Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)

In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights) on n nodes and m edges with specified source vertices s_1, … , s_k, and target vertices t_1, … , t_k, and are tasked with determining if G contains vertex-disjoint (s_i,t_i)-shortest paths. For any constant k, it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and present better conditional lower bounds for k-DSP and its variants.
Previous work solved 2-DSP over weighted undirected graphs in O(n⁷) time, and weighted DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic however, and so only solve the detection rather than search version of 2-DSP (we show how to solve the search version in O(mn) time, which is faster than the previous best runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs).
We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Ω(m^k) time. We show that k-EDSP can be solved over DAGs in O(mn^{k-1}) time, matching the fastest known runtime for solving k-DSP over DAGs.
Previous work established conditional lower bounds for solving k-DSP and its variants via reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to 2k-DSP in DAGs and undirected graphs with O((kn)²) nodes. We improve this reduction, by showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)²) nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k-1)/2. We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k²/4⌋.
Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6.

Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein. Detecting Disjoint Shortest Paths in Linear Time and More. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{akmal_et_al:LIPIcs.ICALP.2024.9, author = {Akmal, Shyan and Vassilevska Williams, Virginia and Wein, Nicole}, title = {{Detecting Disjoint Shortest Paths in Linear Time and More}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {9:1--9:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.9}, URN = {urn:nbn:de:0030-drops-201529}, doi = {10.4230/LIPIcs.ICALP.2024.9}, annote = {Keywords: disjoint shortest paths, algebraic graph algorithms, disjoint paths, fine-grained complexity, clique} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)

We construct n-node graphs on which any O(n)-size spanner has additive error at least +Ω(n^{3/17}), improving on the previous best lower bound of Ω(n^{1/7}) [Bodwin-Hoppenworth FOCS '22]. Our construction completes the first two steps of a particular three-step research program, introduced in prior work and overviewed here, aimed at producing tight bounds for the problem by aligning aspects of the upper and lower bound constructions. More specifically, we develop techniques that enable the use of inner graphs in the lower bound framework whose technical properties are provably tight with the corresponding assumptions made in the upper bounds. As an additional application of our techniques, we improve the corresponding lower bound for O(n)-size additive emulators to +Ω(n^{1/14}).

Greg Bodwin, Gary Hoppenworth, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Additive Spanner Lower Bounds with Optimal Inner Graph Structure. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.28, author = {Bodwin, Greg and Hoppenworth, Gary and Vassilevska Williams, Virginia and Wein, Nicole and Xu, Zixuan}, title = {{Additive Spanner Lower Bounds with Optimal Inner Graph Structure}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {28:1--28:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.28}, URN = {urn:nbn:de:0030-drops-201715}, doi = {10.4230/LIPIcs.ICALP.2024.28}, annote = {Keywords: Additive Spanners, Graph Theory} }

Document

**Published in:** LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)

The aspect ratio of a (positively) weighted graph G is the ratio of its maximum edge weight to its minimum edge weight. Aspect ratio commonly arises as a complexity measure in graph algorithms, especially related to the computation of shortest paths. Popular paradigms are to interpolate between the settings of weighted and unweighted input graphs by incurring a dependence on aspect ratio, or by simply restricting attention to input graphs of low aspect ratio.
This paper studies the effects of these paradigms, investigating whether graphs of low aspect ratio have more structured shortest paths than graphs in general. In particular, we raise the question of whether one can generally take a graph of large aspect ratio and reweight its edges, to obtain a graph with bounded aspect ratio while preserving the structure of its shortest paths. Our findings are:
- Every weighted DAG on n nodes has a shortest-paths preserving graph of aspect ratio O(n). A simple lower bound shows that this is tight.
- The previous result does not extend to general directed or undirected graphs; in fact, the answer turns out to be exponential in these settings. In particular, we construct directed and undirected n-node graphs for which any shortest-paths preserving graph has aspect ratio 2^{Ω(n)}.
We also consider the approximate version of this problem, where the goal is for shortest paths in H to correspond to approximate shortest paths in G. We show that our exponential lower bounds extend even to this setting. We also show that in a closely related model, where approximate shortest paths in H must also correspond to approximate shortest paths in G, even DAGs require exponential aspect ratio.

Aaron Bernstein, Greg Bodwin, and Nicole Wein. Are There Graphs Whose Shortest Path Structure Requires Large Edge Weights?. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{bernstein_et_al:LIPIcs.ITCS.2024.12, author = {Bernstein, Aaron and Bodwin, Greg and Wein, Nicole}, title = {{Are There Graphs Whose Shortest Path Structure Requires Large Edge Weights?}}, booktitle = {15th Innovations in Theoretical Computer Science Conference (ITCS 2024)}, pages = {12:1--12:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-309-6}, ISSN = {1868-8969}, year = {2024}, volume = {287}, editor = {Guruswami, Venkatesan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.12}, URN = {urn:nbn:de:0030-drops-195405}, doi = {10.4230/LIPIcs.ITCS.2024.12}, annote = {Keywords: shortest paths, graph theory, weighted graphs} }

Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

Amiri and Wargalla proved the following local-to-global theorem about shortest paths in directed acyclic graphs (DAGs): if G is a weighted DAG with the property that for each subset S of 3 nodes there is a shortest path containing every node in S, then there exists a pair (s,t) of nodes such that there is a shortest st-path containing every node in G. We extend this theorem to general graphs. For undirected graphs, we prove that the same theorem holds (up to a difference in the constant 3). For directed graphs, we provide a counterexample to the theorem (for any constant). However, we prove a roundtrip analogue of the theorem which guarantees there exists a pair (s,t) of nodes such that every node in G is contained in the union of a shortest st-path and a shortest ts-path.
The original local-to-global theorem for DAGs has an application to the k-Shortest Paths with Congestion c ((k,c)-SPC) problem. In this problem, we are given a weighted graph G, together with k node pairs (s_1,t_1),… ,(s_k,t_k), and a positive integer c ≤ k, and tasked with finding a collection of paths P_1,… , P_k such that each P_i is a shortest path from s_i to t_i, and every node in the graph is on at most c paths P_i, or reporting that no such collection of paths exists. When c = k, there are no congestion constraints, and the problem can be solved easily by running a shortest path algorithm for each pair (s_i,t_i) independently. At the other extreme, when c = 1, the (k,c)-SPC problem is equivalent to the k-Disjoint Shortest Paths (k-DSP) problem, where the collection of shortest paths must be node-disjoint. For fixed k, k-DSP is polynomial-time solvable on DAGs and undirected graphs. Amiri and Wargalla interpolated between these two extreme values of c, to obtain an algorithm for (k,c)-SPC on DAGs that runs in polynomial time when k-c is constant.
In the same way, we prove that (k,c)-SPC can be solved in polynomial time on undirected graphs whenever k-c is constant. For directed graphs, because of our counterexample to the original theorem statement, our roundtrip local-to-global result does not imply such an algorithm (k,c)-SPC. Even without an algorithmic application, our proof for directed graphs may be of broader interest because it characterizes intriguing structural properties of shortest paths in directed graphs.

Shyan Akmal and Nicole Wein. A Local-To-Global Theorem for Congested Shortest Paths. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{akmal_et_al:LIPIcs.ESA.2023.8, author = {Akmal, Shyan and Wein, Nicole}, title = {{A Local-To-Global Theorem for Congested Shortest Paths}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {8:1--8:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.8}, URN = {urn:nbn:de:0030-drops-186618}, doi = {10.4230/LIPIcs.ESA.2023.8}, annote = {Keywords: disjoint paths, shortest paths, congestion, parameterized complexity} }

Document

**Published in:** Dagstuhl Reports, Volume 12, Issue 11 (2023)

This report documents the program and the outcomes of Dagstuhl Seminar 22461 “Dynamic Graph Algorithms”, which took place from November 13 to November 18, 2022.
The field of dynamic graph algorithms studies algorithms for processing graphs that are changing over time. Formally, the goal is to process an interleaved sequence of update and query operations, where an update operation changes the input graph (e.g. inserts/deletes an edge), while the query operation is problem-specific and asks for some information about the current graph – for example, an s-t path, or a minimum spanning tree. The field has evolved rapidly over the past decade, and this Dagstuhl Seminar brought together leading researchers in dynamic algorithms and related areas of graph algorithms.

Aaron Bernstein, Shiri Chechik, Sebastian Forster, Tsvi Kopelowitz, Yasamin Nazari, and Nicole Wein. Dynamic Graph Algorithms (Dagstuhl Seminar 22461). In Dagstuhl Reports, Volume 12, Issue 11, pp. 45-65, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@Article{bernstein_et_al:DagRep.12.11.45, author = {Bernstein, Aaron and Chechik, Shiri and Forster, Sebastian and Kopelowitz, Tsvi and Nazari, Yasamin and Wein, Nicole}, title = {{Dynamic Graph Algorithms (Dagstuhl Seminar 22461)}}, pages = {45--65}, journal = {Dagstuhl Reports}, ISSN = {2192-5283}, year = {2023}, volume = {12}, number = {11}, editor = {Bernstein, Aaron and Chechik, Shiri and Forster, Sebastian and Kopelowitz, Tsvi and Nazari, Yasamin and Wein, Nicole}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.11.45}, URN = {urn:nbn:de:0030-drops-178354}, doi = {10.4230/DagRep.12.11.45}, annote = {Keywords: dynamic graphs, graph algorithms} }

Document

**Published in:** LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)

Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists of one or more swaps on the edges of a matching. We prove that both of these problems remain NP-hard when the graph is restricted to be a tree.
These token swapping problems have been studied by disparate groups of researchers in discrete mathematics, theoretical computer science, robot motion planning, game theory, and engineering. Previous work establishes NP-completeness on general graphs (for both problems), constant-factor approximation algorithms, and some poly-time exact algorithms for simple graph classes such as cliques, stars, paths, and cycles. Sequential and parallel token swapping on trees were first studied over thirty years ago (as "sorting with a transposition tree") and over twenty-five years ago (as "routing permutations via matchings"), yet their complexities were previously unknown.
We also show limitations on approximation of sequential token swapping on trees: we identify a broad class of algorithms that encompass all three known polynomial-time algorithms that achieve the best known approximation factor (which is 2) and show that no such algorithm can achieve an approximation factor less than 2.

Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein. Hardness of Token Swapping on Trees. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.ESA.2022.3, author = {Aichholzer, Oswin and Demaine, Erik D. and Korman, Matias and Lubiw, Anna and Lynch, Jayson and Mas\'{a}rov\'{a}, Zuzana and Rudoy, Mikhail and Vassilevska Williams, Virginia and Wein, Nicole}, title = {{Hardness of Token Swapping on Trees}}, booktitle = {30th Annual European Symposium on Algorithms (ESA 2022)}, pages = {3:1--3:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-247-1}, ISSN = {1868-8969}, year = {2022}, volume = {244}, editor = {Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.3}, URN = {urn:nbn:de:0030-drops-169413}, doi = {10.4230/LIPIcs.ESA.2022.3}, annote = {Keywords: Sorting, Token swapping, Trees, NP-hard, Approximation} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)

We study the basic problem of assigning memoryless workers to tasks with dynamically changing demands. Given a set of w workers and a multiset T ⊆ [t] of |T| = w tasks, a memoryless worker-task assignment function is any function ϕ that assigns the workers [w] to the tasks T based only on the current value of T. The assignment function ϕ is said to have switching cost at most k if, for every task multiset T, changing the contents of T by one task changes ϕ(T) by at most k worker assignments. The goal of memoryless worker task assignment is to construct an assignment function with the smallest possible switching cost.
In past work, the problem of determining the optimal switching cost has been posed as an open question. There are no known sub-linear upper bounds, and after considerable effort, the best known lower bound remains 4 (ICALP 2020).
We show that it is possible to achieve polylogarithmic switching cost. We give a construction via the probabilistic method that achieves switching cost O(log w log (wt)) and an explicit construction that achieves switching cost polylog (wt). We also prove a super-constant lower bound on switching cost: we show that for any value of w, there exists a value of t for which the optimal switching cost is w. Thus it is not possible to achieve a switching cost that is sublinear strictly as a function of w.
Finally, we present an application of the worker-task assignment problem to a metric embeddings problem. In particular, we use our results to give the first low-distortion embedding from sparse binary vectors into low-dimensional Hamming space.

Aaron Berger, William Kuszmaul, Adam Polak, Jonathan Tidor, and Nicole Wein. Memoryless Worker-Task Assignment with Polylogarithmic Switching Cost. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{berger_et_al:LIPIcs.ICALP.2022.19, author = {Berger, Aaron and Kuszmaul, William and Polak, Adam and Tidor, Jonathan and Wein, Nicole}, title = {{Memoryless Worker-Task Assignment with Polylogarithmic Switching Cost}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {19:1--19:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.19}, URN = {urn:nbn:de:0030-drops-163608}, doi = {10.4230/LIPIcs.ICALP.2022.19}, annote = {Keywords: Distributed Task Allocation, Metric Embeddings, Probabilistic Method} }

Document

**Published in:** LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)

We revisit the minimum dominating set problem on graphs with arboricity bounded by α. In the (standard) centralized setting, Bansal and Umboh [Bansal and Umboh, 2017] gave an O(α)-approximation LP rounding algorithm, which also translates into a near-linear time algorithm using general-purpose approximation results for explicit mixed packing and covering or pure covering LPs [Koufogiannakis and Young, 2014; Young, 2014; Allen-Zhu and Orecchia, 2019; Quanrud, 2020]. Moreover, [Bansal and Umboh, 2017] showed that it is NP-hard to achieve an asymptotic improvement for the approximation factor. On the other hand, the previous two non-LP-based algorithms, by Lenzen and Wattenhofer [Christoph Lenzen and Roger Wattenhofer, 2010], and Jones et al. [Jones et al., 2013], achieve an approximation factor of O(α²) in linear time.
There is a similar situation in the distributed setting: While there is an O(log² n)-round LP-based O(α)-approximation algorithm implied in [Kuhn et al., 2006], the best non-LP-based algorithm by Lenzen and Wattenhofer [Christoph Lenzen and Roger Wattenhofer, 2010] is an implementation of their centralized algorithm, providing an O(α²)-approximation within O(log n) rounds.
We address the questions of whether one can achieve an O(α)-approximation algorithm that is elementary, i.e., not based on any LP-based methods, either in the centralized setting or in the distributed setting. We resolve both questions in the affirmative, and en route achieve algorithms that are faster than the state-of-the-art LP-based algorithms. Our contribution is two-fold:
1) In the centralized setting, we provide a surprisingly simple combinatorial algorithm that is asymptotically optimal in terms of both approximation factor and running time: an O(α)-approximation in linear time. The previous state-of-the-art O(α)-approximation algorithms are (1) LP-based, (2) more complicated, and (3) have super-linear running time.
2) Based on our centralized algorithm, we design a distributed combinatorial O(α)-approximation algorithm in the CONGEST model that runs in O(αlog n) rounds with high probability. Not only does this result provide the first nontrivial non-LP-based distributed o(α²)-approximation algorithm for this problem, it also outperforms the best LP-based distributed algorithm for a wide range of parameters.

Adir Morgan, Shay Solomon, and Nicole Wein. Algorithms for the Minimum Dominating Set Problem in Bounded Arboricity Graphs: Simpler, Faster, and Combinatorial. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 33:1-33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{morgan_et_al:LIPIcs.DISC.2021.33, author = {Morgan, Adir and Solomon, Shay and Wein, Nicole}, title = {{Algorithms for the Minimum Dominating Set Problem in Bounded Arboricity Graphs: Simpler, Faster, and Combinatorial}}, booktitle = {35th International Symposium on Distributed Computing (DISC 2021)}, pages = {33:1--33:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-210-5}, ISSN = {1868-8969}, year = {2021}, volume = {209}, editor = {Gilbert, Seth}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.33}, URN = {urn:nbn:de:0030-drops-148353}, doi = {10.4230/LIPIcs.DISC.2021.33}, annote = {Keywords: Graph Algorithms, Dominating Set, Bounded Arboricity, Linear time algorithms} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

We study the problem of distributed task allocation in multi-agent systems. Suppose there is a collection of agents, a collection of tasks, and a demand vector, which specifies the number of agents required to perform each task. The goal of the agents is to cooperatively allocate themselves to the tasks to satisfy the demand vector. We study the dynamic version of the problem where the demand vector changes over time. Here, the goal is to minimize the switching cost, which is the number of agents that change tasks in response to a change in the demand vector. The switching cost is an important metric since changing tasks may incur significant overhead.
We study a mathematical formalization of the above problem introduced by Su, Su, Dornhaus, and Lynch [Su et al., 2017], which can be reformulated as a question of finding a low distortion embedding from symmetric difference to Hamming distance. In this model it is trivial to prove that the switching cost is at least 2. We present the first non-trivial lower bounds for the switching cost, by giving lower bounds of 3 and 4 for different ranges of the parameters.

Hsin-Hao Su and Nicole Wein. Lower Bounds for Dynamic Distributed Task Allocation. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 99:1-99:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{su_et_al:LIPIcs.ICALP.2020.99, author = {Su, Hsin-Hao and Wein, Nicole}, title = {{Lower Bounds for Dynamic Distributed Task Allocation}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {99:1--99:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.99}, URN = {urn:nbn:de:0030-drops-125063}, doi = {10.4230/LIPIcs.ICALP.2020.99}, annote = {Keywords: distributed task allocation, combinatorics, lower bounds, multi-agent systems, low-distortion embedding, dynamic algorithms, biological distributed algorithms} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

The diameter, radius and eccentricities are natural graph parameters. While these problems have been studied extensively, there are no known dynamic algorithms for them beyond the ones that follow from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths (APSP), which is very computationally intensive. This is the situation for dynamic approximation algorithms as well, and even if only edge insertions or edge deletions need to be supported.
This paper provides a comprehensive study of the dynamic approximation of Diameter, Radius and Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are optimal under popular hypotheses in fine-grained complexity. Some of the highlights include:
- Under popular hardness hypotheses, there can be no significantly better fully dynamic approximation algorithms than recomputing the answer after each update, or maintaining full APSP.
- Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via efficient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths. For instance, a nearly (3/2+epsilon)-approximation to Diameter in directed or undirected n-vertex, m-edge graphs can be maintained decrementally in total time m^{1+o(1)}sqrt{n}/epsilon^2. This nearly matches the static 3/2-approximation algorithm for the problem that is known to be conditionally optimal.

Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole Wein. Algorithms and Hardness for Diameter in Dynamic Graphs. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 13:1-13:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{ancona_et_al:LIPIcs.ICALP.2019.13, author = {Ancona, Bertie and Henzinger, Monika and Roditty, Liam and Williams, Virginia Vassilevska and Wein, Nicole}, title = {{Algorithms and Hardness for Diameter in Dynamic Graphs}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {13:1--13:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.13}, URN = {urn:nbn:de:0030-drops-105891}, doi = {10.4230/LIPIcs.ICALP.2019.13}, annote = {Keywords: fine-grained complexity, graph algorithms, dynamic algorithms} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

We study fundamental graph parameters such as the Diameter and Radius in directed graphs, when distances are measured using a somewhat unorthodox but natural measure: the distance between u and v is the minimum of the shortest path distances from u to v and from v to u. The center node in a graph under this measure can for instance represent the optimal location for a hospital to ensure the fastest medical care for everyone, as one can either go to the hospital, or a doctor can be sent to help.
By computing All-Pairs Shortest Paths, all pairwise distances and thus the parameters we study can be computed exactly in O~(mn) time for directed graphs on n vertices, m edges and nonnegative edge weights. Furthermore, this time bound is tight under the Strong Exponential Time Hypothesis [Roditty-Vassilevska W. STOC 2013] so it is natural to study how well these parameters can be approximated in O(mn^{1-epsilon}) time for constant epsilon>0. Abboud, Vassilevska Williams, and Wang [SODA 2016] gave a polynomial factor approximation for Diameter and Radius, as well as a constant factor approximation for both problems in the special case where the graph is a DAG. We greatly improve upon these bounds by providing the first constant factor approximations for Diameter, Radius and the related Eccentricities problem in general graphs. Additionally, we provide a hierarchy of algorithms for Diameter that gives a time/accuracy trade-off.

Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, Nicole Wein, Yinzhan Xu, and Yuancheng Yu. Approximation Algorithms for Min-Distance Problems. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 46:1-46:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2019.46, author = {Dalirrooyfard, Mina and Williams, Virginia Vassilevska and Vyas, Nikhil and Wein, Nicole and Xu, Yinzhan and Yu, Yuancheng}, title = {{Approximation Algorithms for Min-Distance Problems}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {46:1--46:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.46}, URN = {urn:nbn:de:0030-drops-106223}, doi = {10.4230/LIPIcs.ICALP.2019.46}, annote = {Keywords: fine-grained complexity, graph algorithms, diameter, radius, eccentricities} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

Some of the most fundamental and well-studied graph parameters are the Diameter (the largest shortest paths distance) and Radius (the smallest distance for which a "center" node can reach all other nodes). The natural and important ST-variant considers two subsets S and T of the vertex set and lets the ST-diameter be the maximum distance between a node in S and a node in T, and the ST-radius be the minimum distance for a node of S to reach all nodes of T. The bichromatic variant is the special case in which S and T partition the vertex set.
In this paper we present a comprehensive study of the approximability of ST and Bichromatic Diameter, Radius, and Eccentricities, and variants, in graphs with and without directions and weights. We give the first nontrivial approximation algorithms for most of these problems, including time/accuracy trade-off upper and lower bounds. We show that nearly all of our obtained bounds are tight under the Strong Exponential Time Hypothesis (SETH), or the related Hitting Set Hypothesis.
For instance, for Bichromatic Diameter in undirected weighted graphs with m edges, we present an O~(m^{3/2}) time 5/3-approximation algorithm, and show that under SETH, neither the running time, nor the approximation factor can be significantly improved while keeping the other unchanged.

Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole Wein. Tight Approximation Algorithms for Bichromatic Graph Diameter and Related Problems. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 47:1-47:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2019.47, author = {Dalirrooyfard, Mina and Williams, Virginia Vassilevska and Vyas, Nikhil and Wein, Nicole}, title = {{Tight Approximation Algorithms for Bichromatic Graph Diameter and Related Problems}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {47:1--47:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.47}, URN = {urn:nbn:de:0030-drops-106238}, doi = {10.4230/LIPIcs.ICALP.2019.47}, annote = {Keywords: approximation algorithms, fine-grained complexity, diameter, radius, eccentricities} }

Document

**Published in:** LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)

This paper studies the fundamental problem of graph coloring in fully dynamic graphs. Since the problem of computing an optimal coloring, or even approximating it to within n^{1-epsilon} for any epsilon > 0, is NP-hard in static graphs, there is no hope to achieve any meaningful computational results for general graphs in the dynamic setting. It is therefore only natural to consider the combinatorial aspects of dynamic coloring, or alternatively, study restricted families of graphs.
Towards understanding the combinatorial aspects of this problem, one may assume a black-box access to a static algorithm for C-coloring any subgraph of the dynamic graph, and investigate the trade-off between the number of colors and the number of recolorings per update step. Optimizing the number of recolorings, sometimes referred to as the recourse bound, is important for various practical applications. In WADS'17, Barba et al. devised two complementary algorithms: For any beta > 0, the first (respectively, second) maintains an O(C beta n^{1/beta}) (resp., O(C beta))-coloring while recoloring O(beta) (resp., O(beta n^{1/beta})) vertices per update. Barba et al. also showed that the second trade-off appears to exhibit the right behavior, at least for beta = O(1): Any algorithm that maintains a c-coloring of an n-vertex dynamic forest must recolor Omega(n^{2/(c(c-1))}) vertices per update, for any constant c >= 2. Our contribution is two-fold:
- We devise a new algorithm for general graphs that improves significantly upon the first trade-off in a wide range of parameters: For any beta > 0, we get a O~(C/(beta)log^2 n)-coloring with O(beta) recolorings per update, where the O~ notation supresses polyloglog(n) factors. In particular, for beta = O(1) we get constant recolorings with polylog(n) colors; not only is this an exponential improvement over the previous bound, but it also unveils a rather surprising phenomenon: The trade-off between the number of colors and recolorings is highly non-symmetric.
- For uniformly sparse graphs, we use low out-degree orientations to strengthen the above result by bounding the update time of the algorithm rather than the number of recolorings. Then, we further improve this result by introducing a new data structure that refines bounded out-degree edge orientations and is of independent interest.

Shay Solomon and Nicole Wein. Improved Dynamic Graph Coloring. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 72:1-72:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{solomon_et_al:LIPIcs.ESA.2018.72, author = {Solomon, Shay and Wein, Nicole}, title = {{Improved Dynamic Graph Coloring}}, booktitle = {26th Annual European Symposium on Algorithms (ESA 2018)}, pages = {72:1--72:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-081-1}, ISSN = {1868-8969}, year = {2018}, volume = {112}, editor = {Azar, Yossi and Bast, Hannah and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.72}, URN = {urn:nbn:de:0030-drops-95357}, doi = {10.4230/LIPIcs.ESA.2018.72}, annote = {Keywords: coloring, dynamic graph algorithms, graph arboricity, edge orientations} }

Document

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

We propose a new distribution-free model of social networks. Our definitions are motivated by one of the most universal signatures of social networks, triadic closure - the property that pairs of vertices with common neighbors tend to be adjacent. Our most basic definition is that of a c-closed graph, where for every pair of vertices u,v with at least c common neighbors, u and v are adjacent. We study the classic problem of enumerating all maximal cliques, an important task in social network analysis. We prove that this problem is fixed-parameter tractable with respect to c on c-closed graphs. Our results carry over to weakly c-closed graphs, which only require a vertex deletion ordering that avoids pairs of non-adjacent vertices with c common neighbors. Numerical experiments show that well-studied social networks tend to be weakly c-closed for modest values of c.

Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding Cliques in Social Networks: A New Distribution-Free Model. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 55:1-55:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{fox_et_al:LIPIcs.ICALP.2018.55, author = {Fox, Jacob and Roughgarden, Tim and Seshadhri, C. and Wei, Fan and Wein, Nicole}, title = {{Finding Cliques in Social Networks: A New Distribution-Free Model}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {55:1--55:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.55}, URN = {urn:nbn:de:0030-drops-90596}, doi = {10.4230/LIPIcs.ICALP.2018.55}, annote = {Keywords: Graph algorithms, social networks, fixed-parameter tractability} }

Document

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

We consider the problem of maintaining a maximal independent set (MIS) in a dynamic graph subject to edge insertions and deletions. Recently, Assadi, Onak, Schieber and Solomon (STOC 2018) showed that an MIS can be maintained in sublinear (in the dynamically changing number of edges) amortized update time. In this paper we significantly improve the update time for uniformly sparse graphs. Specifically, for graphs with arboricity alpha, the amortized update time of our algorithm is O(alpha^2 * log^2 n), where n is the number of vertices. For low arboricity graphs, which include, for example, minor-free graphs as well as some classes of "real world" graphs, our update time is polylogarithmic. Our update time improves the result of Assadi et al. for all graphs with arboricity bounded by m^{3/8 - epsilon}, for any constant epsilon > 0. This covers much of the range of possible values for arboricity, as the arboricity of a general graph cannot exceed m^{1/2}.

Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully Dynamic MIS in Uniformly Sparse Graphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 92:1-92:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{onak_et_al:LIPIcs.ICALP.2018.92, author = {Onak, Krzysztof and Schieber, Baruch and Solomon, Shay and Wein, Nicole}, title = {{Fully Dynamic MIS in Uniformly Sparse Graphs}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {92:1--92:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.92}, URN = {urn:nbn:de:0030-drops-90968}, doi = {10.4230/LIPIcs.ICALP.2018.92}, annote = {Keywords: dynamic graph algorithms, independent set, sparse graphs, graph arboricity} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail