamin Kallus, Summer McClintic, Samantha Reisner, Darren Strash, and Johnathan Wilson. Solving Edge Clique Cover Exactly via Synergistic Data Reduction. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 61:1-61:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hevia_et_al:LIPIcs.ESA.2023.61,
  author =	{Hevia, Anthony and Kallus, Benjamin and McClintic, Summer and Reisner, Samantha and Strash, Darren and Wilson, Johnathan},
  title =	{{Solving Edge Clique Cover Exactly via Synergistic Data Reduction}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{61:1--61:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.61},
  URN =		{urn:nbn:de:0030-drops-187148},
  doi =		{10.4230/LIPIcs.ESA.2023.61},
  annote =	{Keywords: Edge clique cover, Vertex clique cover, Data reduction, Degeneracy}
}
Document
CG Challenge
Constructing Concise Convex Covers via Clique Covers (CG Challenge)

Authors: Mikkel Abrahamsen, William Bille Meyling, and André Nusser

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
This work describes the winning implementation of the CG:SHOP 2023 Challenge. The topic of the Challenge was the convex cover problem: given a polygon P (with holes), find a minimum-cardinality set of convex polygons whose union equals P. We use a three-step approach: (1) Create a suitable partition of P. (2) Compute a visibility graph of the pieces of the partition. (3) Solve a vertex clique cover problem on the visibility graph, from which we then derive the convex cover. This way we capture the geometric difficulty in the first step and the combinatorial difficulty in the third step.

Cite as

Mikkel Abrahamsen, William Bille Meyling, and André Nusser. Constructing Concise Convex Covers via Clique Covers (CG Challenge). In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 66:1-66:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2023.66,
  author =	{Abrahamsen, Mikkel and Bille Meyling, William and Nusser, Andr\'{e}},
  title =	{{Constructing Concise Convex Covers via Clique Covers}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{66:1--66:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.66},
  URN =		{urn:nbn:de:0030-drops-179164},
  doi =		{10.4230/LIPIcs.SoCG.2023.66},
  annote =	{Keywords: Convex cover, Polygons with holes, Algorithm engineering, Vertex clique cover}
}
Document
The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set

Authors: Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
The Parameterized Algorithms and Computational Experiments challenge (PACE) 2022 was devoted to engineer algorithms solving the NP-hard Directed Feedback Vertex Set (DFVS) problem. The DFVS problem is to find a minimum subset X ⊆ V in a given directed graph G = (V,E) such that, when all vertices of X and their adjacent edges are deleted from G, the remainder is acyclic. Overall, the challenge had 90 participants from 26 teams, 12 countries, and 3 continents that submitted their implementations to this year’s competition. In this report, we briefly describe the setup of the challenge, the selection of benchmark instances, as well as the ranking of the participating teams. We also briefly outline the approaches used in the submitted solvers.

Cite as

Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash. The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gromann_et_al:LIPIcs.IPEC.2022.26,
  author =	{Gro{\ss}mann, Ernestine and Heuer, Tobias and Schulz, Christian and Strash, Darren},
  title =	{{The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.26},
  URN =		{urn:nbn:de:0030-drops-173826},
  doi =		{10.4230/LIPIcs.IPEC.2022.26},
  annote =	{Keywords: Feedback Vertex Set, Algorithm Engineering, FPT, Kernelization, Heuristics}
}
Document
A Branch-And-Bound Algorithm for Cluster Editing

Authors: Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm

Published in: LIPIcs, Volume 233, 20th International Symposium on Experimental Algorithms (SEA 2022)


Abstract
The cluster editing problem asks to transform a given graph into a disjoint union of cliques by inserting and deleting as few edges as possible. We describe and evaluate an exact branch-and-bound algorithm for cluster editing. For this, we introduce new reduction rules and adapt existing ones. Moreover, we generalize a known packing technique to obtain lower bounds and experimentally show that it contributes significantly to the performance of the solver. Our experiments further evaluate the effectiveness of the different reduction rules and examine the effects of structural properties of the input graph on solver performance. Our solver won the exact track of the 2021 PACE challenge.

Cite as

Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm. A Branch-And-Bound Algorithm for Cluster Editing. In 20th International Symposium on Experimental Algorithms (SEA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 233, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:LIPIcs.SEA.2022.13,
  author =	{Bl\"{a}sius, Thomas and Fischbeck, Philipp and Gottesb\"{u}ren, Lars and Hamann, Michael and Heuer, Tobias and Spinner, Jonas and Weyand, Christopher and Wilhelm, Marcus},
  title =	{{A Branch-And-Bound Algorithm for Cluster Editing}},
  booktitle =	{20th International Symposium on Experimental Algorithms (SEA 2022)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-251-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{233},
  editor =	{Schulz, Christian and U\c{c}ar, Bora},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2022.13},
  URN =		{urn:nbn:de:0030-drops-165473},
  doi =		{10.4230/LIPIcs.SEA.2022.13},
  annote =	{Keywords: cluster editing}
}
Document
Finding All Global Minimum Cuts in Practice

Authors: Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We present a practically efficient algorithm that finds all global minimum cuts in huge undirected graphs. Our algorithm uses a multitude of kernelization rules to reduce the graph to a small equivalent instance and then finds all minimum cuts using an optimized version of the algorithm of Nagamochi, Nakao and Ibaraki. In shared memory we are able to find all minimum cuts of graphs with up to billions of edges and millions of minimum cuts in a few minutes. We also give a new linear time algorithm to find the most balanced minimum cuts given as input the representation of all minimum cuts.

Cite as

Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Finding All Global Minimum Cuts in Practice. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 59:1-59:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ESA.2020.59,
  author =	{Henzinger, Monika and Noe, Alexander and Schulz, Christian and Strash, Darren},
  title =	{{Finding All Global Minimum Cuts in Practice}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{59:1--59:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.59},
  URN =		{urn:nbn:de:0030-drops-129255},
  doi =		{10.4230/LIPIcs.ESA.2020.59},
  annote =	{Keywords: Minimum Cut, Graph Algorithm, Algorithm Engineering, Cut Enumeration, Balanced Cut, Global Minimum Cut, Large-scale Graph Analysis}
}
Document
Simultaneous Representation of Proper and Unit Interval Graphs

Authors: Ignaz Rutter, Darren Strash, Peter Stumpf, and Michael Vollmer

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
In a confluence of combinatorics and geometry, simultaneous representations provide a way to realize combinatorial objects that share common structure. A standard case in the study of simultaneous representations is the sunflower case where all objects share the same common structure. While the recognition problem for general simultaneous interval graphs - the simultaneous version of arguably one of the most well-studied graph classes - is NP-complete, the complexity of the sunflower case for three or more simultaneous interval graphs is currently open. In this work we settle this question for proper interval graphs. We give an algorithm to recognize simultaneous proper interval graphs in linear time in the sunflower case where we allow any number of simultaneous graphs. Simultaneous unit interval graphs are much more "rigid" and therefore have less freedom in their representation. We show they can be recognized in time O(|V|*|E|) for any number of simultaneous graphs in the sunflower case where G=(V,E) is the union of the simultaneous graphs. We further show that both recognition problems are in general NP-complete if the number of simultaneous graphs is not fixed. The restriction to the sunflower case is in this sense necessary.

Cite as

Ignaz Rutter, Darren Strash, Peter Stumpf, and Michael Vollmer. Simultaneous Representation of Proper and Unit Interval Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 80:1-80:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{rutter_et_al:LIPIcs.ESA.2019.80,
  author =	{Rutter, Ignaz and Strash, Darren and Stumpf, Peter and Vollmer, Michael},
  title =	{{Simultaneous Representation of Proper and Unit Interval Graphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{80:1--80:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.80},
  URN =		{urn:nbn:de:0030-drops-112013},
  doi =		{10.4230/LIPIcs.ESA.2019.80},
  annote =	{Keywords: Intersection Graphs, Recognition Algorithm, Proper/Unit Interval Graphs, Simultaneous Representations}
}
Document
On Romeo and Juliet Problems: Minimizing Distance-to-Sight

Authors: Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
We introduce a variant of the watchman route problem, which we call the quickest pair-visibility problem. Given two persons standing at points s and t in a simple polygon P with no holes, we want to minimize the distance these persons travel in order to see each other in P. We solve two variants of this problem, one minimizing the longer distance the two persons travel (min-max) and one minimizing the total travel distance (min-sum), optimally in linear time. We also consider a query version of this problem for the min-max variant. We can preprocess a simple n-gon in linear time so that the minimum of the longer distance the two persons travel can be computed in O(log^2 n) time for any two query positions where the two persons lie.

Cite as

Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash. On Romeo and Juliet Problems: Minimizing Distance-to-Sight. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ahn_et_al:LIPIcs.SWAT.2018.6,
  author =	{Ahn, Hee-Kap and Oh, Eunjin and Schlipf, Lena and Stehn, Fabian and Strash, Darren},
  title =	{{On Romeo and Juliet Problems: Minimizing Distance-to-Sight}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.6},
  URN =		{urn:nbn:de:0030-drops-88322},
  doi =		{10.4230/LIPIcs.SWAT.2018.6},
  annote =	{Keywords: Visibility polygon, shortest-path, watchman problems}
}
  • Refine by Type
  • 16 Document/PDF
  • 7 Document/HTML

  • Refine by Publication Year
  • 7 2025
  • 1 2024
  • 2 2023
  • 2 2022
  • 1 2020
  • Show More...

  • Refine by Author
  • 7 Strash, Darren
  • 4 Schulz, Christian
  • 3 Gottesbüren, Lars
  • 3 Heuer, Tobias
  • 2 Großmann, Ernestine
  • Show More...

  • Refine by Series/Journal
  • 13 LIPIcs
  • 1 OASIcs
  • 1 DagRep
  • 1 DagSemProc

  • Refine by Classification
  • 5 Mathematics of computing → Graph algorithms
  • 4 Theory of computation → Design and analysis of algorithms
  • 4 Theory of computation → Parameterized complexity and exact algorithms
  • 3 Theory of computation → Computational geometry
  • 2 Mathematics of computing → Combinatorial algorithms
  • Show More...

  • Refine by Keyword
  • 3 Algorithm Engineering
  • 2 Heuristics
  • 2 Vertex clique cover
  • 1 Algorithm engineering
  • 1 Balanced Cut
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail