38 Search Results for "Abramsky, Samson"


Document
Comonadic semantics for hybrid logic

Authors: Samson Abramsky and Dan Marsden

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Hybrid logic is a widely-studied extension of basic modal logic, which corresponds to the bounded fragment of first-order logic. We study it from two novel perspectives: (1) We apply the recently introduced paradigm of comonadic semantics, which provides a new set of tools drawing on ideas from categorical semantics which can be applied to finite model theory, descriptive complexity and combinatorics. (2) We give a novel semantic characterization of hybrid logic in terms of invariance under disjoint extensions, a minimal form of locality. A notable feature of this result is that we give a uniform proof, valid for both the finite and infinite cases.

Cite as

Samson Abramsky and Dan Marsden. Comonadic semantics for hybrid logic. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 7:1-7:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:LIPIcs.MFCS.2022.7,
  author =	{Abramsky, Samson and Marsden, Dan},
  title =	{{Comonadic semantics for hybrid logic}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.7},
  URN =		{urn:nbn:de:0030-drops-168055},
  doi =		{10.4230/LIPIcs.MFCS.2022.7},
  annote =	{Keywords: comonads, model comparison games, semantic characterizations, hybrid logic, bounded fragment}
}
Document
Cohomology in Constraint Satisfaction and Structure Isomorphism

Authors: Adam Ó Conghaile

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Constraint satisfaction (CSP) and structure isomorphism (SI) are among the most well-studied computational problems in Computer Science. While neither problem is thought to be in PTIME, much work is done on PTIME approximations to both problems. Two such historically important approximations are the k-consistency algorithm for CSP and the k-Weisfeiler-Leman algorithm for SI, both of which are based on propagating local partial solutions. The limitations of these algorithms are well-known – k-consistency can solve precisely those CSPs of bounded width and k-Weisfeiler-Leman can only distinguish structures which differ on properties definable in C^k. In this paper, we introduce a novel sheaf-theoretic approach to CSP and SI and their approximations. We show that both problems can be viewed as deciding the existence of global sections of presheaves, ℋ_k(A,B) and ℐ_k(A,B) and that the success of the k-consistency and k-Weisfeiler-Leman algorithms correspond to the existence of certain efficiently computable subpresheaves of these. Furthermore, building on work of Abramsky and others in quantum foundations, we show how to use Čech cohomology in ℋ_k(A,B) and ℐ_k(A,B) to detect obstructions to the existence of the desired global sections and derive new efficient cohomological algorithms extending k-consistency and k-Weisfeiler-Leman. We show that cohomological k-consistency can solve systems of equations over all finite rings and that cohomological Weisfeiler-Leman can distinguish positive and negative instances of the Cai-Fürer-Immerman property over several important classes of structures.

Cite as

Adam Ó Conghaile. Cohomology in Constraint Satisfaction and Structure Isomorphism. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 75:1-75:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{oconghaile:LIPIcs.MFCS.2022.75,
  author =	{\'{O} Conghaile, Adam},
  title =	{{Cohomology in Constraint Satisfaction and Structure Isomorphism}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{75:1--75:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.75},
  URN =		{urn:nbn:de:0030-drops-168738},
  doi =		{10.4230/LIPIcs.MFCS.2022.75},
  annote =	{Keywords: constraint satisfaction problems, finite model theory, descriptive complexity, rank logic, Weisfeiler-Leman algorithm, cohomology}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Arboreal Categories and Resources

Authors: Samson Abramsky and Luca Reggio

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We introduce arboreal categories, which have an intrinsic process structure, allowing dynamic notions such as bisimulation and back-and-forth games, and resource notions such as number of rounds of a game, to be defined. These are related to extensional or "static" structures via arboreal covers, which are resource-indexed comonadic adjunctions. These ideas are developed in a very general, axiomatic setting, and applied to relational structures, where the comonadic constructions for pebbling, Ehrenfeucht-Fraïssé and modal bisimulation games recently introduced in [Abramsky et al., 2017; S. Abramsky and N. Shah, 2018; Abramsky and Shah, 2021] are recovered, showing that many of the fundamental notions of finite model theory and descriptive complexity arise from instances of arboreal covers.

Cite as

Samson Abramsky and Luca Reggio. Arboreal Categories and Resources. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 115:1-115:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:LIPIcs.ICALP.2021.115,
  author =	{Abramsky, Samson and Reggio, Luca},
  title =	{{Arboreal Categories and Resources}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{115:1--115:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.115},
  URN =		{urn:nbn:de:0030-drops-141845},
  doi =		{10.4230/LIPIcs.ICALP.2021.115},
  annote =	{Keywords: factorisation system, embedding, comonad, coalgebra, open maps, bisimulation, game, resources, relational structures, finite model theory}
}
Document
The Logic of Contextuality

Authors: Samson Abramsky and Rui Soares Barbosa

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Contextuality is a key signature of quantum non-classicality, which has been shown to play a central role in enabling quantum advantage for a wide range of information-processing and computational tasks. We study the logic of contextuality from a structural point of view, in the setting of partial Boolean algebras introduced by Kochen and Specker in their seminal work. These contrast with traditional quantum logic à la Birkhoff and von Neumann in that operations such as conjunction and disjunction are partial, only being defined in the domain where they are physically meaningful. We study how this setting relates to current work on contextuality such as the sheaf-theoretic and graph-theoretic approaches. We introduce a general free construction extending the commeasurability relation on a partial Boolean algebra, i.e. the domain of definition of the binary logical operations. This construction has a surprisingly broad range of uses. We apply it in the study of a number of issues, including: - establishing the connection between the abstract measurement scenarios studied in the contextuality literature and the setting of partial Boolean algebras; - formulating various contextuality properties in this setting, including probabilistic contextuality as well as the strong, state-independent notion of contextuality given by Kochen-Specker paradoxes, which are logically contradictory statements validated by partial Boolean algebras, specifically those arising from quantum mechanics; - investigating a Logical Exclusivity Principle, and its relation to the Probabilistic Exclusivity Principle widely studied in recent work on contextuality as a step towards closing in on the set of quantum-realisable correlations; - developing some work towards a logical presentation of the Hilbert space tensor product, using logical exclusivity to capture some of its salient quantum features.

Cite as

Samson Abramsky and Rui Soares Barbosa. The Logic of Contextuality. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 5:1-5:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:LIPIcs.CSL.2021.5,
  author =	{Abramsky, Samson and Barbosa, Rui Soares},
  title =	{{The Logic of Contextuality}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.5},
  URN =		{urn:nbn:de:0030-drops-134394},
  doi =		{10.4230/LIPIcs.CSL.2021.5},
  annote =	{Keywords: partial Boolean algebras, contextuality, exclusivity principles, Kochen-Specker paradoxes, tensor product}
}
Document
Causal Unfoldings

Authors: Marc de Visme and Glynn Winskel

Published in: LIPIcs, Volume 139, 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)


Abstract
In the simplest form of event structure, a prime event structure, an event is associated with a unique causal history, its prime cause. However, it is quite common for an event to have disjunctive causes in that it can be enabled by any one of multiple sets of causes. Sometimes the sets of causes may be mutually exclusive, inconsistent one with another, and sometimes not, in which case they coexist consistently and constitute parallel causes of the event. The established model of general event structures can model parallel causes. On occasion however such a model abstracts too far away from the precise causal histories of events to be directly useful. For example, sometimes one needs to associate probabilities with different, possibly coexisting, causal histories of a common event. Ideally, the causal histories of a general event structure would correspond to the configurations of its causal unfolding to a prime event structure; and the causal unfolding would arise as a right adjoint to the embedding of prime in general event structures. But there is no such adjunction. However, a slight extension of prime event structures remedies this defect and provides a causal unfolding as a universal construction. Prime event structures are extended with an equivalence relation in order to dissociate the two roles, that of an event and its enabling; in effect, prime causes are labelled by a disjunctive event, an equivalence class of its prime causes. With this enrichment a suitable causal unfolding appears as a pseudo right adjoint. The adjunction relies critically on the central and subtle notion of extremal causal realisation as an embodiment of causal history.

Cite as

Marc de Visme and Glynn Winskel. Causal Unfoldings. In 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 139, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{devisme_et_al:LIPIcs.CALCO.2019.9,
  author =	{de Visme, Marc and Winskel, Glynn},
  title =	{{Causal Unfoldings}},
  booktitle =	{8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-120-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{139},
  editor =	{Roggenbach, Markus and Sokolova, Ana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2019.9},
  URN =		{urn:nbn:de:0030-drops-114376},
  doi =		{10.4230/LIPIcs.CALCO.2019.9},
  annote =	{Keywords: Event Structures, Parallel Causes, Causal Unfolding, Probability}
}
Document
A Diagrammatic Approach to Quantum Dynamics

Authors: Stefano Gogioso

Published in: LIPIcs, Volume 139, 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)


Abstract
We present a diagrammatic approach to quantum dynamics based on the categorical algebraic structure of strongly complementary observables. We provide physical semantics to our approach in terms of quantum clocks and quantisation of time. We show that quantum dynamical systems arise naturally as the algebras of a certain dagger Frobenius monad, with the morphisms and tensor product of the category of algebras playing the role, respectively, of equivariant transformations and synchronised parallel composition of dynamical systems. We show that the Weyl Canonical Commutation Relations between time and energy are an incarnation of the bialgebra law and we derive Schrödinger’s equation from a process-theoretic perspective. Finally, we use diagrammatic symmetry-observable duality to prove Stone’s proposition and von Neumann’s Mean Ergodic proposition, recasting the results as two faces of the very same coin.

Cite as

Stefano Gogioso. A Diagrammatic Approach to Quantum Dynamics. In 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 139, pp. 19:1-19:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gogioso:LIPIcs.CALCO.2019.19,
  author =	{Gogioso, Stefano},
  title =	{{A Diagrammatic Approach to Quantum Dynamics}},
  booktitle =	{8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019)},
  pages =	{19:1--19:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-120-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{139},
  editor =	{Roggenbach, Markus and Sokolova, Ana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2019.19},
  URN =		{urn:nbn:de:0030-drops-114472},
  doi =		{10.4230/LIPIcs.CALCO.2019.19},
  annote =	{Keywords: Quantum dynamics, String diagrams, Categorical algebra}
}
Document
Verified Decision Procedures for Modal Logics

Authors: Minchao Wu and Rajeev Goré

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
We describe a formalization of modal tableaux with histories for the modal logics K, KT and S4 in Lean. We describe how we formalized the static and transitional rules, the non-trivial termination and the correctness of loop-checks. The formalized tableaux are essentially executable decision procedures with soundness and completeness proved. Termination is also proved in order to define them as functions in Lean. All of these decision procedures return a concrete Kripke model in cases where the input set of formulas is satisfiable, and a proof constructed via the tableau rules witnessing unsatisfiability otherwise. We also describe an extensible formalization of backjumping and its verified implementation for the modal logic K. As far as we know, these are the first verified decision procedures for these modal logics.

Cite as

Minchao Wu and Rajeev Goré. Verified Decision Procedures for Modal Logics. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{wu_et_al:LIPIcs.ITP.2019.31,
  author =	{Wu, Minchao and Gor\'{e}, Rajeev},
  title =	{{Verified Decision Procedures for Modal Logics}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{31:1--31:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.31},
  URN =		{urn:nbn:de:0030-drops-110866},
  doi =		{10.4230/LIPIcs.ITP.2019.31},
  annote =	{Keywords: Formal Methods, Interactive Theorem Proving, Modal Logic, Lean}
}
Document
Complete Non-Orders and Fixed Points

Authors: Akihisa Yamada and Jérémy Dubut

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
In this paper, we develop an Isabelle/HOL library of order-theoretic concepts, such as various completeness conditions and fixed-point theorems. We keep our formalization as general as possible: we reprove several well-known results about complete orders, often without any property of ordering, thus complete non-orders. In particular, we generalize the Knaster - Tarski theorem so that we ensure the existence of a quasi-fixed point of monotone maps over complete non-orders, and show that the set of quasi-fixed points is complete under a mild condition - attractivity - which is implied by either antisymmetry or transitivity. This result generalizes and strengthens a result by Stauti and Maaden. Finally, we recover Kleene’s fixed-point theorem for omega-complete non-orders, again using attractivity to prove that Kleene’s fixed points are least quasi-fixed points.

Cite as

Akihisa Yamada and Jérémy Dubut. Complete Non-Orders and Fixed Points. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 30:1-30:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{yamada_et_al:LIPIcs.ITP.2019.30,
  author =	{Yamada, Akihisa and Dubut, J\'{e}r\'{e}my},
  title =	{{Complete Non-Orders and Fixed Points}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{30:1--30:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.30},
  URN =		{urn:nbn:de:0030-drops-110852},
  doi =		{10.4230/LIPIcs.ITP.2019.30},
  annote =	{Keywords: Order Theory, Lattice Theory, Fixed-Points, Isabelle/HOL}
}
Document
On the Expressivity of Linear Recursion Schemes

Authors: Pierre Clairambault and Andrzej S. Murawski

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We investigate the expressive power of higher-order recursion schemes (HORS) restricted to linear types. Two formalisms are considered: multiplicative additive HORS (MAHORS), which feature both linear function types and products, and multiplicative HORS (MHORS), based on linear function types only. For MAHORS, we establish an equi-expressivity result with a variant of tree-stack automata. Consequently, we can show that MAHORS are strictly more expressive than first-order HORS, that they are incomparable with second-order HORS, and that the associated branch languages lie at the third level of the collapsible pushdown hierarchy. In the multiplicative case, we show that MHORS are equivalent to a special kind of pushdown automata. It follows that any MHORS can be translated to an equivalent first-order MHORS in polynomial time. Further, we show that MHORS generate regular trees and can be translated to equivalent order-0 HORS in exponential time. Consequently, MHORS turn out to have the same expressive power as 0-HORS but they can be exponentially more concise. Our results are obtained through a combination of techniques from game semantics, the geometry of interaction and automata theory.

Cite as

Pierre Clairambault and Andrzej S. Murawski. On the Expressivity of Linear Recursion Schemes. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 50:1-50:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{clairambault_et_al:LIPIcs.MFCS.2019.50,
  author =	{Clairambault, Pierre and Murawski, Andrzej S.},
  title =	{{On the Expressivity of Linear Recursion Schemes}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{50:1--50:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.50},
  URN =		{urn:nbn:de:0030-drops-109945},
  doi =		{10.4230/LIPIcs.MFCS.2019.50},
  annote =	{Keywords: higher-order recursion schemes, linear logic, game semantics, geometry of interaction}
}
Document
Aperiodic Weighted Automata and Weighted First-Order Logic

Authors: Manfred Droste and Paul Gastin

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
By fundamental results of Schützenberger, McNaughton and Papert from the 1970s, the classes of first-order definable and aperiodic languages coincide. Here, we extend this equivalence to a quantitative setting. For this, weighted automata form a general and widely studied model. We define a suitable notion of a weighted first-order logic. Then we show that this weighted first-order logic and aperiodic polynomially ambiguous weighted automata have the same expressive power. Moreover, we obtain such equivalence results for suitable weighted sublogics and finitely ambiguous or unambiguous aperiodic weighted automata. Our results hold for general weight structures, including all semirings, average computations of costs, bounded lattices, and others.

Cite as

Manfred Droste and Paul Gastin. Aperiodic Weighted Automata and Weighted First-Order Logic. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 76:1-76:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{droste_et_al:LIPIcs.MFCS.2019.76,
  author =	{Droste, Manfred and Gastin, Paul},
  title =	{{Aperiodic Weighted Automata and Weighted First-Order Logic}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{76:1--76:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.76},
  URN =		{urn:nbn:de:0030-drops-110203},
  doi =		{10.4230/LIPIcs.MFCS.2019.76},
  annote =	{Keywords: Weighted automata, weighted logic, aperiodic automata, first-order logic, unambiguous, finitely ambiguous, polynomially ambiguous}
}
Document
SZX-Calculus: Scalable Graphical Quantum Reasoning

Authors: Titouan Carette, Dominic Horsman, and Simon Perdrix

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We introduce the Scalable ZX-calculus (SZX-calculus for short), a formal and compact graphical language for the design and verification of quantum computations. The SZX-calculus is an extension of the ZX-calculus, a powerful framework that captures graphically the fundamental properties of quantum mechanics through its complete set of rewrite rules. The ZX-calculus is, however, a low level language, with each wire representing a single qubit. This limits its ability to handle large and elaborate quantum evolutions. We extend the ZX-calculus to registers of qubits and allow compact representation of sub-diagrams via binary matrices. We show soundness and completeness of the SZX-calculus and provide two examples of applications, for graph states and error correcting codes.

Cite as

Titouan Carette, Dominic Horsman, and Simon Perdrix. SZX-Calculus: Scalable Graphical Quantum Reasoning. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 55:1-55:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{carette_et_al:LIPIcs.MFCS.2019.55,
  author =	{Carette, Titouan and Horsman, Dominic and Perdrix, Simon},
  title =	{{SZX-Calculus: Scalable Graphical Quantum Reasoning}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{55:1--55:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.55},
  URN =		{urn:nbn:de:0030-drops-109999},
  doi =		{10.4230/LIPIcs.MFCS.2019.55},
  annote =	{Keywords: Quantum computing, categorical quantum mechanics, completeness, scalability}
}
Document
Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

Authors: Paweł Parys

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Calude, Jain, Khoussainov, Li, and Stephan (2017) proposed a quasi-polynomial-time algorithm solving parity games. After this breakthrough result, a few other quasi-polynomial-time algorithms were introduced; none of them is easy to understand. Moreover, it turns out that in practice they operate very slowly. On the other side there is Zielonka’s recursive algorithm, which is very simple, exponential in the worst case, and the fastest in practice. We combine these two approaches: we propose a small modification of Zielonka’s algorithm, which ensures that the running time is at most quasi-polynomial. In effect, we obtain a simple algorithm that solves parity games in quasi-polynomial time. We also hope that our algorithm, after further optimizations, can lead to an algorithm that shares the good performance of Zielonka’s algorithm on typical inputs, while reducing the worst-case complexity on difficult inputs.

Cite as

Paweł Parys. Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{parys:LIPIcs.MFCS.2019.10,
  author =	{Parys, Pawe{\l}},
  title =	{{Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.10},
  URN =		{urn:nbn:de:0030-drops-109543},
  doi =		{10.4230/LIPIcs.MFCS.2019.10},
  annote =	{Keywords: Parity games, Zielonka’s algorithm, quasi-polynomial time}
}
Document
Domain-Aware Session Types

Authors: Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
We develop a generalization of existing Curry-Howard interpretations of (binary) session types by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds that indicate domains. These worlds govern domain migration, subject to a parametric accessibility relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed process framework for domain-aware, message-passing concurrency. Its logical foundations ensure that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures that processes only communicate with accessible domains and so respect the accessibility relation. Remarkably, our domain-aware framework can specify scenarios in which domain information is available only at runtime; flexible accessibility relations can be cleanly defined and statically enforced. As a specific application, we introduce domain-aware multiparty session types, in which global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a precise analysis of these multiparty protocols by reduction to our binary domain-aware framework: complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring also the principled transfer of key correctness properties from the binary to the multiparty setting.

Cite as

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-Aware Session Types. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{caires_et_al:LIPIcs.CONCUR.2019.39,
  author =	{Caires, Lu{\'\i}s and P\'{e}rez, Jorge A. and Pfenning, Frank and Toninho, Bernardo},
  title =	{{Domain-Aware Session Types}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.39},
  URN =		{urn:nbn:de:0030-drops-109417},
  doi =		{10.4230/LIPIcs.CONCUR.2019.39},
  annote =	{Keywords: Session Types, Linear Logic, Process Calculi, Hybrid Logic}
}
Document
Reasoning About Distributed Knowledge of Groups with Infinitely Many Agents

Authors: Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo Rueda, and Frank Valencia

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic information in concurrent systems. We develop the theory of scs to reason about the distributed information of potentially infinite groups. We characterize the notion of distributed information of a group of agents as the infimum of the set of join-preserving functions that represent the spaces of the agents in the group. We provide an alternative characterization of this notion as the greatest family of join-preserving functions that satisfy certain basic properties. We show compositionality results for these characterizations and conditions under which information that can be obtained by an infinite group can also be obtained by a finite group. Finally, we provide algorithms that compute the distributive group information of finite groups.

Cite as

Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo Rueda, and Frank Valencia. Reasoning About Distributed Knowledge of Groups with Infinitely Many Agents. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{guzman_et_al:LIPIcs.CONCUR.2019.29,
  author =	{Guzm\'{a}n, Michell and Knight, Sophia and Quintero, Santiago and Ram{\'\i}rez, Sergio and Rueda, Camilo and Valencia, Frank},
  title =	{{Reasoning About Distributed Knowledge of Groups with Infinitely Many Agents}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.29},
  URN =		{urn:nbn:de:0030-drops-109314},
  doi =		{10.4230/LIPIcs.CONCUR.2019.29},
  annote =	{Keywords: Reasoning about Groups, Distributed Knowledge, Infinitely Many Agents, Reasoning about Space, Algebraic Modeling}
}
Document
Bialgebraic Semantics for String Diagrams

Authors: Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Turi and Plotkin’s bialgebraic semantics is an abstract approach to specifying the operational semantics of a system, by means of a distributive law between its syntax (encoded as a monad) and its dynamics (an endofunctor). This setup is instrumental in showing that a semantic specification (a coalgebra) satisfies desirable properties: in particular, that it is compositional. In this work, we use the bialgebraic approach to derive well-behaved structural operational semantics of string diagrams, a graphical syntax that is increasingly used in the study of interacting systems across different disciplines. Our analysis relies on representing the two-dimensional operations underlying string diagrams in various categories as a monad, and their bialgebraic semantics in terms of a distributive law for that monad. As a proof of concept, we provide bialgebraic compositional semantics for a versatile string diagrammatic language which has been used to model both signal flow graphs (control theory) and Petri nets (concurrency theory). Moreover, our approach reveals a correspondence between two different interpretations of the Frobenius equations on string diagrams and two synchronisation mechanisms for processes, à la Hoare and à la Milner.

Cite as

Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Bialgebraic Semantics for String Diagrams. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 37:1-37:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.CONCUR.2019.37,
  author =	{Bonchi, Filippo and Piedeleu, Robin and Sobocinski, Pawel and Zanasi, Fabio},
  title =	{{Bialgebraic Semantics for String Diagrams}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{37:1--37:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.37},
  URN =		{urn:nbn:de:0030-drops-109398},
  doi =		{10.4230/LIPIcs.CONCUR.2019.37},
  annote =	{Keywords: String Diagram, Structural Operational Semantics, Bialgebraic semantics}
}
  • Refine by Author
  • 12 Abramsky, Samson
  • 3 Barbosa, Rui Soares
  • 2 Coecke, Bob
  • 2 Kishida, Kohei
  • 2 Kontinen, Juha
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Categorical semantics
  • 3 Theory of computation → Finite Model Theory
  • 3 Theory of computation → Quantum computation theory
  • 2 Theory of computation → Concurrency
  • 2 Theory of computation → Logic and verification
  • Show More...

  • Refine by Keyword
  • 7 bisimulation
  • 3 Category theory
  • 3 modal logic
  • 2 Linear Logic
  • 2 Session Types
  • Show More...

  • Refine by Type
  • 38 document

  • Refine by Publication Year
  • 16 2015
  • 11 2019
  • 2 2013
  • 2 2018
  • 2 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail