17 Search Results for "Dadush, Daniel"


Document
Experimental Analysis of LP Scaling Methods Based on Circuit Imbalance Minimization

Authors: Jakub Komárek and Martin Koutecký

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Linear programming (LP) is a fundamental problem with rich theory and wide applications. A ubiquitous technique in LP is scaling, where the input instance is transformed in some way to make its solution easier. Dadush et al. [STOC '20] have recently devised an algorithm which scales the columns of the constraint matrix of a linear program in a way that aims to minimize the circuit imbalance measure, a matrix condition number of growing theoretical interest. They show that this rescaling achieves favorable theoretical guarantees for certain LP algorithms. We follow up on their work in an experimental manner. First, we have implemented their algorithm, overcoming several engineering obstacles. Next, we have used our implementation to obtain a rescaling of 142 publicly available instances. Finally, we have performed experiments evaluating the effects of the obtained rescalings on the runtime of real-world LP solvers, and we have evaluated their quality with regard to the circuit imbalance measure.

Cite as

Jakub Komárek and Martin Koutecký. Experimental Analysis of LP Scaling Methods Based on Circuit Imbalance Minimization. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 18:1-18:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{komarek_et_al:LIPIcs.SEA.2024.18,
  author =	{Kom\'{a}rek, Jakub and Kouteck\'{y}, Martin},
  title =	{{Experimental Analysis of LP Scaling Methods Based on Circuit Imbalance Minimization}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{18:1--18:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.18},
  URN =		{urn:nbn:de:0030-drops-203832},
  doi =		{10.4230/LIPIcs.SEA.2024.18},
  annote =	{Keywords: Linear programming, scaling, circuit imbalance measure}
}
Document
Track A: Algorithms, Complexity and Games
The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

Authors: Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Many iterative algorithms in computer science require repeated computation of some algebraic expression whose input varies slightly from one iteration to the next. Although efficient data structures have been proposed for maintaining the solution of such algebraic expressions under low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model and finite fields) which may not accurately reflect the more limited complexity guarantees of real computers. In this paper, we analyze the stability and bit complexity of such data structures for expressions that involve the inversion, multiplication, addition, and subtraction of matrices under the word-RAM model. We show that the bit complexity only increases linearly in the number of matrix operations in the expression. In addition, we consider the bit complexity of maintaining the determinant of a matrix expression. We show that the required bit complexity depends on the logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally, we discuss rank maintenance and its connections to determinant maintenance. Our results have wide applications ranging from computational geometry (e.g., computing the volume of a polytope) to optimization (e.g., solving linear programs using the simplex algorithm).

Cite as

Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang. The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.10,
  author =	{Anand, Emile and van den Brand, Jan and Ghadiri, Mehrdad and Zhang, Daniel J.},
  title =	{{The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.10},
  URN =		{urn:nbn:de:0030-drops-201538},
  doi =		{10.4230/LIPIcs.ICALP.2024.10},
  annote =	{Keywords: Data Structures, Online Algorithms, Bit Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Better Sparsifiers for Directed Eulerian Graphs

Authors: Sushant Sachdeva, Anvith Thudi, and Yibin Zhao

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Spectral sparsification for directed Eulerian graphs is a key component in the design of fast algorithms for solving directed Laplacian linear systems. Directed Laplacian linear system solvers are crucial algorithmic primitives to fast computation of fundamental problems on random walks, such as computing stationary distributions, hitting and commute times, and personalized PageRank vectors. While spectral sparsification is well understood for undirected graphs and it is known that for every graph G, (1+ε)-sparsifiers with O(nε^{-2}) edges exist [Batson-Spielman-Srivastava, STOC '09] (which is optimal), the best known constructions of Eulerian sparsifiers require Ω(nε^{-2}log⁴ n) edges and are based on short-cycle decompositions [Chu et al., FOCS '18]. In this paper, we give improved constructions of Eulerian sparsifiers, specifically: 1) We show that for every directed Eulerian graph G→, there exists an Eulerian sparsifier with O(nε^{-2} log² n log²log n + nε^{-4/3}log^{8/3} n) edges. This result is based on combining short-cycle decompositions [Chu-Gao-Peng-Sachdeva-Sawlani-Wang, FOCS '18, SICOMP] and [Parter-Yogev, ICALP '19], with recent progress on the matrix Spencer conjecture [Bansal-Meka-Jiang, STOC '23]. 2) We give an improved analysis of the constructions based on short-cycle decompositions, giving an m^{1+δ}-time algorithm for any constant δ > 0 for constructing Eulerian sparsifiers with O(nε^{-2}log³ n) edges.

Cite as

Sushant Sachdeva, Anvith Thudi, and Yibin Zhao. Better Sparsifiers for Directed Eulerian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 119:1-119:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sachdeva_et_al:LIPIcs.ICALP.2024.119,
  author =	{Sachdeva, Sushant and Thudi, Anvith and Zhao, Yibin},
  title =	{{Better Sparsifiers for Directed Eulerian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{119:1--119:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.119},
  URN =		{urn:nbn:de:0030-drops-202628},
  doi =		{10.4230/LIPIcs.ICALP.2024.119},
  annote =	{Keywords: Graph algorithms, Linear algebra and computation, Discrepancy theory}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games

Authors: Bruno Loff and Mateusz Skomra

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution and the underlying graph of the game is ergodic. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games played on ergodic graphs, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [Boros et al., 2011] and later retracted [Boros et al., 2018]. It stands in contrast with a recent counter-example by Christ and Yannakakis [Christ and Yannakakis, 2023], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin [Frieze and Sorkin, 2007], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart [Akian et al., 2018].

Cite as

Bruno Loff and Mateusz Skomra. Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 147:1-147:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.ICALP.2024.147,
  author =	{Loff, Bruno and Skomra, Mateusz},
  title =	{{Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{147:1--147:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.147},
  URN =		{urn:nbn:de:0030-drops-202908},
  doi =		{10.4230/LIPIcs.ICALP.2024.147},
  annote =	{Keywords: Mean-payoff games, discounted games, policy iteration, smoothed analysis}
}
Document
Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

Authors: Gilles Bonnet, Daniel Dadush, Uri Grupel, Sophie Huiberts, and Galyna Livshyts

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
The combinatorial diameter diam(P) of a polytope P is the maximum shortest path distance between any pair of vertices. In this paper, we provide upper and lower bounds on the combinatorial diameter of a random "spherical" polytope, which is tight to within one factor of dimension when the number of inequalities is large compared to the dimension. More precisely, for an n-dimensional polytope P defined by the intersection of m i.i.d. half-spaces whose normals are chosen uniformly from the sphere, we show that diam(P) is Ω(n m^{1/(n-1)}) and O(n² m^{1/(n-1)} + n⁵ 4ⁿ) with high probability when m ≥ 2^{Ω(n)}. For the upper bound, we first prove that the number of vertices in any fixed two dimensional projection sharply concentrates around its expectation when m is large, where we rely on the Θ(n² m^{1/(n-1)}) bound on the expectation due to Borgwardt [Math. Oper. Res., 1999]. To obtain the diameter upper bound, we stitch these "shadows paths" together over a suitable net using worst-case diameter bounds to connect vertices to the nearest shadow. For the lower bound, we first reduce to lower bounding the diameter of the dual polytope P^∘, corresponding to a random convex hull, by showing the relation diam(P) ≥ (n-1)(diam(P^∘)-2). We then prove that the shortest path between any "nearly" antipodal pair vertices of P^∘ has length Ω(m^{1/(n-1)}).

Cite as

Gilles Bonnet, Daniel Dadush, Uri Grupel, Sophie Huiberts, and Galyna Livshyts. Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.SoCG.2022.18,
  author =	{Bonnet, Gilles and Dadush, Daniel and Grupel, Uri and Huiberts, Sophie and Livshyts, Galyna},
  title =	{{Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.18},
  URN =		{urn:nbn:de:0030-drops-160269},
  doi =		{10.4230/LIPIcs.SoCG.2022.18},
  annote =	{Keywords: Random Polytopes, Combinatorial Diameter, Hirsch Conjecture}
}
Document
A Spectral Approach to Polytope Diameter

Authors: Hariharan Narayanan, Rikhav Shah, and Nikhil Srivastava

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We prove upper bounds on the graph diameters of polytopes in two settings. The first is a worst-case bound for integer polytopes in terms of the length of the description of the polytope (in bits) and the minimum angle between facets of its polar. The second is a smoothed analysis bound: given an appropriately normalized polytope, we add small Gaussian noise to each constraint. We consider a natural geometric measure on the vertices of the perturbed polytope (corresponding to the mean curvature measure of its polar) and show that with high probability there exists a "giant component" of vertices, with measure 1-o(1) and polynomial diameter. Both bounds rely on spectral gaps - of a certain Schrödinger operator in the first case, and a certain continuous time Markov chain in the second - which arise from the log-concavity of the volume of a simple polytope in terms of its slack variables.

Cite as

Hariharan Narayanan, Rikhav Shah, and Nikhil Srivastava. A Spectral Approach to Polytope Diameter. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 108:1-108:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{narayanan_et_al:LIPIcs.ITCS.2022.108,
  author =	{Narayanan, Hariharan and Shah, Rikhav and Srivastava, Nikhil},
  title =	{{A Spectral Approach to Polytope Diameter}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{108:1--108:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.108},
  URN =		{urn:nbn:de:0030-drops-157044},
  doi =		{10.4230/LIPIcs.ITCS.2022.108},
  annote =	{Keywords: Polytope diameter, Markov Chain}
}
Document
An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems

Authors: Daniel Dadush, Zhuan Khye Koh, Bento Natura, and László A. Végh

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We present an accelerated, or "look-ahead" version of the Newton-Dinkelbach method, a well-known technique for solving fractional and parametric optimization problems. This acceleration halves the Bregman divergence between the current iterate and the optimal solution within every two iterations. Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain strongly polynomial algorithms in three applications domains: (i) For linear fractional combinatorial optimization, we show a convergence bound of O(mlog m) iterations; the previous best bound was O(m²log m) by Wang et al. (2006). (ii) We obtain a strongly polynomial label-correcting algorithm for solving linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with n variables and m constraints, our algorithm runs in O(mn) iterations. Every iteration takes O(mn) time for general 2VPI systems, and O(m + nlog n) time for the special case of deterministic Markov Decision Processes (DMDPs). This extends and strengthens a previous result by Madani (2002) that showed a weakly polynomial bound for a variant of the Newton–Dinkelbach method for solving DMDPs. (iii) We give a simplified variant of the parametric submodular function minimization result by Goemans et al. (2017).

Cite as

Daniel Dadush, Zhuan Khye Koh, Bento Natura, and László A. Végh. An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dadush_et_al:LIPIcs.ESA.2021.36,
  author =	{Dadush, Daniel and Koh, Zhuan Khye and Natura, Bento and V\'{e}gh, L\'{a}szl\'{o} A.},
  title =	{{An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.36},
  URN =		{urn:nbn:de:0030-drops-146172},
  doi =		{10.4230/LIPIcs.ESA.2021.36},
  annote =	{Keywords: Newton-Dinkelbach method, fractional optimization, parametric optimization, strongly polynomial algorithms, two variables per inequality systems, Markov decision processes, submodular function minimization}
}
Document
On the Power and Limitations of Branch and Cut

Authors: Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan, and Avi Wigderson

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
The Stabbing Planes proof system [Paul Beame et al., 2018] was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas - certain unsatisfiable systems of linear equations od 2 - which are canonical hard examples for many algebraic proof systems. In a recent (and surprising) result, Dadush and Tiwari [Daniel Dadush and Samarth Tiwari, 2020] showed that these short refutations of the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes proofs, refuting a long-standing conjecture. This translation raises several interesting questions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes. This would allow for the substantial analysis done on the Cutting Planes system to be lifted to practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of these proofs is inherent to Cutting Planes. In this paper we make progress towards answering both of these questions. First, we show that any Stabbing Planes proof with bounded coefficients (SP*) can be translated into Cutting Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the first exponential lower bounds on SP*. Using this translation, we extend the result of Dadush and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari, our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is inherent. As a step towards this conjecture, we develop a new geometric technique for proving lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas.

Cite as

Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan, and Avi Wigderson. On the Power and Limitations of Branch and Cut. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 6:1-6:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fleming_et_al:LIPIcs.CCC.2021.6,
  author =	{Fleming, Noah and G\"{o}\"{o}s, Mika and Impagliazzo, Russell and Pitassi, Toniann and Robere, Robert and Tan, Li-Yang and Wigderson, Avi},
  title =	{{On the Power and Limitations of Branch and Cut}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{6:1--6:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.6},
  URN =		{urn:nbn:de:0030-drops-142809},
  doi =		{10.4230/LIPIcs.CCC.2021.6},
  annote =	{Keywords: Proof Complexity, Integer Programming, Cutting Planes, Branch and Cut, Stabbing Planes}
}
Document
Majorizing Measures for the Optimizer

Authors: Sander Borst, Daniel Dadush, Neil Olver, and Makrand Sinha

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
The theory of majorizing measures, extensively developed by Fernique, Talagrand and many others, provides one of the most general frameworks for controlling the behavior of stochastic processes. In particular, it can be applied to derive quantitative bounds on the expected suprema and the degree of continuity of sample paths for many processes. One of the crowning achievements of the theory is Talagrand’s tight alternative characterization of the suprema of Gaussian processes in terms of majorizing measures. The proof of this theorem was difficult, and thus considerable effort was put into the task of developing both shorter and easier to understand proofs. A major reason for this difficulty was considered to be theory of majorizing measures itself, which had the reputation of being opaque and mysterious. As a consequence, most recent treatments of the theory (including by Talagrand himself) have eschewed the use of majorizing measures in favor of a purely combinatorial approach (the generic chaining) where objects based on sequences of partitions provide roughly matching upper and lower bounds on the desired expected supremum. In this paper, we return to majorizing measures as a primary object of study, and give a viewpoint that we think is natural and clarifying from an optimization perspective. As our main contribution, we give an algorithmic proof of the majorizing measures theorem based on two parts: - We make the simple (but apparently new) observation that finding the best majorizing measure can be cast as a convex program. This also allows for efficiently computing the measure using off-the-shelf methods from convex optimization. - We obtain tree-based upper and lower bound certificates by rounding, in a series of steps, the primal and dual solutions to this convex program. While duality has conceptually been part of the theory since its beginnings, as far as we are aware no explicit link to convex optimization has been previously made.

Cite as

Sander Borst, Daniel Dadush, Neil Olver, and Makrand Sinha. Majorizing Measures for the Optimizer. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 73:1-73:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{borst_et_al:LIPIcs.ITCS.2021.73,
  author =	{Borst, Sander and Dadush, Daniel and Olver, Neil and Sinha, Makrand},
  title =	{{Majorizing Measures for the Optimizer}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{73:1--73:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.73},
  URN =		{urn:nbn:de:0030-drops-136120},
  doi =		{10.4230/LIPIcs.ITCS.2021.73},
  annote =	{Keywords: Majorizing measures, Generic chaining, Gaussian processes, Convex optimization, Dimensionality Reduction}
}
Document
On the Complexity of Branching Proofs

Authors: Daniel Dadush and Samarth Tiwari

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We consider the task of proving integer infeasibility of a bounded convex K in ℝⁿ using a general branching proof system. In a general branching proof, one constructs a branching tree by adding an integer disjunction 𝐚𝐱 ≤ b or 𝐚𝐱 ≥ b+1, 𝐚 ∈ ℤⁿ, b ∈ ℤ, at each node, such that the leaves of the tree correspond to empty sets (i.e., K together with the inequalities picked up from the root to leaf is empty). Recently, Beame et al (ITCS 2018), asked whether the bit size of the coefficients in a branching proof, which they named stabbing planes (SP) refutations, for the case of polytopes derived from SAT formulas, can be assumed to be polynomial in n. We resolve this question in the affirmative, by showing that any branching proof can be recompiled so that the normals of the disjunctions have coefficients of size at most (n R)^O(n²), where R ∈ ℕ is the radius of an 𝓁₁ ball containing K, while increasing the number of nodes in the branching tree by at most a factor O(n). Our recompilation techniques works by first replacing each disjunction using an iterated Diophantine approximation, introduced by Frank and Tardos (Combinatorica 1986), and proceeds by "fixing up" the leaves of the tree using judiciously added Chvátal-Gomory (CG) cuts. As our second contribution, we show that Tseitin formulas, an important class of infeasible SAT instances, have quasi-polynomial sized cutting plane (CP) refutations. This disproves a conjecture that Tseitin formulas are (exponentially) hard for CP. Our upper bound follows by recompiling the quasi-polynomial sized SP refutations for Tseitin formulas due to Beame et al, which have a special enumerative form, into a CP proof of the same length using a serialization technique of Cook et al (Discrete Appl. Math. 1987). As our final contribution, we give a simple family of polytopes in [0,1]ⁿ requiring exponential sized branching proofs.

Cite as

Daniel Dadush and Samarth Tiwari. On the Complexity of Branching Proofs. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 34:1-34:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dadush_et_al:LIPIcs.CCC.2020.34,
  author =	{Dadush, Daniel and Tiwari, Samarth},
  title =	{{On the Complexity of Branching Proofs}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{34:1--34:35},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.34},
  URN =		{urn:nbn:de:0030-drops-125863},
  doi =		{10.4230/LIPIcs.CCC.2020.34},
  annote =	{Keywords: Branching Proofs, Cutting Planes, Diophantine Approximation, Integer Programming, Stabbing Planes, Tseitin Formulas}
}
Document
Signed Tropical Convexity

Authors: Georg Loho and László A. Végh

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We establish a new notion of tropical convexity for signed tropical numbers. We provide several equivalent descriptions involving balance relations and intersections of open halfspaces as well as the image of a union of polytopes over Puiseux series and hyperoperations. Along the way, we deduce a new Farkas' lemma and Fourier-Motzkin elimination without the non-negativity restriction on the variables. This leads to a Minkowski-Weyl theorem for polytopes over the signed tropical numbers.

Cite as

Georg Loho and László A. Végh. Signed Tropical Convexity. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 24:1-24:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{loho_et_al:LIPIcs.ITCS.2020.24,
  author =	{Loho, Georg and V\'{e}gh, L\'{a}szl\'{o} A.},
  title =	{{Signed Tropical Convexity}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{24:1--24:35},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.24},
  URN =		{urn:nbn:de:0030-drops-117097},
  doi =		{10.4230/LIPIcs.ITCS.2020.24},
  annote =	{Keywords: tropical convexity, signed tropical numbers, Farkas' lemma}
}
Document
A Time-Distance Trade-Off for GDD with Preprocessing - Instantiating the DLW Heuristic

Authors: Noah Stephens-Davidowitz

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
For 0 <= alpha <= 1/2, we show an algorithm that does the following. Given appropriate preprocessing P(L) consisting of N_alpha := 2^{O(n^{1-2 alpha} + log n)} vectors in some lattice L subset {R}^n and a target vector t in R^n, the algorithm finds y in L such that ||y-t|| <= n^{1/2 + alpha} eta(L) in time poly(n) * N_alpha, where eta(L) is the smoothing parameter of the lattice. The algorithm itself is very simple and was originally studied by Doulgerakis, Laarhoven, and de Weger (to appear in PQCrypto, 2019), who proved its correctness under certain reasonable heuristic assumptions on the preprocessing P(L) and target t. Our primary contribution is a choice of preprocessing that allows us to prove correctness without any heuristic assumptions. Our main motivation for studying this is the recent breakthrough algorithm for IdealSVP due to Hanrot, Pellet - Mary, and Stehlé (to appear in Eurocrypt, 2019), which uses the DLW algorithm as a key subprocedure. In particular, our result implies that the HPS IdealSVP algorithm can be made to work with fewer heuristic assumptions. Our only technical tool is the discrete Gaussian distribution over L, and in particular, a lemma showing that the one-dimensional projections of this distribution behave very similarly to the continuous Gaussian. This lemma might be of independent interest.

Cite as

Noah Stephens-Davidowitz. A Time-Distance Trade-Off for GDD with Preprocessing - Instantiating the DLW Heuristic. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 11:1-11:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{stephensdavidowitz:LIPIcs.CCC.2019.11,
  author =	{Stephens-Davidowitz, Noah},
  title =	{{A Time-Distance Trade-Off for GDD with Preprocessing - Instantiating the DLW Heuristic}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{11:1--11:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.11},
  URN =		{urn:nbn:de:0030-drops-108331},
  doi =		{10.4230/LIPIcs.CCC.2019.11},
  annote =	{Keywords: Lattices, guaranteed distance decoding, GDD, GDDP}
}
Document
Lattice-based Locality Sensitive Hashing is Optimal

Authors: Karthekeyan Chandrasekaran, Daniel Dadush, Venkata Gandikota, and Elena Grigorescu

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
Locality sensitive hashing (LSH) was introduced by Indyk and Motwani (STOC'98) to give the first sublinear time algorithm for the c-approximate nearest neighbor (ANN) problem using only polynomial space. At a high level, an LSH family hashes "nearby" points to the same bucket and "far away" points to different buckets. The quality of measure of an LSH family is its LSH exponent, which helps determine both query time and space usage. In a seminal work, Andoni and Indyk (FOCS '06) constructed an LSH family based on random ball partitionings of space that achieves an LSH exponent of 1/c^2 for the l_2 norm, which was later shown to be optimal by Motwani, Naor and Panigrahy (SIDMA '07) and O'Donnell, Wu and Zhou (TOCT '14). Although optimal in the LSH exponent, the ball partitioning approach is computationally expensive. So, in the same work, Andoni and Indyk proposed a simpler and more practical hashing scheme based on Euclidean lattices and provided computational results using the 24-dimensional Leech lattice. However, no theoretical analysis of the scheme was given, thus leaving open the question of finding the exponent of lattice based LSH. In this work, we resolve this question by showing the existence of lattices achieving the optimal LSH exponent of 1/c^2 using techniques from the geometry of numbers. At a more conceptual level, our results show that optimal LSH space partitions can have periodic structure. Understanding the extent to which additional structure can be imposed on these partitions, e.g. to yield low space and query complexity, remains an important open problem.

Cite as

Karthekeyan Chandrasekaran, Daniel Dadush, Venkata Gandikota, and Elena Grigorescu. Lattice-based Locality Sensitive Hashing is Optimal. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 42:1-42:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chandrasekaran_et_al:LIPIcs.ITCS.2018.42,
  author =	{Chandrasekaran, Karthekeyan and Dadush, Daniel and Gandikota, Venkata and Grigorescu, Elena},
  title =	{{Lattice-based Locality Sensitive Hashing is Optimal}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{42:1--42:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.42},
  URN =		{urn:nbn:de:0030-drops-83470},
  doi =		{10.4230/LIPIcs.ITCS.2018.42},
  annote =	{Keywords: Locality Sensitive Hashing, Approximate Nearest Neighbor Search, Random Lattices}
}
Document
Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem

Authors: Daniel Dadush, Shashwat Garg, Shachar Lovett, and Aleksandar Nikolov

Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)


Abstract
An important theorem of Banaszczyk (Random Structures & Algorithms 1998) states that for any sequence of vectors of l_2 norm at most 1/5 and any convex body K of Gaussian measure 1/2 in R^n, there exists a signed combination of these vectors which lands inside K. A major open problem is to devise a constructive version of Banaszczyk's vector balancing theorem, i.e. to find an efficient algorithm which constructs the signed combination. We make progress towards this goal along several fronts. As our first contribution, we show an equivalence between Banaszczyk's theorem and the existence of O(1)-subgaussian distributions over signed combinations. For the case of symmetric convex bodies, our equivalence implies the existence of a universal signing algorithm (i.e. independent of the body), which simply samples from the subgaussian sign distribution and checks to see if the associated combination lands inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which allows us to reduce to the case where the body is symmetric. As our second main contribution, we show that the above framework can be efficiently implemented when the vectors have length O(1/sqrt{log n}), recovering Banaszczyk's results under this stronger assumption. More precisely, we use random walk techniques to produce the required O(1)-subgaussian signing distributions when the vectors have length O(1/sqrt{log n}), and use a stochastic gradient ascent method to implement the recentering procedure for asymmetric bodies.

Cite as

Daniel Dadush, Shashwat Garg, Shachar Lovett, and Aleksandar Nikolov. Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 28:1-28:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dadush_et_al:LIPIcs.APPROX-RANDOM.2016.28,
  author =	{Dadush, Daniel and Garg, Shashwat and Lovett, Shachar and Nikolov, Aleksandar},
  title =	{{Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{28:1--28:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.28},
  URN =		{urn:nbn:de:0030-drops-66512},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.28},
  annote =	{Keywords: Discrepancy, Vector Balancing, Convex Geometry}
}
Document
On the Lattice Distortion Problem

Authors: Huck Bennett, Daniel Dadush, and Noah Stephens-Davidowitz

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We introduce and study the Lattice Distortion Problem (LDP). LDP asks how "similar" two lattices are. I.e., what is the minimal distortion of a linear bijection between the two lattices? LDP generalizes the Lattice Isomorphism Problem (the lattice analogue of Graph Isomorphism), which simply asks whether the minimal distortion is one. As our first contribution, we show that the distortion between any two lattices is approximated up to a n^{O(log(n))} factor by a simple function of their successive minima. Our methods are constructive, allowing us to compute low-distortion mappings that are within a 2^{O(n*log(log(n))/log(n))} factor of optimal in polynomial time and within a n^{O(log(n))} factor of optimal in singly exponential time. Our algorithms rely on a notion of basis reduction introduced by Seysen (Combinatorica 1993), which we show is intimately related to lattice distortion. Lastly, we show that LDP is NP-hard to approximate to within any constant factor (under randomized reductions), by a reduction from the Shortest Vector Problem.

Cite as

Huck Bennett, Daniel Dadush, and Noah Stephens-Davidowitz. On the Lattice Distortion Problem. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bennett_et_al:LIPIcs.ESA.2016.9,
  author =	{Bennett, Huck and Dadush, Daniel and Stephens-Davidowitz, Noah},
  title =	{{On the Lattice Distortion Problem}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.9},
  URN =		{urn:nbn:de:0030-drops-63519},
  doi =		{10.4230/LIPIcs.ESA.2016.9},
  annote =	{Keywords: lattices, lattice distortion, lattice isomoprhism, geometry of numbers, basis reduction}
}
  • Refine by Author
  • 9 Dadush, Daniel
  • 2 Stephens-Davidowitz, Noah
  • 2 Végh, László A.
  • 1 Anand, Emile
  • 1 Bennett, Huck
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Mathematical optimization
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Proof complexity
  • 1 Computing methodologies → Linear algebra algorithms
  • 1 Mathematics of computing → Combinatorial optimization
  • Show More...

  • Refine by Keyword
  • 2 Convex Geometry
  • 2 Cutting Planes
  • 2 Integer Programming
  • 2 Stabbing Planes
  • 1 Approximate Nearest Neighbor Search
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 4 2024
  • 3 2021
  • 2 2015
  • 2 2016
  • 2 2020
  • Show More...