Search Results

Documents authored by Oliveira, Igor C.



Oliveira, Igor C.

Document
Constant-Depth Circuits vs. Monotone Circuits

Authors: Bruno P. Cavalar and Igor C. Oliveira

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We establish new separations between the power of monotone and general (non-monotone) Boolean circuits: - For every k ≥ 1, there is a monotone function in AC⁰ (constant-depth poly-size circuits) that requires monotone circuits of depth Ω(log^k n). This significantly extends a classical result of Okol'nishnikova [Okol'nishnikova, 1982] and Ajtai and Gurevich [Ajtai and Gurevich, 1987]. In addition, our separation holds for a monotone graph property, which was unknown even in the context of AC⁰ versus mAC⁰. - For every k ≥ 1, there is a monotone function in AC⁰[⊕] (constant-depth poly-size circuits extended with parity gates) that requires monotone circuits of size exp(Ω(log^k n)). This makes progress towards a question posed by Grigni and Sipser [Grigni and Sipser, 1992]. These results show that constant-depth circuits can be more efficient than monotone formulas and monotone circuits when computing monotone functions. In the opposite direction, we observe that non-trivial simulations are possible in the absence of parity gates: every monotone function computed by an AC⁰ circuit of size s and depth d can be computed by a monotone circuit of size 2^{n - n/O(log s)^{d-1}}. We show that the existence of significantly faster monotone simulations would lead to breakthrough circuit lower bounds. In particular, if every monotone function in AC⁰ admits a polynomial size monotone circuit, then NC² is not contained in NC¹. Finally, we revisit our separation result against monotone circuit size and investigate the limits of our approach, which is based on a monotone lower bound for constraint satisfaction problems (CSPs) established by Göös, Kamath, Robere and Sokolov [Göös et al., 2019] via lifting techniques. Adapting results of Schaefer [Thomas J. Schaefer, 1978] and Allender, Bauland, Immerman, Schnoor and Vollmer [Eric Allender et al., 2009], we obtain an unconditional classification of the monotone circuit complexity of Boolean-valued CSPs via their polymorphisms. This result and the consequences we derive from it might be of independent interest.

Cite as

Bruno P. Cavalar and Igor C. Oliveira. Constant-Depth Circuits vs. Monotone Circuits. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 29:1-29:37, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cavalar_et_al:LIPIcs.CCC.2023.29,
  author =	{Cavalar, Bruno P. and Oliveira, Igor C.},
  title =	{{Constant-Depth Circuits vs. Monotone Circuits}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{29:1--29:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.29},
  URN =		{urn:nbn:de:0030-drops-182998},
  doi =		{10.4230/LIPIcs.CCC.2023.29},
  annote =	{Keywords: circuit complexity, monotone circuit complexity, bounded-depth circuis, constraint-satisfaction problems}
}
Document
Probabilistic Kolmogorov Complexity with Applications to Average-Case Complexity

Authors: Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
Understanding the relationship between the worst-case and average-case complexities of NP and of other subclasses of PH is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the complexity of the input string x (e.g., given a string x, estimate its time-bounded Kolmogorov complexity). In particular, [Shuichi Hirahara, 2021] employed techniques from meta-complexity to show that if DistNP ⊆ AvgP then UP ⊆ DTIME[2^{O(n/log n)}]. While this and related results [Shuichi Hirahara and Mikito Nanashima, 2021; Lijie Chen et al., 2022] offer exciting progress after a long gap, they do not survive in the setting of randomized computations: roughly speaking, "randomness" is the opposite of "structure", and upper bounding the amount of structure (time-bounded Kolmogorov complexity) of different objects is crucial in recent applications of meta-complexity. This limitation is significant, since randomized computations are ubiquitous in algorithm design and give rise to a more robust theory of average-case complexity [Russell Impagliazzo and Leonid A. Levin, 1990]. In this work, we develop a probabilistic theory of meta-complexity, by incorporating randomness into the notion of complexity of a string x. This is achieved through a new probabilistic variant of time-bounded Kolmogorov complexity that we call pK^t complexity. Informally, pK^t(x) measures the complexity of x when shared randomness is available to all parties involved in a computation. By porting key results from meta-complexity to the probabilistic domain of pK^t complexity and its variants, we are able to establish new connections between worst-case and average-case complexity in the important setting of probabilistic computations: - If DistNP ⊆ AvgBPP, then UP ⊆ RTIME[2^O(n/log n)]. - If DistΣ^P_2 ⊆ AvgBPP, then AM ⊆ BPTIME[2^O(n/log n)]. - In the fine-grained setting [Lijie Chen et al., 2022], we get UTIME[2^O(√{nlog n})] ⊆ RTIME[2^O(√{nlog n})] and AMTIME[2^O(√{nlog n})] ⊆ BPTIME[2^O(√{nlog n})] from stronger average-case assumptions. - If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME[2^O(n/log n)]. Specifically, for any 𝓁 ≥ 0, if DistΣ_{𝓁+2}^P ⊆ AvgBPP then Σ_𝓁^{P} ⊆ BPTIME[2^O(n/log n)]. - Strengthening a result from [Shuichi Hirahara and Mikito Nanashima, 2021], we show that if DistNP ⊆ AvgBPP then polynomial size Boolean circuits can be agnostically PAC learned under any unknown 𝖯/poly-samplable distribution in polynomial time. In some cases, our framework allows us to significantly simplify existing proofs, or to extend results to the more challenging probabilistic setting with little to no extra effort.

Cite as

Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic Kolmogorov Complexity with Applications to Average-Case Complexity. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 16:1-16:60, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goldberg_et_al:LIPIcs.CCC.2022.16,
  author =	{Goldberg, Halley and Kabanets, Valentine and Lu, Zhenjian and Oliveira, Igor C.},
  title =	{{Probabilistic Kolmogorov Complexity with Applications to Average-Case Complexity}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{16:1--16:60},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.16},
  URN =		{urn:nbn:de:0030-drops-165785},
  doi =		{10.4230/LIPIcs.CCC.2022.16},
  annote =	{Keywords: average-case complexity, Kolmogorov complexity, meta-complexity, worst-case to average-case reductions, learning}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

Authors: Zhenjian Lu, Igor C. Oliveira, and Marius Zimand

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is sampled with probability δ by an algorithm with prefix-free domain then 𝖪(x) ≤ log(1/δ) + O(1). In a recent work, Lu and Oliveira [Zhenjian Lu and Igor C. Oliveira, 2021] established an unconditional time-bounded version of this result, by showing that if x can be efficiently sampled with probability δ then rKt(x) = O(log(1/δ)) + O(log n), where rKt denotes the randomized analogue of Levin’s Kt complexity. Unfortunately, this result is often insufficient when transferring applications of the classical coding theorem to the time-bounded setting, as it achieves a O(log(1/δ)) bound instead of the information-theoretic optimal log(1/δ). Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded setting. Our main contributions can be summarised as follows. • Efficient coding theorem for rKt with a factor of 2. Addressing a question from [Zhenjian Lu and Igor C. Oliveira, 2021], we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) ⋅ log(1/δ) + O(log n). As in previous work, our coding theorem is efficient in the sense that it provides a polynomial-time probabilistic algorithm that, when given x, the code of the sampler, and δ, it outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt complexity bound. • Optimality under a cryptographic assumption. Under a hypothesis about the security of cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a bound of the form rKt(x) ≤ (2 - o(1)) ⋅ log(1/δ) + poly(log n). Under a weaker assumption, we exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal parameters. • Optimal coding theorem for pK^t and unconditional Antunes-Fortnow. We consider pK^t complexity [Halley Goldberg et al., 2022], a variant of rKt where the randomness is public and the time bound is fixed. We observe the existence of an optimal coding theorem for pK^t, and employ this result to establish an unconditional version of a theorem of Antunes and Fortnow [Luis Filipe Coelho Antunes and Lance Fortnow, 2009] which characterizes the worst-case running times of languages that are in average polynomial-time over all 𝖯-samplable distributions.

Cite as

Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 92:1-92:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lu_et_al:LIPIcs.ICALP.2022.92,
  author =	{Lu, Zhenjian and Oliveira, Igor C. and Zimand, Marius},
  title =	{{Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{92:1--92:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.92},
  URN =		{urn:nbn:de:0030-drops-164331},
  doi =		{10.4230/LIPIcs.ICALP.2022.92},
  annote =	{Keywords: computational complexity, randomized algorithms, Kolmogorov complexity}
}
Document
Track A: Algorithms, Complexity and Games
Majority vs. Approximate Linear Sum and Average-Case Complexity Below NC¹

Authors: Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We develop a general framework that characterizes strong average-case lower bounds against circuit classes 𝒞 contained in NC¹, such as AC⁰[⊕] and ACC⁰. We apply this framework to show: - Generic seed reduction: Pseudorandom generators (PRGs) against 𝒞 of seed length ≤ n -1 and error ε(n) = n^{-ω(1)} can be converted into PRGs of sub-polynomial seed length. - Hardness under natural distributions: If 𝖤 (deterministic exponential time) is average-case hard against 𝒞 under some distribution, then 𝖤 is average-case hard against 𝒞 under the uniform distribution. - Equivalence between worst-case and average-case hardness: Worst-case lower bounds against MAJ∘𝒞 for problems in 𝖤 are equivalent to strong average-case lower bounds against 𝒞. This can be seen as a certain converse to the Discriminator Lemma [Hajnal et al., JCSS'93]. These results were not known to hold for circuit classes that do not compute majority. Additionally, we prove that classical and recent approaches to worst-case lower bounds against ACC⁰ via communication lower bounds for NOF multi-party protocols [Håstad and Goldmann, CC'91; Razborov and Wigderson, IPL'93] and Torus polynomials degree lower bounds [Bhrushundi et al., ITCS'19] also imply strong average-case hardness against ACC⁰ under the uniform distribution. Crucial to these results is the use of non-black-box hardness amplification techniques and the interplay between Majority (MAJ) and Approximate Linear Sum (SUM̃) gates. Roughly speaking, while a MAJ gate outputs 1 when the sum of the m input bits is at least m/2, a SUM̃ gate computes a real-valued bounded weighted sum of the input bits and outputs 1 (resp. 0) if the sum is close to 1 (resp. close to 0), with the promise that one of the two cases always holds. As part of our framework, we explore ideas introduced in [Chen and Ren, STOC'20] to show that, for the purpose of proving lower bounds, a top layer MAJ gate is equivalent to a (weaker) SUM̃ gate. Motivated by this result, we extend the algorithmic method and establish stronger lower bounds against bounded-depth circuits with layers of MAJ and SUM̃ gates. Among them, we prove that: - Lower bound: NQP does not admit fixed quasi-polynomial size MAJ∘SUM̃∘ACC⁰∘THR circuits. This is the first explicit lower bound against circuits with distinct layers of MAJ, SUM̃, and THR gates. Consequently, if the aforementioned equivalence between MAJ and SUM̃ as a top gate can be extended to intermediate layers, long sought-after lower bounds against the class THR∘THR of depth-2 polynomial-size threshold circuits would follow.

Cite as

Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira. Majority vs. Approximate Linear Sum and Average-Case Complexity Below NC¹. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 51:1-51:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2021.51,
  author =	{Chen, Lijie and Lu, Zhenjian and Lyu, Xin and Oliveira, Igor C.},
  title =	{{Majority vs. Approximate Linear Sum and Average-Case Complexity Below NC¹}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{51:1--51:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.51},
  URN =		{urn:nbn:de:0030-drops-141202},
  doi =		{10.4230/LIPIcs.ICALP.2021.51},
  annote =	{Keywords: circuit complexity, average-case hardness, complexity lower bounds}
}
Document
Track A: Algorithms, Complexity and Games
An Efficient Coding Theorem via Probabilistic Representations and Its Applications

Authors: Zhenjian Lu and Igor C. Oliveira

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
A probabilistic representation of a string x ∈ {0,1}ⁿ is given by the code of a randomized algorithm that outputs x with high probability [Igor C. Oliveira, 2019]. We employ probabilistic representations to establish the first unconditional Coding Theorem in time-bounded Kolmogorov complexity. More precisely, we show that if a distribution ensemble 𝒟_m can be uniformly sampled in time T(m) and generates a string x ∈ {0,1}^* with probability at least δ, then x admits a time-bounded probabilistic representation of complexity O(log(1/δ) + log (T) + log(m)). Under mild assumptions, a representation of this form can be computed from x and the code of the sampler in time polynomial in n = |x|. We derive consequences of this result relevant to the study of data compression, pseudodeterministic algorithms, time hierarchies for sampling distributions, and complexity lower bounds. In particular, we describe an instance-based search-to-decision reduction for Levin’s Kt complexity [Leonid A. Levin, 1984] and its probabilistic analogue rKt [Igor C. Oliveira, 2019]. As a consequence, if a string x admits a succinct time-bounded representation, then a near-optimal representation can be generated from x with high probability in polynomial time. This partially addresses in a time-bounded setting a question from [Leonid A. Levin, 1984] on the efficiency of computing an optimal encoding of a string.

Cite as

Zhenjian Lu and Igor C. Oliveira. An Efficient Coding Theorem via Probabilistic Representations and Its Applications. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 94:1-94:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lu_et_al:LIPIcs.ICALP.2021.94,
  author =	{Lu, Zhenjian and Oliveira, Igor C.},
  title =	{{An Efficient Coding Theorem via Probabilistic Representations and Its Applications}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{94:1--94:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.94},
  URN =		{urn:nbn:de:0030-drops-141630},
  doi =		{10.4230/LIPIcs.ICALP.2021.94},
  annote =	{Keywords: computational complexity, randomized algorithms, Kolmogorov complexity}
}
Document
Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates

Authors: Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, and Igor C. Oliveira

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
The class 𝖥𝖮𝖱𝖬𝖴𝖫𝖠[s]∘𝒢 consists of Boolean functions computable by size-s de Morgan formulas whose leaves are any Boolean functions from a class 𝒢. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n^{1.99}]∘𝒢, for classes 𝒢 of functions with low communication complexity. Let R^(k)(𝒢) be the maximum k-party number-on-forehead randomized communication complexity of a function in 𝒢. Among other results, we show that: - The Generalized Inner Product function 𝖦𝖨𝖯^k_n cannot be computed in 𝖥𝖮𝖱𝖬𝖴𝖫𝖠[s]∘𝒢 on more than 1/2+ε fraction of inputs for s = o(n²/{(k⋅4^k⋅R^(k)(𝒢)⋅log (n/ε)⋅log(1/ε))²}). This significantly extends the lower bounds against bipartite formulas obtained by [Avishay Tal, 2017]. As a corollary, we get an average-case lower bound for 𝖦𝖨𝖯^k_n against 𝖥𝖮𝖱𝖬𝖴𝖫𝖠[n^{1.99}]∘𝖯𝖳𝖥^{k-1}, i.e., sub-quadratic-size de Morgan formulas with degree-(k-1) PTF (polynomial threshold function) gates at the bottom. - There is a PRG of seed length n/2 + O(√s⋅R^(2)(𝒢)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘𝒢. For the special case of FORMULA[s]∘𝖫𝖳𝖥, i.e., size-s formulas with LTF (linear threshold function) gates at the bottom, we get the better seed length O(n^{1/2}⋅s^{1/4}⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n half-spaces in the regime where ε ≤ 1/n, complementing a recent result of [Ryan O'Donnell et al., 2019]. - There exists a randomized 2^{n-t}-time #SAT algorithm for 𝖥𝖮𝖱𝖬𝖴𝖫𝖠[s]∘𝒢, where t = Ω(n/{√s⋅log²(s)⋅R^(2)(𝒢)})^{1/2}. In particular, this implies a nontrivial #SAT algorithm for 𝖥𝖮𝖱𝖬𝖴𝖫𝖠[n^1.99]∘𝖫𝖳𝖥. - The Minimum Circuit Size Problem is not in 𝖥𝖮𝖱𝖬𝖴𝖫𝖠[n^1.99]∘𝖷𝖮𝖱; thereby making progress on hardness magnification, in connection with results from [Igor Carboni Oliveira et al., 2019; Lijie Chen et al., 2019]. On the algorithmic side, we show that the concept class 𝖥𝖮𝖱𝖬𝖴𝖫𝖠[n^1.99]∘𝖷𝖮𝖱 can be PAC-learned in time 2^O(n/log n).

Cite as

Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, and Igor C. Oliveira. Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 15:1-15:41, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kabanets_et_al:LIPIcs.CCC.2020.15,
  author =	{Kabanets, Valentine and Koroth, Sajin and Lu, Zhenjian and Myrisiotis, Dimitrios and Oliveira, Igor C.},
  title =	{{Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{15:1--15:41},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.15},
  URN =		{urn:nbn:de:0030-drops-125673},
  doi =		{10.4230/LIPIcs.CCC.2020.15},
  annote =	{Keywords: de Morgan formulas, circuit lower bounds, satisfiability (SAT), pseudorandom generators (PRGs), learning, communication complexity, polynomial threshold functions (PTFs), parities}
}
Document
NP-Hardness of Circuit Minimization for Multi-Output Functions

Authors: Rahul Ilango, Bruno Loff, and Igor C. Oliveira

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n → {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless 𝖯 = 𝖭𝖯, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions.

Cite as

Rahul Ilango, Bruno Loff, and Igor C. Oliveira. NP-Hardness of Circuit Minimization for Multi-Output Functions. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 22:1-22:36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ilango_et_al:LIPIcs.CCC.2020.22,
  author =	{Ilango, Rahul and Loff, Bruno and Oliveira, Igor C.},
  title =	{{NP-Hardness of Circuit Minimization for Multi-Output Functions}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{22:1--22:36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.22},
  URN =		{urn:nbn:de:0030-drops-125744},
  doi =		{10.4230/LIPIcs.CCC.2020.22},
  annote =	{Keywords: MCSP, circuit minimization, communication complexity, Boolean circuit}
}
Document
Beyond Natural Proofs: Hardness Magnification and Locality

Authors: Lijie Chen, Shuichi Hirahara, Igor C. Oliveira, Ján Pich, Ninad Rajgopal, and Rahul Santhanam

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Hardness magnification reduces major complexity separations (such as EXP ⊈ NC^1) to proving lower bounds for some natural problem Q against weak circuit models. Several recent works [Igor Carboni Oliveira and Rahul Santhanam, 2018; Dylan M. McKay et al., 2019; Lijie Chen and Roei Tell, 2019; Igor Carboni Oliveira et al., 2019; Lijie Chen et al., 2019; Igor Carboni Oliveira, 2019; Lijie Chen et al., 2019] have established results of this form. In the most intriguing cases, the required lower bound is known for problems that appear to be significantly easier than Q, while Q itself is susceptible to lower bounds but these are not yet sufficient for magnification. In this work, we provide more examples of this phenomenon, and investigate the prospects of proving new lower bounds using this approach. In particular, we consider the following essential questions associated with the hardness magnification program: - Does hardness magnification avoid the natural proofs barrier of Razborov and Rudich [Alexander A. Razborov and Steven Rudich, 1997]? - Can we adapt known lower bound techniques to establish the desired lower bound for Q? We establish that some instantiations of hardness magnification overcome the natural proofs barrier in the following sense: slightly superlinear-size circuit lower bounds for certain versions of the minimum circuit size problem MCSP imply the non-existence of natural proofs. As a corollary of our result, we show that certain magnification theorems not only imply strong worst-case circuit lower bounds but also rule out the existence of efficient learning algorithms. Hardness magnification might sidestep natural proofs, but we identify a source of difficulty when trying to adapt existing lower bound techniques to prove strong lower bounds via magnification. This is captured by a locality barrier: existing magnification theorems unconditionally show that the problems Q considered above admit highly efficient circuits extended with small fan-in oracle gates, while lower bound techniques against weak circuit models quite often easily extend to circuits containing such oracles. This explains why direct adaptations of certain lower bounds are unlikely to yield strong complexity separations via hardness magnification.

Cite as

Lijie Chen, Shuichi Hirahara, Igor C. Oliveira, Ján Pich, Ninad Rajgopal, and Rahul Santhanam. Beyond Natural Proofs: Hardness Magnification and Locality. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 70:1-70:48, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2020.70,
  author =	{Chen, Lijie and Hirahara, Shuichi and Oliveira, Igor C. and Pich, J\'{a}n and Rajgopal, Ninad and Santhanam, Rahul},
  title =	{{Beyond Natural Proofs: Hardness Magnification and Locality}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{70:1--70:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.70},
  URN =		{urn:nbn:de:0030-drops-117550},
  doi =		{10.4230/LIPIcs.ITCS.2020.70},
  annote =	{Keywords: Hardness Magnification, Natural Proofs, Minimum Circuit Size Problem, Circuit Lower Bounds}
}
Document
NP-hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits

Authors: Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam

Published in: LIPIcs, Volume 102, 33rd Computational Complexity Conference (CCC 2018)


Abstract
The Minimum Circuit Size Problem (MCSP) asks for the size of the smallest boolean circuit that computes a given truth table. It is a prominent problem in NP that is believed to be hard, but for which no proof of NP-hardness has been found. A significant number of works have demonstrated the central role of this problem and its variations in diverse areas such as cryptography, derandomization, proof complexity, learning theory, and circuit lower bounds. The NP-hardness of computing the minimum numbers of terms in a DNF formula consistent with a given truth table was proved by W. Masek [William J. Masek, 1979] in 1979. In this work, we make the first progress in showing NP-hardness for more expressive classes of circuits, and establish an analogous result for the MCSP problem for depth-3 circuits of the form OR-AND-MOD_2. Our techniques extend to an NP-hardness result for MOD_m gates at the bottom layer under inputs from (Z / m Z)^n.

Cite as

Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. NP-hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 5:1-5:31, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{hirahara_et_al:LIPIcs.CCC.2018.5,
  author =	{Hirahara, Shuichi and Oliveira, Igor C. and Santhanam, Rahul},
  title =	{{NP-hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits}},
  booktitle =	{33rd Computational Complexity Conference (CCC 2018)},
  pages =	{5:1--5:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-069-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{102},
  editor =	{Servedio, Rocco A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.5},
  URN =		{urn:nbn:de:0030-drops-88831},
  doi =		{10.4230/LIPIcs.CCC.2018.5},
  annote =	{Keywords: NP-hardness, Minimum Circuit Size Problem, depth-3 circuits}
}
Document
Learning Circuits with few Negations

Authors: Eric Blais, Clément L. Canonne, Igor C. Oliveira, Rocco A. Servedio, and Li-Yang Tan

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, establishing nearly matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A.A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions).

Cite as

Eric Blais, Clément L. Canonne, Igor C. Oliveira, Rocco A. Servedio, and Li-Yang Tan. Learning Circuits with few Negations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 512-527, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{blais_et_al:LIPIcs.APPROX-RANDOM.2015.512,
  author =	{Blais, Eric and Canonne, Cl\'{e}ment L. and Oliveira, Igor C. and Servedio, Rocco A. and Tan, Li-Yang},
  title =	{{Learning Circuits with few Negations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{512--527},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.512},
  URN =		{urn:nbn:de:0030-drops-53214},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.512},
  annote =	{Keywords: Boolean functions, monotonicity, negations, PAC learning}
}

Oliveira, Igor C. Carboni

Document
Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness

Authors: Igor C. Carboni Oliveira and Rahul Santhanam

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size <= s(n). We show: Learning Speedups: If C[s(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2^n/n^{\omega(1)}, then for every k >= 1 and epsilon > 0 the class C[n^k] can be learned to high accuracy in time O(2^{n^epsilon}). There is epsilon > 0 such that C[2^{n^{epsilon}}] can be learned in time 2^n/n^{omega(1)} if and only if C[poly(n)] can be learned in time 2^{(log(n))^{O(1)}}. Equivalences between Learning Models: We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness: In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning: If for each k >= 1, (depth-d)-C[n^k] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2^n/n^{\omega(1)}, then for each k >= 1, BPE is not contained in (depth-d)-C[n^k]. If for some epsilon > 0 there are P-natural proofs useful against C[2^{n^{epsilon}}], then ZPEXP is not contained in C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes: If there is a k > 0 such that BPE is contained in i.o.Circuit[n^k], then BPEXP is contained in i.o.EXP/O(log(n)). If ZPEXP is contained in i.o.Circuit[2^{n/3}], then ZPEXP is contained in i.o.ESUBEXP. Hardness Results for MCSP: All functions in non-uniform NC^1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC^0 circuits. In particular, if MCSP is in TC^0 then NC^1 = TC^0.

Cite as

Igor C. Carboni Oliveira and Rahul Santhanam. Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 18:1-18:49, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.CCC.2017.18,
  author =	{Oliveira, Igor C. Carboni and Santhanam, Rahul},
  title =	{{Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{18:1--18:49},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.18},
  URN =		{urn:nbn:de:0030-drops-75327},
  doi =		{10.4230/LIPIcs.CCC.2017.18},
  annote =	{Keywords: boolean circuits, learning theory, pseudorandomness}
}

Oliveira, Igor Carboni

Document
Parity Helps to Compute Majority

Authors: Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We study the complexity of computing symmetric and threshold functions by constant-depth circuits with Parity gates, also known as AC^0[oplus] circuits. Razborov [Alexander A. Razborov, 1987] and Smolensky [Roman Smolensky, 1987; Roman Smolensky, 1993] showed that Majority requires depth-d AC^0[oplus] circuits of size 2^{Omega(n^{1/2(d-1)})}. By using a divide-and-conquer approach, it is easy to show that Majority can be computed with depth-d AC^0[oplus] circuits of size 2^{O~(n^{1/(d-1)})}. This gap between upper and lower bounds has stood for nearly three decades. Somewhat surprisingly, we show that neither the upper bound nor the lower bound above is tight for large d. We show for d >= 5 that any symmetric function can be computed with depth-d AC^0[oplus] circuits of size exp(O~(n^{2/3 * 1/(d-4)})). Our upper bound extends to threshold functions (with a constant additive loss in the denominator of the double exponent). We improve the Razborov-Smolensky lower bound to show that for d >= 3 Majority requires depth-d AC^0[oplus] circuits of size 2^{Omega(n^{1/(2d-4)})}. For depths d <= 4, we are able to refine our techniques to get almost-optimal bounds: the depth-3 AC^0[oplus] circuit size of Majority is 2^{Theta~(n^{1/2})}, while its depth-4 AC^0[oplus] circuit size is 2^{Theta~(n^{1/4})}.

Cite as

Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity Helps to Compute Majority. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 23:1-23:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.CCC.2019.23,
  author =	{Oliveira, Igor Carboni and Santhanam, Rahul and Srinivasan, Srikanth},
  title =	{{Parity Helps to Compute Majority}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{23:1--23:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.23},
  URN =		{urn:nbn:de:0030-drops-108453},
  doi =		{10.4230/LIPIcs.CCC.2019.23},
  annote =	{Keywords: Computational Complexity, Boolean Circuits, Lower Bounds, Parity, Majority}
}
Document
Hardness Magnification near State-Of-The-Art Lower Bounds

Authors: Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
This work continues the development of hardness magnification. The latter proposes a new strategy for showing strong complexity lower bounds by reducing them to a refined analysis of weaker models, where combinatorial techniques might be successful. We consider gap versions of the meta-computational problems MKtP and MCSP, where one needs to distinguish instances (strings or truth-tables) of complexity <= s_1(N) from instances of complexity >= s_2(N), and N = 2^n denotes the input length. In MCSP, complexity is measured by circuit size, while in MKtP one considers Levin’s notion of time-bounded Kolmogorov complexity. (In our results, the parameters s_1(N) and s_2(N) are asymptotically quite close, and the problems almost coincide with their standard formulations without a gap.) We establish that for Gap-MKtP[s_1,s_2] and Gap-MCSP[s_1,s_2], a marginal improvement over the state-of-the-art in unconditional lower bounds in a variety of computational models would imply explicit super-polynomial lower bounds. Theorem. There exists a universal constant c >= 1 for which the following hold. If there exists epsilon > 0 such that for every small enough beta > 0 (1) Gap-MCSP[2^{beta n}/c n, 2^{beta n}] !in Circuit[N^{1 + epsilon}], then NP !subseteq Circuit[poly]. (2) Gap-MKtP[2^{beta n}, 2^{beta n} + cn] !in TC^0[N^{1 + epsilon}], then EXP !subseteq TC^0[poly]. (3) Gap-MKtP[2^{beta n}, 2^{beta n} + cn] !in B_2-Formula[N^{2 + epsilon}], then EXP !subseteq Formula[poly]. (4) Gap-MKtP[2^{beta n}, 2^{beta n} + cn] !in U_2-Formula[N^{3 + epsilon}], then EXP !subseteq Formula[poly]. (5) Gap-MKtP[2^{beta n}, 2^{beta n} + cn] !in BP[N^{2 + epsilon}], then EXP !subseteq BP[poly]. (6) Gap-MKtP[2^{beta n}, 2^{beta n} + cn] !in (AC^0[6])[N^{1 + epsilon}], then EXP !subseteq AC^0[6]. These results are complemented by lower bounds for Gap-MCSP and Gap-MKtP against different models. For instance, the lower bound assumed in (1) holds for U_2-formulas of near-quadratic size, and lower bounds similar to (3)-(5) hold for various regimes of parameters. We also identify a natural computational model under which the hardness magnification threshold for Gap-MKtP lies below existing lower bounds: U_2-formulas that can compute parity functions at the leaves (instead of just literals). As a consequence, if one managed to adapt the existing lower bound techniques against such formulas to work with Gap-MKtP, then EXP !subseteq NC^1 would follow via hardness magnification.

Cite as

Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness Magnification near State-Of-The-Art Lower Bounds. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 27:1-27:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.CCC.2019.27,
  author =	{Oliveira, Igor Carboni and Pich, J\'{a}n and Santhanam, Rahul},
  title =	{{Hardness Magnification near State-Of-The-Art Lower Bounds}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{27:1--27:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.27},
  URN =		{urn:nbn:de:0030-drops-108494},
  doi =		{10.4230/LIPIcs.CCC.2019.27},
  annote =	{Keywords: Circuit Complexity, Minimum Circuit Size Problem, Kolmogorov Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Randomness and Intractability in Kolmogorov Complexity

Authors: Igor Carboni Oliveira

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension of Levin’s notion [Leonid A. Levin, 1984] of Kolmogorov complexity. A string w of low rKt complexity can be decompressed from a short representation via a time-bounded algorithm that outputs w with high probability. This complexity measure gives rise to a decision problem over strings: MrKtP (The Minimum rKt Problem). We explore ideas from pseudorandomness to prove that MrKtP and its variants cannot be solved in randomized quasi-polynomial time. This exhibits a natural string compression problem that is provably intractable, even for randomized computations. Our techniques also imply that there is no n^{1 - epsilon}-approximate algorithm for MrKtP running in randomized quasi-polynomial time. Complementing this lower bound, we observe connections between rKt, the power of randomness in computing, and circuit complexity. In particular, we present the first hardness magnification theorem for a natural problem that is unconditionally hard against a strong model of computation.

Cite as

Igor Carboni Oliveira. Randomness and Intractability in Kolmogorov Complexity. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 32:1-32:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{oliveira:LIPIcs.ICALP.2019.32,
  author =	{Oliveira, Igor Carboni},
  title =	{{Randomness and Intractability in Kolmogorov Complexity}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{32:1--32:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.32},
  URN =		{urn:nbn:de:0030-drops-106087},
  doi =		{10.4230/LIPIcs.ICALP.2019.32},
  annote =	{Keywords: computational complexity, randomness, circuit lower bounds, Kolmogorov complexity}
}
Document
Majority is Incompressible by AC^0[p] Circuits

Authors: Igor Carboni Oliveira and Rahul Santhanam

Published in: LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)


Abstract
We consider C-compression games, a hybrid model between computational and communication complexity. A C-compression game for a function f:{0,1}^n -> {0,1} is a two-party communication game, where the first party Alice knows the entire input x but is restricted to use strategies computed by C-circuits, while the second party Bob initially has no information about the input, but is computationally unbounded. The parties implement an interactive communication protocol to decide the value of f(x), and the communication cost of the protocol is the maximum number of bits sent by Alice as a function of n = |x|. We show that any AC_d[p]-compression protocol to compute Majority_n requires communication n / (log(n))^(2d + O(1)), where p is prime, and AC_d[p] denotes polynomial size unbounded fan-in depth-d Boolean circuits extended with modulo p gates. This bound is essentially optimal, and settles a question of Chattopadhyay and Santhanam (2012). This result has a number of consequences, and yields a tight lower bound on the total fan-in of oracle gates in constant-depth oracle circuits computing Majority_n. We define multiparty compression games, where Alice interacts in parallel with a polynomial number of players that are not allowed to communicate with each other, and communication cost is defined as the sum of the lengths of the longest messages sent by Alice during each round. In this setting, we prove that the randomized r-round AC^0[p]-compression cost of Majority_n is n^(Theta(1/r)). This result implies almost tight lower bounds on the maximum individual fan-in of oracle gates in certain restricted bounded-depth oracle circuits computing Majority_n. Stronger lower bounds for functions in NP would separate NP from NC^1. Finally, we consider the round separation question for two-party AC-compression games, and significantly improve known separations between r-round and (r+1)-round protocols, for any constant r.

Cite as

Igor Carboni Oliveira and Rahul Santhanam. Majority is Incompressible by AC^0[p] Circuits. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 124-157, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.CCC.2015.124,
  author =	{Oliveira, Igor Carboni and Santhanam, Rahul},
  title =	{{Majority is Incompressible by AC^0\lbrackp\rbrack Circuits}},
  booktitle =	{30th Conference on Computational Complexity (CCC 2015)},
  pages =	{124--157},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-81-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{33},
  editor =	{Zuckerman, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.124},
  URN =		{urn:nbn:de:0030-drops-50658},
  doi =		{10.4230/LIPIcs.CCC.2015.124},
  annote =	{Keywords: interactive communication, compression, circuit lower bound}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail