Search Results

Documents authored by Ordyniak, Sebastian


Document
Covering and Partitioning of Split, Chain and Cographs with Isometric Paths

Authors: Dibyayan Chakraborty, Haiko Müller, Sebastian Ordyniak, Fahad Panolan, and Mateusz Rychlicki

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a graph G, an isometric path cover of a graph is a set of isometric paths that collectively contain all vertices of G. An isometric path cover 𝒞 of a graph G is also an isometric path partition if no vertex lies in two paths in 𝒞. Given a graph G, and an integer k, the objective of Isometric Path Cover (resp. Isometric Path Partition) is to decide whether G has an isometric path cover (resp. partition) of cardinality k. In this paper, we show that Isometric Path Partition is NP-complete even on split graphs, i.e. graphs whose vertex set can be partitioned into a clique and an independent set. In contrast, we show that both Isometric Path Cover and Isometric Path Partition admit polynomial time algorithms on cographs (graphs with no induced P₄) and chain graphs (bipartite graphs with no induced 2K₂).

Cite as

Dibyayan Chakraborty, Haiko Müller, Sebastian Ordyniak, Fahad Panolan, and Mateusz Rychlicki. Covering and Partitioning of Split, Chain and Cographs with Isometric Paths. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2024.39,
  author =	{Chakraborty, Dibyayan and M\"{u}ller, Haiko and Ordyniak, Sebastian and Panolan, Fahad and Rychlicki, Mateusz},
  title =	{{Covering and Partitioning of Split, Chain and Cographs with Isometric Paths}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{39:1--39:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.39},
  URN =		{urn:nbn:de:0030-drops-205959},
  doi =		{10.4230/LIPIcs.MFCS.2024.39},
  annote =	{Keywords: Isometric path partition (cover), chordal graphs, chain graphs, split graphs}
}
Document
Track A: Algorithms, Complexity and Games
A Tight Subexponential-Time Algorithm for Two-Page Book Embedding

Authors: Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into "pages", which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2^𝒪(√n) algorithm for computing a book embedding of an n-vertex graph on two pages - a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

Cite as

Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki. A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 68:1-68:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ICALP.2024.68,
  author =	{Ganian, Robert and M\"{u}ller, Haiko and Ordyniak, Sebastian and Paesani, Giacomo and Rychlicki, Mateusz},
  title =	{{A Tight Subexponential-Time Algorithm for Two-Page Book Embedding}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{68:1--68:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.68},
  URN =		{urn:nbn:de:0030-drops-202114},
  doi =		{10.4230/LIPIcs.ICALP.2024.68},
  annote =	{Keywords: book embedding, page number, subexponential algorithms, subhamiltonicity, feedback edge number}
}
Document
Treewidth Is NP-Complete on Cubic Graphs

Authors: Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
In this paper, we show that Treewidth is NP-complete for cubic graphs, thereby improving the result by Bodlaender and Thilikos from 1997 that Treewidth is NP-complete on graphs with maximum degree at most 9. We add a new and simpler proof of the NP-completeness of treewidth, and show that Treewidth remains NP-complete on subcubic induced subgraphs of the infinite 3-dimensional grid.

Cite as

Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý. Treewidth Is NP-Complete on Cubic Graphs. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2023.7,
  author =	{Bodlaender, Hans L. and Bonnet, \'{E}douard and Jaffke, Lars and Knop, Du\v{s}an and Lima, Paloma T. and Milani\v{c}, Martin and Ordyniak, Sebastian and Pandey, Sukanya and Such\'{y}, Ond\v{r}ej},
  title =	{{Treewidth Is NP-Complete on Cubic Graphs}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{7:1--7:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.7},
  URN =		{urn:nbn:de:0030-drops-194263},
  doi =		{10.4230/LIPIcs.IPEC.2023.7},
  annote =	{Keywords: Treewidth, cubic graphs, degree, NP-completeness}
}
Document
Parameterized Complexity Classification for Interval Constraints

Authors: Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Constraint satisfaction problems form a nicely behaved class of problems that lends itself to complexity classification results. From the point of view of parameterized complexity, a natural task is to classify the parameterized complexity of MinCSP problems parameterized by the number of unsatisfied constraints. In other words, we ask whether we can delete at most k constraints, where k is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the parameterized complexity for an important infinite-domain CSP: Allen’s interval algebra (IA). This CSP has closed intervals with rational endpoints as domain values and employs a set A of 13 basic comparison relations such as "precedes" or "during" for relating intervals. IA is a highly influential and well-studied formalism within AI and qualitative reasoning that has numerous applications in, for instance, planning, natural language processing and molecular biology. We provide an FPT vs. W[1]-hard dichotomy for MinCSP(Γ) for all Γ ⊆ A. IA is sometimes extended with unions of the relations in A or first-order definable relations over A, but extending our results to these cases would require first solving the parameterized complexity of Directed Symmetric Multicut, which is a notorious open problem. Already in this limited setting, we uncover connections to new variants of graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback arc set problems in directed graphs, as well as new tractable cases with algorithms based on the recently introduced flow augmentation technique. Given the intractability of MinCSP(A) in general, we then consider (parameterized) approximation algorithms. We first show that MinCSP(A) cannot be polynomial-time approximated within any constant factor and continue by presenting a factor-2 fpt-approximation algorithm. Once again, this algorithm has its roots in flow augmentation.

Cite as

Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma. Parameterized Complexity Classification for Interval Constraints. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dabrowski_et_al:LIPIcs.IPEC.2023.11,
  author =	{Dabrowski, Konrad K. and Jonsson, Peter and Ordyniak, Sebastian and Osipov, George and Pilipczuk, Marcin and Sharma, Roohani},
  title =	{{Parameterized Complexity Classification for Interval Constraints}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.11},
  URN =		{urn:nbn:de:0030-drops-194306},
  doi =		{10.4230/LIPIcs.IPEC.2023.11},
  annote =	{Keywords: (minimum) constraint satisfaction problem, Allen’s interval algebra, parameterized complexity, cut problems}
}
Document
From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem

Authors: Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Several works have recently investigated the parameterized complexity of data completion problems, motivated by their applications in machine learning, and clustering in particular. Interestingly, these problems can be equivalently formulated as classical graph problems on induced subgraphs of powers of partially-defined hypercubes. In this paper, we follow up on this recent direction by investigating the Independent Set problem on this graph class, which has been studied in the data science setting under the name Diversity. We obtain a comprehensive picture of the problem’s parameterized complexity and establish its fixed-parameter tractability w.r.t. the solution size plus the power of the hypercube. Given that several such FO-definable problems have been shown to be fixed-parameter tractable on the considered graph class, one may ask whether fixed-parameter tractability could be extended to capture all FO-definable problems. We answer this question in the negative by showing that FO model checking on induced subgraphs of hypercubes is as difficult as FO model checking on general graphs.

Cite as

Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.IPEC.2023.16,
  author =	{Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.16},
  URN =		{urn:nbn:de:0030-drops-194357},
  doi =		{10.4230/LIPIcs.IPEC.2023.16},
  annote =	{Keywords: Independent Set, Powers of Hypercubes, Diversity, Parameterized Complexity, Incomplete Data}
}
Document
SAT Backdoors: Depth Beats Size

Authors: Jan Dreier, Sebastian Ordyniak, and Stefan Szeider

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
For several decades, much effort has been put into identifying classes of CNF formulas whose satisfiability can be decided in polynomial time. Classic results are the linear-time tractability of Horn formulas (Aspvall, Plass, and Tarjan, 1979) and Krom (i.e., 2CNF) formulas (Dowling and Gallier, 1984). Backdoors, introduced by Williams, Gomes and Selman (2003), gradually extend such a tractable class to all formulas of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a formula and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021), is a more refined distance measure, which admits the utilization of different backdoor variables in parallel. Bounded backdoor size implies bounded backdoor depth, but there are formulas of constant backdoor depth and arbitrarily large backdoor size. We propose FPT approximation algorithms to compute backdoor depth into the classes Horn and Krom. This leads to a linear-time algorithm for deciding the satisfiability of formulas of bounded backdoor depth into these classes. We base our FPT approximation algorithm on a sophisticated notion of obstructions, extending Mählmann et al.’s obstruction trees in various ways, including the addition of separator obstructions. We develop the algorithm through a new game-theoretic framework that simplifies the reasoning about backdoors. Finally, we show that bounded backdoor depth captures tractable classes of CNF formulas not captured by any known method.

Cite as

Jan Dreier, Sebastian Ordyniak, and Stefan Szeider. SAT Backdoors: Depth Beats Size. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 46:1-46:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ESA.2022.46,
  author =	{Dreier, Jan and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{SAT Backdoors: Depth Beats Size}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{46:1--46:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.46},
  URN =		{urn:nbn:de:0030-drops-169840},
  doi =		{10.4230/LIPIcs.ESA.2022.46},
  annote =	{Keywords: satisfiability, backdoor (depth)}
}
Document
Finding a Cluster in Incomplete Data

Authors: Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study two variants of the fundamental problem of finding a cluster in incomplete data. In the problems under consideration, we are given a multiset of incomplete d-dimensional vectors over the binary domain and integers k and r, and the goal is to complete the missing vector entries so that the multiset of complete vectors either contains (i) a cluster of k vectors of radius at most r, or (ii) a cluster of k vectors of diameter at most r. We give tight characterizations of the parameterized complexity of the problems under consideration with respect to the parameters k, r, and a third parameter that captures the missing vector entries.

Cite as

Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Finding a Cluster in Incomplete Data. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 47:1-47:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.ESA.2022.47,
  author =	{Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{Finding a Cluster in Incomplete Data}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{47:1--47:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.47},
  URN =		{urn:nbn:de:0030-drops-169858},
  doi =		{10.4230/LIPIcs.ESA.2022.47},
  annote =	{Keywords: Parameterized complexity, incomplete data, clustering}
}
Document
CSP Beyond Tractable Constraint Languages

Authors: Jan Dreier, Sebastian Ordyniak, and Stefan Szeider

Published in: LIPIcs, Volume 235, 28th International Conference on Principles and Practice of Constraint Programming (CP 2022)


Abstract
The constraint satisfaction problem (CSP) is among the most studied computational problems. While NP-hard, many tractable subproblems have been identified (Bulatov 2017, Zuk 2017). Backdoors, introduced by Williams, Gomes, and Selman (2003), gradually extend such a tractable class to all CSP instances of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a CSP instance and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021) for SAT, is a more refined distance measure, which admits the parallel utilization of different backdoor variables. Bounded backdoor size implies bounded backdoor depth, but there are instances of constant backdoor depth and arbitrarily large backdoor size. Dreier, Ordyniak, and Szeider (2022) provided fixed-parameter algorithms for finding backdoors of small depth into the classes of Horn and Krom formulas. In this paper, we consider backdoor depth for CSP. We consider backdoors w.r.t. tractable subproblems C_Γ of the CSP defined by a constraint language Γ, i.e., where all the constraints use relations from the language Γ. Building upon Dreier et al.’s game-theoretic approach and their notion of separator obstructions, we show that for any finite, tractable, semi-conservative constraint language Γ, the CSP is fixed-parameter tractable parameterized by the backdoor depth into C_Γ plus the domain size. With backdoors of low depth, we reach classes of instances that require backdoors of arbitrary large size. Hence, our results strictly generalize several known results for CSP that are based on backdoor size.

Cite as

Jan Dreier, Sebastian Ordyniak, and Stefan Szeider. CSP Beyond Tractable Constraint Languages. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 235, pp. 20:1-20:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.CP.2022.20,
  author =	{Dreier, Jan and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{CSP Beyond Tractable Constraint Languages}},
  booktitle =	{28th International Conference on Principles and Practice of Constraint Programming (CP 2022)},
  pages =	{20:1--20:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-240-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{235},
  editor =	{Solnon, Christine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.20},
  URN =		{urn:nbn:de:0030-drops-166490},
  doi =		{10.4230/LIPIcs.CP.2022.20},
  annote =	{Keywords: CSP, backdoor depth, constraint language, tractable class, recursive backdoor}
}
Document
Reasoning Short Cuts in Infinite Domain Constraint Satisfaction: Algorithms and Lower Bounds for Backdoors

Authors: Peter Jonsson, Victor Lagerkvist, and Sebastian Ordyniak

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
A backdoor in a finite-domain CSP instance is a set of variables where each possible instantiation moves the instance into a polynomial-time solvable class. Backdoors have found many applications in artificial intelligence and elsewhere, and the algorithmic problem of finding such backdoors has consequently been intensively studied. Sioutis and Janhunen (KI, 2019) have proposed a generalised backdoor concept suitable for infinite-domain CSP instances over binary constraints. We generalise their concept into a large class of CSPs that allow for higher-arity constraints. We show that this kind of infinite-domain backdoors have many of the positive computational properties that finite-domain backdoors have: the associated computational problems are fixed-parameter tractable whenever the underlying constraint language is finite. On the other hand, we show that infinite languages make the problems considerably harder.

Cite as

Peter Jonsson, Victor Lagerkvist, and Sebastian Ordyniak. Reasoning Short Cuts in Infinite Domain Constraint Satisfaction: Algorithms and Lower Bounds for Backdoors. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 32:1-32:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{jonsson_et_al:LIPIcs.CP.2021.32,
  author =	{Jonsson, Peter and Lagerkvist, Victor and Ordyniak, Sebastian},
  title =	{{Reasoning Short Cuts in Infinite Domain Constraint Satisfaction: Algorithms and Lower Bounds for Backdoors}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{32:1--32:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.32},
  URN =		{urn:nbn:de:0030-drops-153238},
  doi =		{10.4230/LIPIcs.CP.2021.32},
  annote =	{Keywords: Constraint Satisfaction Problems, Parameterised Complexity, Backdoors}
}
Document
Parameterized Pre-Coloring Extension and List Coloring Problems

Authors: Gregory Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by k: (1) Given a graph G, a clique modulator D (a clique modulator is a set of vertices, whose removal results in a clique) of size k for G, and a list L(v) of colors for every v ∈ V(G), decide whether G has a proper list coloring; (2) Given a graph G, a clique modulator D of size k for G, and a pre-coloring λ_P: X → Q for X ⊆ V(G), decide whether λ_P can be extended to a proper coloring of G using only colors from Q. For Problem 1 we design an O*(2^k)-time randomized algorithm and for Problem 2 we obtain a kernel with at most 3k vertices. Banik et al. (IWOCA 2019) proved the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v) of exactly n-k colors for every v ∈ V(G), decide whether there is a proper list coloring for G. We obtain a kernel with O(k²) vertices and colors and a compression to a variation of the problem with O(k) vertices and O(k²) colors.

Cite as

Gregory Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström. Parameterized Pre-Coloring Extension and List Coloring Problems. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gutin_et_al:LIPIcs.STACS.2020.19,
  author =	{Gutin, Gregory and Majumdar, Diptapriyo and Ordyniak, Sebastian and Wahlstr\"{o}m, Magnus},
  title =	{{Parameterized Pre-Coloring Extension and List Coloring Problems}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.19},
  URN =		{urn:nbn:de:0030-drops-118801},
  doi =		{10.4230/LIPIcs.STACS.2020.19},
  annote =	{Keywords: Parameterized Algorithms, W-hardness, Kernelization, Graph Coloring, List Coloring}
}
Document
Group Activity Selection with Few Agent Types

Authors: Robert Ganian, Sebastian Ordyniak, and C. S. Rahul

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
The Group Activity Selection Problem (GASP) models situations where a group of agents needs to be distributed to a set of activities while taking into account preferences of the agents w.r.t. individual activities and activity sizes. The problem, along with its well-known variants sGASP and gGASP, has previously been studied in the parameterized complexity setting with various parameterizations, such as number of agents, number of activities and solution size. However, the complexity of the problem parameterized by the number of types of agents, a natural parameter proposed already in the first paper that introduced GASP, has so far remained unexplored. In this paper we establish the complexity map for GASP, sGASP and gGASP when the number of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of general interest) and identifying certain compression steps which allow us to focus on solutions which are "acyclic". These algorithms are complemented by matching lower bounds, which among others close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest: as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted variant of multi-dimensional Subset Sum, which may find applications in other settings as well.

Cite as

Robert Ganian, Sebastian Ordyniak, and C. S. Rahul. Group Activity Selection with Few Agent Types. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 48:1-48:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ESA.2019.48,
  author =	{Ganian, Robert and Ordyniak, Sebastian and Rahul, C. S.},
  title =	{{Group Activity Selection with Few Agent Types}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{48:1--48:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.48},
  URN =		{urn:nbn:de:0030-drops-111693},
  doi =		{10.4230/LIPIcs.ESA.2019.48},
  annote =	{Keywords: group activity selection problem, parameterized complexity analysis, multi-agent systems}
}
Document
Small Resolution Proofs for QBF using Dependency Treewidth

Authors: Eduard Eiben, Robert Ganian, and Sebastian Ordyniak

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
In spite of the close connection between the evaluation of quantified Boolean formulas (QBF) and propositional satisfiability (SAT), tools and techniques which exploit structural properties of SAT instances are known to fail for QBF. This is especially true for the structural parameter treewidth, which has allowed the design of successful algorithms for SAT but cannot be straightforwardly applied to QBF since it does not take into account the interdependencies between quantified variables. In this work we introduce and develop dependency treewidth, a new structural parameter based on treewidth which allows the efficient solution of QBF instances. Dependency treewidth pushes the frontiers of tractability for QBF by overcoming the limitations of previously introduced variants of treewidth for QBF. We augment our results by developing algorithms for computing the decompositions that are required to use the parameter.

Cite as

Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. Small Resolution Proofs for QBF using Dependency Treewidth. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 28:1-28:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.STACS.2018.28,
  author =	{Eiben, Eduard and Ganian, Robert and Ordyniak, Sebastian},
  title =	{{Small Resolution Proofs for QBF using Dependency Treewidth}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{28:1--28:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.28},
  URN =		{urn:nbn:de:0030-drops-85135},
  doi =		{10.4230/LIPIcs.STACS.2018.28},
  annote =	{Keywords: QBF, treewidth, fixed parameter tractability, dependency schemes}
}
Document
On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem

Authors: Robert Ganian, Fabian Klute, and Sebastian Ordyniak

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
We study the parameterized complexity of the Bounded-Degree Vertex Deletion problem (BDD), where the aim is to find a maximum induced subgraph whose maximum degree is below a given degree bound. Our focus lies on parameters that measure the structural properties of the input instance. We first show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth, and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at most three. We thereby resolve the main open question stated in Betzler, Bredereck, Niedermeier and Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback vertex set number. On the positive side, we obtain fixed-parameter algorithms for the problem with respect to the decompositional parameter treecut width and a novel problem-specific parameter called the core fracture number.

Cite as

Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.STACS.2018.33,
  author =	{Ganian, Robert and Klute, Fabian and Ordyniak, Sebastian},
  title =	{{On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.33},
  URN =		{urn:nbn:de:0030-drops-85140},
  doi =		{10.4230/LIPIcs.STACS.2018.33},
  annote =	{Keywords: bounded-degree vertex deletion, feedback vertex set, parameterized algorithms, treecut width}
}
Document
On Structural Parameterizations of the Edge Disjoint Paths Problem

Authors: Robert Ganian, Sebastian Ordyniak, and Ramanujan Sridharan

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
In this paper we revisit the classical Edge Disjoint Paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our focus lies on structural parameterizations for the problem that allow for efficient (polynomial-time or fpt) algorithms. As our first result, we answer an open question stated in Fleszar, Mnich, and Spoerhase (2016), by showing that the problem can be solved in polynomial time if the input graph has a feedback vertex set of size one. We also show that EDP parameterized by the treewidth and the maximum degree of the input graph is fixed-parameter tractable. Having developed two novel algorithms for EDP using structural restrictions on the input graph, we then turn our attention towards the augmented graph, i.e., the graph obtained from the input graph after adding one edge between every terminal pair. In constrast to the input graph, where EDP is known to remain NP-hard even for treewidth two, a result by Zhou et al. (2000) shows that EDP can be solved in non-uniform polynomial time if the augmented graph has constant treewidth; we note that the possible improvement of this result to an fpt-algorithm has remained open since then. We show that this is highly unlikely by establishing the W[1]-hardness of the problem parameterized by the treewidth (and even feedback vertex set) of the augmented graph. Finally, we develop an fpt-algorithm for EDP by exploiting a novel structural parameter of the augmented graph.

Cite as

Robert Ganian, Sebastian Ordyniak, and Ramanujan Sridharan. On Structural Parameterizations of the Edge Disjoint Paths Problem. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 36:1-36:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ISAAC.2017.36,
  author =	{Ganian, Robert and Ordyniak, Sebastian and Sridharan, Ramanujan},
  title =	{{On Structural Parameterizations of the Edge Disjoint Paths Problem}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.36},
  URN =		{urn:nbn:de:0030-drops-82555},
  doi =		{10.4230/LIPIcs.ISAAC.2017.36},
  annote =	{Keywords: edge disjoint path problem, feedback vertex set, treewidth, fracture number, parameterized complexity}
}
Document
Towards a Polynomial Kernel for Directed Feedback Vertex Set

Authors: Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph D and an integer k. The objective is to determine whether there exists a set of at most k vertices intersecting every directed cycle of D. DFVS was shown to be fixed-parameter tractable when parameterized by solution size by Chen, Liu, Lu, O'Sullivan and Razgon [JACM 2008]; since then, the existence of a polynomial kernel for this problem has become one of the largest open problems in the area of parameterized algorithmics. In this paper, we study DFVS parameterized by the feedback vertex set number of the underlying undirected graph. We provide two main contributions: a polynomial kernel for this problem on general instances, and a linear kernel for the case where the input digraph is embeddable on a surface of bounded genus.

Cite as

Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. Towards a Polynomial Kernel for Directed Feedback Vertex Set. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.MFCS.2017.36,
  author =	{Bergougnoux, Benjamin and Eiben, Eduard and Ganian, Robert and Ordyniak, Sebastian and Ramanujan, M. S.},
  title =	{{Towards a Polynomial Kernel for Directed Feedback Vertex Set}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.36},
  URN =		{urn:nbn:de:0030-drops-81126},
  doi =		{10.4230/LIPIcs.MFCS.2017.36},
  annote =	{Keywords: parameterized algorithms, kernelization, (directed) feedback vertex set}
}
Document
Backdoor Sets for CSP

Authors: Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider

Published in: Dagstuhl Follow-Ups, Volume 7, The Constraint Satisfaction Problem: Complexity and Approximability (2017)


Abstract
A backdoor set of a CSP instance is a set of variables whose instantiation moves the instance into a fixed class of tractable instances (an island of tractability). An interesting algorithmic task is to find a small backdoor set efficiently: once it is found we can solve the instance by solving a number of tractable instances. Parameterized complexity provides an adequate framework for studying and solving this algorithmic task, where the size of the backdoor set provides a natural parameter. In this survey we present some recent parameterized complexity results on CSP backdoor sets, focusing on backdoor sets into islands of tractability that are defined in terms of constraint languages.

Cite as

Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider. Backdoor Sets for CSP. In The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, pp. 137-157, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InCollection{gaspers_et_al:DFU.Vol7.15301.137,
  author =	{Gaspers, Serge and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{Backdoor Sets for CSP}},
  booktitle =	{The Constraint Satisfaction Problem: Complexity and Approximability},
  pages =	{137--157},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-95977-003-3},
  ISSN =	{1868-8977},
  year =	{2017},
  volume =	{7},
  editor =	{Krokhin, Andrei and Zivny, Stanislav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DFU.Vol7.15301.137},
  URN =		{urn:nbn:de:0030-drops-69626},
  doi =		{10.4230/DFU.Vol7.15301.137},
  annote =	{Keywords: Backdoor sets, Constraint satisfaction problems, Parameterized complexity, Polymorphisms}
}
Document
Backdoors for Linear Temporal Logic

Authors: Arne Meier, Sebastian Ordyniak, Ramanujan Sridharan, and Irena Schindler

Published in: LIPIcs, Volume 63, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)


Abstract
In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable (FPT) whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.

Cite as

Arne Meier, Sebastian Ordyniak, Ramanujan Sridharan, and Irena Schindler. Backdoors for Linear Temporal Logic. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 23:1-23:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{meier_et_al:LIPIcs.IPEC.2016.23,
  author =	{Meier, Arne and Ordyniak, Sebastian and Sridharan, Ramanujan and Schindler, Irena},
  title =	{{Backdoors for Linear Temporal Logic}},
  booktitle =	{11th International Symposium on Parameterized and Exact Computation (IPEC 2016)},
  pages =	{23:1--23:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-023-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{63},
  editor =	{Guo, Jiong and Hermelin, Danny},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.23},
  URN =		{urn:nbn:de:0030-drops-69462},
  doi =		{10.4230/LIPIcs.IPEC.2016.23},
  annote =	{Keywords: Linear Temporal Logic, Parameterized Complexity, Backdoor Sets}
}
Document
On the Complexity Landscape of Connected f-Factor Problems

Authors: Robert Ganian, N. S. Narayanaswamy, Sebastian Ordyniak, C. S. Rahul, and M. S. Ramanujan

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
Given an n-vertex graph G and a function f:V(G) -> {0, ..., n-1}, an f-factor is a subgraph H of G such that deg_H(v)=f(v) for every vertex v in V(G); we say that H is a connected f-factor if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connected f-factor is easily seen to generalize Hamiltonian Cycle and hence is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when f(v) is at least n^epsilon for each vertex v and epsilon<1; on the other side of the spectrum, the problem was known to be polynomial-time solvable when f(v) is at least n/3 for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restricting the function f. In particular, we show that when f(v) is required to be at least n/(log n)^c, the problem can be solved in quasi-polynomial time in general and in randomized polynomial time if c <= 1. We also show that when c>1, the problem is NP-intermediate.

Cite as

Robert Ganian, N. S. Narayanaswamy, Sebastian Ordyniak, C. S. Rahul, and M. S. Ramanujan. On the Complexity Landscape of Connected f-Factor Problems. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.MFCS.2016.41,
  author =	{Ganian, Robert and Narayanaswamy, N. S. and Ordyniak, Sebastian and Rahul, C. S. and Ramanujan, M. S.},
  title =	{{On the Complexity Landscape of  Connected f-Factor Problems}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{41:1--41:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.41},
  URN =		{urn:nbn:de:0030-drops-65013},
  doi =		{10.4230/LIPIcs.MFCS.2016.41},
  annote =	{Keywords: f-factors, connected f-factors, quasi-polynomial time algorithms, randomized algorithms}
}
Document
Counting Linear Extensions: Parameterizations by Treewidth

Authors: Eduard Eiben, Robert Ganian, Kustaa Kangas, and Sebastian Ordyniak

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We consider the #P-complete problem of counting the number of linear extensions of a poset (#LE); a fundamental problem in order theory with applications in a variety of distinct areas. In particular, we study the complexity of #LE parameterized by the well-known decompositional parameter treewidth for two natural graphical representations of the input poset, i.e., the cover and the incomparability graph. Our main result shows that #LE is fixed-parameter intractable parameterized by the treewidth of the cover graph. This resolves an open problem recently posed in the Dagstuhl seminar on Exact Algorithms. On the positive side we show that #LE becomes fixed-parameter tractable parameterized by the treewidth of the incomparability graph.

Cite as

Eduard Eiben, Robert Ganian, Kustaa Kangas, and Sebastian Ordyniak. Counting Linear Extensions: Parameterizations by Treewidth. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.ESA.2016.39,
  author =	{Eiben, Eduard and Ganian, Robert and Kangas, Kustaa and Ordyniak, Sebastian},
  title =	{{Counting Linear Extensions: Parameterizations by Treewidth}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.39},
  URN =		{urn:nbn:de:0030-drops-63903},
  doi =		{10.4230/LIPIcs.ESA.2016.39},
  annote =	{Keywords: Partially ordered sets, Linear extensions, Parameterized Complexity, Structural parameters, Treewidth}
}
Document
Backdoors to q-Horn

Authors: Serge Gaspers, Sebastian Ordyniak, M. S. Ramanujan, Saket Saurabh, and Stefan Szeider

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
The class q-Horn, introduced by Boros, Crama and Hammer in 1990, is one of the largest known classes of propositional CNF formulas for which satisfiability can be decided in polynomial time. This class properly contains the fundamental classes of Horn and Krom formulas as well as the class of renamable (or disguised) Horn formulas. In this paper we extend this class so that its favorable algorithmic properties can be made accessible to formulas that are outside but "close"' to this class. We show that deciding satisfiability is fixed-parameter tractable parameterized by the distance of the given formula from q-Horn. The distance is measured by the smallest number of variables that we need to delete from the formula in order to get a q-Horn formula, i.e., the size of a smallest deletion backdoor set into the class q-Horn. This result generalizes known fixed-parameter tractability results for satisfiability decision with respect to the parameters distance from Horn, Krom, and renamable Horn.

Cite as

Serge Gaspers, Sebastian Ordyniak, M. S. Ramanujan, Saket Saurabh, and Stefan Szeider. Backdoors to q-Horn. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 67-79, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.STACS.2013.67,
  author =	{Gaspers, Serge and Ordyniak, Sebastian and Ramanujan, M. S. and Saurabh, Saket and Szeider, Stefan},
  title =	{{Backdoors to q-Horn}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{67--79},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.67},
  URN =		{urn:nbn:de:0030-drops-39236},
  doi =		{10.4230/LIPIcs.STACS.2013.67},
  annote =	{Keywords: Algorithms and data structures, Backdoor sets, Satisfiability, Fixed Parameter Tractability}
}
Document
Satisfiability of Acyclic and Almost Acyclic CNF Formulas

Authors: Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider

Published in: LIPIcs, Volume 8, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)


Abstract
We study the propositional satisfiability problem (SAT) on classes of CNF formulas (formulas in Conjunctive Normal Form) that obey certain structural restrictions in terms of their hypergraph structure, by associating to a CNF formula the hypergraph obtained by ignoring negations and considering clauses as hyperedges on variables. We show that satisfiability of CNF formulas with so-called ``beta-acyclic hypergraphs'' can be decided in polynomial time. We also study the parameterized complexity of SAT for ``almost'' beta-acyclic instances, using as parameter the formula's distance from being beta-acyclic. As distance we use the size of smallest strong backdoor sets and the beta-hypertree width. As a by-product we obtain the W[1]-hardness of SAT parameterized by the (undirected) clique-width of the incidence graph, which disproves a conjecture by Fischer, Makowsky, and Ravve (Discr. Appl. Math. 156, 2008).

Cite as

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider. Satisfiability of Acyclic and Almost Acyclic CNF Formulas. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), Volume 8, pp. 84-95, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{ordyniak_et_al:LIPIcs.FSTTCS.2010.84,
  author =	{Ordyniak, Sebastian and Paulusma, Daniel and Szeider, Stefan},
  title =	{{Satisfiability of Acyclic and Almost Acyclic CNF Formulas}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)},
  pages =	{84--95},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-23-1},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{8},
  editor =	{Lodaya, Kamal and Mahajan, Meena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2010.84},
  URN =		{urn:nbn:de:0030-drops-28556},
  doi =		{10.4230/LIPIcs.FSTTCS.2010.84},
  annote =	{Keywords: Satisfiability, chordal bipartite graphs, beta-acyclic hypergraphs, backdoor sets, parameterized complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail