3 Search Results for "Feldman, Vitaly"


Document
Track A: Algorithms, Complexity and Games
Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Authors: Yotam Kenneth and Robert Krauthgamer

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In cut sparsification, all cuts of a hypergraph H = (V,E,w) are approximated within 1±ε factor by a small hypergraph H'. This widely applied method was generalized recently to a setting where the cost of cutting each hyperedge e is provided by a splitting function g_e: 2^e → ℝ_+. This generalization is called a submodular hypergraph when the functions {g_e}_{e ∈ E} are submodular, and it arises in machine learning, combinatorial optimization, and algorithmic game theory. Previous work studied the setting where H' is a reweighted sub-hypergraph of H, and measured the size of H' by the number of hyperedges in it. In this setting, we present two results: (i) all submodular hypergraphs admit sparsifiers of size polynomial in n = |V| and ε^{-1}; (ii) we propose a new parameter, called spread, and use it to obtain smaller sparsifiers in some cases. We also show that for a natural family of splitting functions, relaxing the requirement that H' be a reweighted sub-hypergraph of H yields a substantially smaller encoding of the cuts of H (almost a factor n in the number of bits). This is in contrast to graphs, where the most succinct representation is attained by reweighted subgraphs. A new tool in our construction of succinct representation is the notion of deformation, where a splitting function g_e is decomposed into a sum of functions of small description, and we provide upper and lower bounds for deformation of common splitting functions.

Cite as

Yotam Kenneth and Robert Krauthgamer. Cut Sparsification and Succinct Representation of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 97:1-97:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kenneth_et_al:LIPIcs.ICALP.2024.97,
  author =	{Kenneth, Yotam and Krauthgamer, Robert},
  title =	{{Cut Sparsification and Succinct Representation of Submodular Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{97:1--97:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.97},
  URN =		{urn:nbn:de:0030-drops-202406},
  doi =		{10.4230/LIPIcs.ICALP.2024.97},
  annote =	{Keywords: Cut Sparsification, Submodular Hypergraphs, Succinct Representation}
}
Document
Pure Differentially Private Summation from Anonymous Messages

Authors: Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker

Published in: LIPIcs, Volume 163, 1st Conference on Information-Theoretic Cryptography (ITC 2020)


Abstract
The shuffled (aka anonymous) model has recently generated significant interest as a candidate distributed privacy framework with trust assumptions better than the central model but with achievable error rates smaller than the local model. In this paper, we study pure differentially private protocols in the shuffled model for summation, a very basic and widely used primitive. Specifically: - For the binary summation problem where each of n users holds a bit as an input, we give a pure ε-differentially private protocol for estimating the number of ones held by the users up to an absolute error of O_{ε}(1), and where each user sends O_{ε}(log n) one-bit messages. This is the first pure protocol in the shuffled model with error o(√n) for constant values of ε. Using our binary summation protocol as a building block, we give a pure ε-differentially private protocol that performs summation of real numbers in [0, 1] up to an absolute error of O_{ε}(1), and where each user sends O_{ε}(log³ n) messages each consisting of O(log log n) bits. - In contrast, we show that for any pure ε-differentially private protocol for binary summation in the shuffled model having absolute error n^{0.5-Ω(1)}, the per user communication has to be at least Ω_{ε}(√{log n}) bits. This implies (i) the first separation between the (bounded-communication) multi-message shuffled model and the central model, and (ii) the first separation between pure and approximate differentially private protocols in the shuffled model. Interestingly, over the course of proving our lower bound, we have to consider (a generalization of) the following question that might be of independent interest: given γ ∈ (0, 1), what is the smallest positive integer m for which there exist two random variables X⁰ and X^1 supported on {0, … , m} such that (i) the total variation distance between X⁰ and X^1 is at least 1 - γ, and (ii) the moment generating functions of X⁰ and X^1 are within a constant factor of each other everywhere? We show that the answer to this question is m = Θ(√{log(1/γ)}).

Cite as

Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Pure Differentially Private Summation from Anonymous Messages. In 1st Conference on Information-Theoretic Cryptography (ITC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 163, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ghazi_et_al:LIPIcs.ITC.2020.15,
  author =	{Ghazi, Badih and Golowich, Noah and Kumar, Ravi and Manurangsi, Pasin and Pagh, Rasmus and Velingker, Ameya},
  title =	{{Pure Differentially Private Summation from Anonymous Messages}},
  booktitle =	{1st Conference on Information-Theoretic Cryptography (ITC 2020)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-151-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{163},
  editor =	{Tauman Kalai, Yael and Smith, Adam D. and Wichs, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2020.15},
  URN =		{urn:nbn:de:0030-drops-121208},
  doi =		{10.4230/LIPIcs.ITC.2020.15},
  annote =	{Keywords: Pure differential privacy, Shuffled model, Anonymous messages, Summation, Communication bounds}
}
Document
On the Power of Learning from k-Wise Queries

Authors: Vitaly Feldman and Badih Ghazi

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
Several well-studied models of access to data samples, including statistical queries, local differential privacy and low-communication algorithms rely on queries that provide information about a function of a single sample. (For example, a statistical query (SQ) gives an estimate of Ex_{x ~ D}[q(x)] for any choice of the query function q mapping X to the reals, where D is an unknown data distribution over X.) Yet some data analysis algorithms rely on properties of functions that depend on multiple samples. Such algorithms would be naturally implemented using k-wise queries each of which is specified by a function q mapping X^k to the reals. Hence it is natural to ask whether algorithms using k-wise queries can solve learning problems more efficiently and by how much. Blum, Kalai and Wasserman (2003) showed that for any weak PAC learning problem over a fixed distribution, the complexity of learning with k-wise SQs is smaller than the (unary) SQ complexity by a factor of at most 2^k. We show that for more general problems over distributions the picture is substantially richer. For every k, the complexity of distribution-independent PAC learning with k-wise queries can be exponentially larger than learning with (k+1)-wise queries. We then give two approaches for simulating a k-wise query using unary queries. The first approach exploits the structure of the problem that needs to be solved. It generalizes and strengthens (exponentially) the results of Blum et al.. It allows us to derive strong lower bounds for learning DNF formulas and stochastic constraint satisfaction problems that hold against algorithms using k-wise queries. The second approach exploits the k-party communication complexity of the k-wise query function.

Cite as

Vitaly Feldman and Badih Ghazi. On the Power of Learning from k-Wise Queries. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 41:1-41:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{feldman_et_al:LIPIcs.ITCS.2017.41,
  author =	{Feldman, Vitaly and Ghazi, Badih},
  title =	{{On the Power of Learning from k-Wise Queries}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{41:1--41:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.41},
  URN =		{urn:nbn:de:0030-drops-81801},
  doi =		{10.4230/LIPIcs.ITCS.2017.41},
  annote =	{Keywords: Statistical Queries, PAC Learning, Differential Privacy, Lower bounds, Communication Complexity}
}
  • Refine by Author
  • 2 Ghazi, Badih
  • 1 Feldman, Vitaly
  • 1 Golowich, Noah
  • 1 Kenneth, Yotam
  • 1 Krauthgamer, Robert
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Hypergraphs
  • 1 Mathematics of computing → Probabilistic algorithms
  • 1 Security and privacy → Privacy-preserving protocols
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Lower bounds and information complexity
  • Show More...

  • Refine by Keyword
  • 1 Anonymous messages
  • 1 Communication Complexity
  • 1 Communication bounds
  • 1 Cut Sparsification
  • 1 Differential Privacy
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2017
  • 1 2020
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail