15 Search Results for "Gajarský, Jakub"


Document
Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

Authors: Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guśpiel, Petr Hliněný, Filip Pokrývka, and Marek Sokołowski

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph G of twin-width at most 2 contains no K_{t,t} subgraph for some integer t, then the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse graph class C we obtain a polynomial time algorithm which for any input graph G ∈ C either outputs a contraction sequence of width at most c (where c depends only on C), or correctly outputs that G has twin-width more than 2. On the other hand, we present an easy example of a graph class of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.

Cite as

Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guśpiel, Petr Hliněný, Filip Pokrývka, and Marek Sokołowski. Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 11:1-11:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ISAAC.2023.11,
  author =	{Bergougnoux, Benjamin and Gajarsk\'{y}, Jakub and Gu\'{s}piel, Grzegorz and Hlin\v{e}n\'{y}, Petr and Pokr\'{y}vka, Filip and Soko{\l}owski, Marek},
  title =	{{Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{11:1--11:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.11},
  URN =		{urn:nbn:de:0030-drops-193130},
  doi =		{10.4230/LIPIcs.ISAAC.2023.11},
  annote =	{Keywords: twin-width, tree-width, excluded grid, sparsity}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

Authors: Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Monadically stable and monadically NIP classes of structures were initially studied in the context of model theory and defined in logical terms. They have recently attracted attention in the area of structural graph theory, as they generalize notions such as nowhere denseness, bounded cliquewidth, and bounded twinwidth. Our main result is the - to the best of our knowledge first - purely combinatorial characterization of monadically stable classes of graphs, in terms of a property dubbed flip-flatness. A class C of graphs is flip-flat if for every fixed radius r, every sufficiently large set of vertices of a graph G ∈ C contains a large subset of vertices with mutual distance larger than r, where the distance is measured in some graph G' that can be obtained from G by performing a bounded number of flips that swap edges and non-edges within a subset of vertices. Flip-flatness generalizes the notion of uniform quasi-wideness, which characterizes nowhere dense classes and had a key impact on the combinatorial and algorithmic treatment of nowhere dense classes. To obtain this result, we develop tools that also apply to the more general monadically NIP classes, based on the notion of indiscernible sequences from model theory. We show that in monadically stable and monadically NIP classes indiscernible sequences impose a strong combinatorial structure on their definable neighborhoods. All our proofs are constructive and yield efficient algorithms.

Cite as

Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 125:1-125:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ICALP.2023.125,
  author =	{Dreier, Jan and M\"{a}hlmann, Nikolas and Siebertz, Sebastian and Toru\'{n}czyk, Szymon},
  title =	{{Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{125:1--125:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.125},
  URN =		{urn:nbn:de:0030-drops-181779},
  doi =		{10.4230/LIPIcs.ICALP.2023.125},
  annote =	{Keywords: stability, NIP, combinatorial characterization, first-order model checking}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flipper Games for Monadically Stable Graph Classes

Authors: Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode - using first-order transductions - arbitrarily long linear orders in graphs from C. It is known that nowhere dense graph classes are monadically stable; these include classes of bounded maximum degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms that is also suited for capturing structure in dense graphs. In this work we provide a characterization of monadic stability in terms of the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J. ACM '17). We give two different proofs of our main result. The first proof is based on tools borrowed from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for graph classes coincides with monadic stability of existential formulas with two free variables, and we provide another combinatorial characterization of monadic stability via forbidden patterns. The second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz, and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves in a winning strategy.

Cite as

Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk. Flipper Games for Monadically Stable Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 128:1-128:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2023.128,
  author =	{Gajarsk\'{y}, Jakub and M\"{a}hlmann, Nikolas and McCarty, Rose and Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Siebertz, Sebastian and Soko{\l}owski, Marek and Toru\'{n}czyk, Szymon},
  title =	{{Flipper Games for Monadically Stable Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{128:1--128:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.128},
  URN =		{urn:nbn:de:0030-drops-181804},
  doi =		{10.4230/LIPIcs.ICALP.2023.128},
  annote =	{Keywords: Stability theory, structural graph theory, games}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes

Authors: Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We use model-theoretic tools originating from stability theory to derive a result we call the Finitary Substitute Lemma, which intuitively says the following. Suppose we work in a stable graph class 𝒞, and using a first-order formula φ with parameters we are able to define, in every graph G ∈ 𝒞, a relation R that satisfies some hereditary first-order assertion ψ. Then we are able to find a first-order formula φ' that has the same property, but additionally is finitary: there is finite bound k ∈ ℕ such that in every graph G ∈ 𝒞, different choices of parameters give only at most k different relations R that can be defined using φ'. We use the Finitary Substitute Lemma to derive two corollaries about the existence of certain canonical decompositions in classes of well-structured graphs. - We prove that in the Splitter game, which characterizes nowhere dense graph classes, and in the Flipper game, which characterizes monadically stable graph classes, there is a winning strategy for Splitter, respectively Flipper, that can be defined in first-order logic from the game history. Thus, the strategy is canonical. - We show that for any fixed graph class 𝒞 of bounded shrubdepth, there is an 𝒪(n²)-time algorithm that given an n-vertex graph G ∈ 𝒞, computes in an isomorphism-invariant way a structure H of bounded treedepth in which G can be interpreted. A corollary of this result is an 𝒪(n²)-time isomorphism test and canonization algorithm for any fixed class of bounded shrubdepth.

Cite as

Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 135:1-135:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ohlmann_et_al:LIPIcs.ICALP.2023.135,
  author =	{Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{135:1--135:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.135},
  URN =		{urn:nbn:de:0030-drops-181874},
  doi =		{10.4230/LIPIcs.ICALP.2023.135},
  annote =	{Keywords: Model Theory, Stability Theory, Shrubdepth, Nowhere Dense, Monadically Stable}
}
Document
Taming Graphs with No Large Creatures and Skinny Ladders

Authors: Jakub Gajarský, Lars Jaffke, Paloma T. Lima, Jana Novotná, Marcin Pilipczuk, Paweł Rzążewski, and Uéverton S. Souza

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph class 𝒢 there exists a constant k such that no member of 𝒢 contains a k-creature as an induced subgraph or a k-skinny-ladder as an induced minor, then there exists a polynomial p such that every G ∈ 𝒢 contains at most p(|V(G)|) minimal separators. By a result of Fomin, Todinca, and Villanger [SIAM J. Comput. 2015] the latter entails the existence of polynomial-time algorithms for Maximum Weight Independent Set, Feedback Vertex Set and many other problems, when restricted to an input graph from 𝒢. Furthermore, as shown by Gartland and Lokshtanov, our result implies a full dichotomy of hereditary graph classes defined by a finite set of forbidden induced subgraphs into tame (admitting a polynomial bound of the number of minimal separators) and feral (containing infinitely many graphs with exponential number of minimal separators).

Cite as

Jakub Gajarský, Lars Jaffke, Paloma T. Lima, Jana Novotná, Marcin Pilipczuk, Paweł Rzążewski, and Uéverton S. Souza. Taming Graphs with No Large Creatures and Skinny Ladders. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 58:1-58:8, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ESA.2022.58,
  author =	{Gajarsk\'{y}, Jakub and Jaffke, Lars and Lima, Paloma T. and Novotn\'{a}, Jana and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Souza, U\'{e}verton S.},
  title =	{{Taming Graphs with No Large Creatures and Skinny Ladders}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{58:1--58:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.58},
  URN =		{urn:nbn:de:0030-drops-169969},
  doi =		{10.4230/LIPIcs.ESA.2022.58},
  annote =	{Keywords: Minimal separator, hereditary graph class}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Twin-Width and Types

Authors: Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study problems connected to first-order logic in graphs of bounded twin-width. Inspired by the approach of Bonnet et al. [FOCS 2020], we introduce a robust methodology of local types and describe their behavior in contraction sequences - the decomposition notion underlying twin-width. We showcase the applicability of the methodology by proving the following two algorithmic results. In both statements, we fix a first-order formula φ(x_1,…,x_k) and a constant d, and we assume that on input we are given a graph G together with a contraction sequence of width at most d. - One can in time 𝒪(n) construct a data structure that can answer the following queries in time 𝒪(log log n): given w_1,…,w_k, decide whether φ(w_1,…,w_k) holds in G. - After 𝒪(n)-time preprocessing, one can enumerate all tuples w₁,…,w_k that satisfy φ(x_1,…,x_k) in G with 𝒪(1) delay. In the first case, the query time can be reduced to 𝒪(1/ε) at the expense of increasing the construction time to 𝒪(n^{1+ε}), for any fixed ε > 0. Finally, we also apply our tools to prove the following statement, which shows optimal bounds on the VC density of set systems that are first-order definable in graphs of bounded twin-width. - Let G be a graph of twin-width d, A be a subset of vertices of G, and φ(x_1,…,x_k,y_1,…,y_l) be a first-order formula. Then the number of different subsets of A^k definable by φ using l-tuples of vertices from G as parameters, is bounded by O(|A|^l).

Cite as

Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Twin-Width and Types. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 123:1-123:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2022.123,
  author =	{Gajarsk\'{y}, Jakub and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Twin-Width and Types}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{123:1--123:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.123},
  URN =		{urn:nbn:de:0030-drops-164640},
  doi =		{10.4230/LIPIcs.ICALP.2022.123},
  annote =	{Keywords: twin-width, FO logic, model checking, query answering, enumeration}
}
Document
Differential Games, Locality, and Model Checking for FO Logic of Graphs

Authors: Jakub Gajarský, Maximilian Gorsky, and Stephan Kreutzer

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
We introduce differential games for FO logic of graphs, a variant of Ehrenfeucht-Fraïssé games in which the game is played on only one graph and the moves of both players are restricted. We prove that these games are strong enough to capture essential information about graphs from graph classes which are interpretable in nowhere dense graph classes. This, together with the newly introduced notion of differential locality and the fact that the restriction of possible moves by the players makes it easy to decide the winner of the game in some cases, leads to a new approach to the FO model checking problem which can be used on various graph classes interpretable in classes of sparse graphs.

Cite as

Jakub Gajarský, Maximilian Gorsky, and Stephan Kreutzer. Differential Games, Locality, and Model Checking for FO Logic of Graphs. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 22:1-22:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.CSL.2022.22,
  author =	{Gajarsk\'{y}, Jakub and Gorsky, Maximilian and Kreutzer, Stephan},
  title =	{{Differential Games, Locality, and Model Checking for FO Logic of Graphs}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.22},
  URN =		{urn:nbn:de:0030-drops-157426},
  doi =		{10.4230/LIPIcs.CSL.2022.22},
  annote =	{Keywords: FO model checking, locality, Gaifman’s theorem, EF games}
}
Document
Computing Shrub-Depth Decompositions

Authors: Jakub Gajarský and Stephan Kreutzer

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
Shrub-depth is a width measure of graphs which, roughly speaking, corresponds to the smallest depth of a tree into which a graph can be encoded. It can be thought of as a low-depth variant of clique-width (or rank-width), similarly as treedepth is a low-depth variant of treewidth. We present an fpt algorithm for computing decompositions of graphs of bounded shrub-depth. To the best of our knowledge, this is the first algorithm which computes the decomposition directly, without use of rank-width decompositions and FO or MSO logic.

Cite as

Jakub Gajarský and Stephan Kreutzer. Computing Shrub-Depth Decompositions. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 56:1-56:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.STACS.2020.56,
  author =	{Gajarsk\'{y}, Jakub and Kreutzer, Stephan},
  title =	{{Computing Shrub-Depth Decompositions}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{56:1--56:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.56},
  URN =		{urn:nbn:de:0030-drops-119177},
  doi =		{10.4230/LIPIcs.STACS.2020.56},
  annote =	{Keywords: shrub-depth, tree-model, decomposition, fixed-parameter tractability}
}
Document
Parameterized Complexity of Fair Vertex Evaluation Problems

Authors: Dušan Knop, Tomáš Masařík, and Tomáš Toufar

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
A prototypical graph problem is centered around a graph-theoretic property for a set of vertices and a solution to it is a set of vertices for which the desired property holds. The task is to decide whether, in the given graph, there exists a solution of a certain quality, where we use size as a quality measure. In this work, we are changing the measure to the fair measure (cf. Lin and Sahni [Li-Shin Lin and Sartaj Sahni, 1989]). The fair measure of a set of vertices S is (at most) k if the number of neighbors in the set S of any vertex (in the input graph) does not exceed k. One possible way to study graph problems is by defining the property in a certain logic. For a given objective, an evaluation problem is to find a set (of vertices) that simultaneously minimizes the assumed measure and satisfies an appropriate formula. More formally, we study the {MSO} Fair Vertex Evaluation, where the graph-theoretic property is described by an {MSO} formula. In the presented paper we show that there is an FPT algorithm for the {MSO} Fair Vertex Evaluation problem for formulas with one free variable parameterized by the twin cover number of the input graph and the size of the formula. One may define an extended variant of {MSO} Fair Vertex Evaluation for formulas with l free variables; here we measure a maximum number of neighbors in each of the l sets. However, such variant is {W[1]}-hard for parameter l even on graphs with twin cover one. Furthermore, we study the Fair Vertex Cover (Fair VC) problem. Fair VC is among the simplest problems with respect to the demanded property (i.e., the rest forms an edgeless graph). On the negative side, Fair VC is {W[1]}-hard when parameterized by both treedepth and feedback vertex set of the input graph. On the positive side, we provide an FPT algorithm for the parameter modular width.

Cite as

Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized Complexity of Fair Vertex Evaluation Problems. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{knop_et_al:LIPIcs.MFCS.2019.33,
  author =	{Knop, Du\v{s}an and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Toufar, Tom\'{a}\v{s}},
  title =	{{Parameterized Complexity of Fair Vertex Evaluation Problems}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.33},
  URN =		{urn:nbn:de:0030-drops-109775},
  doi =		{10.4230/LIPIcs.MFCS.2019.33},
  annote =	{Keywords: Fair objective, metatheorem, fair vertex cover, twin cover, modular width}
}
Document
Measuring what Matters: A Hybrid Approach to Dynamic Programming with Treewidth

Authors: Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We develop a framework for applying treewidth-based dynamic programming on graphs with "hybrid structure", i.e., with parts that may not have small treewidth but instead possess other structural properties. Informally, this is achieved by defining a refinement of treewidth which only considers parts of the graph that do not belong to a pre-specified tractable graph class. Our approach allows us to not only generalize existing fixed-parameter algorithms exploiting treewidth, but also fixed-parameter algorithms which use the size of a modulator as their parameter. As the flagship application of our framework, we obtain a parameter that combines treewidth and rank-width to obtain fixed-parameter algorithms for Chromatic Number, Hamiltonian Cycle, and Max-Cut.

Cite as

Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what Matters: A Hybrid Approach to Dynamic Programming with Treewidth. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 42:1-42:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.MFCS.2019.42,
  author =	{Eiben, Eduard and Ganian, Robert and Hamm, Thekla and Kwon, O-joung},
  title =	{{Measuring what Matters: A Hybrid Approach to Dynamic Programming with Treewidth}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{42:1--42:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.42},
  URN =		{urn:nbn:de:0030-drops-109867},
  doi =		{10.4230/LIPIcs.MFCS.2019.42},
  annote =	{Keywords: Parameterized complexity, treewidth, rank-width, fixed-parameter algorithms}
}
Document
Recovering Sparse Graphs

Authors: Jakub Gajarský and Daniel Král'

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
We construct a fixed parameter algorithm parameterized by d and k that takes as an input a graph G' obtained from a d-degenerate graph G by complementing on at most k arbitrary subsets of the vertex set of G and outputs a graph H such that G and H agree on all but f(d,k) vertices. Our work is motivated by the first order model checking in graph classes that are first order interpretable in classes of sparse graphs. We derive as a corollary that if G is a graph class with bounded expansion, then the first order model checking is fixed parameter tractable in the class of all graphs that can obtained from a graph G in G by complementing on at most k arbitrary subsets of the vertex set of G; this implies an earlier result that the first order model checking is fixed parameter tractable in graph classes interpretable in classes of graphs with bounded maximum degree.

Cite as

Jakub Gajarský and Daniel Král'. Recovering Sparse Graphs. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 29:1-29:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.MFCS.2018.29,
  author =	{Gajarsk\'{y}, Jakub and Kr\'{a}l', Daniel},
  title =	{{Recovering Sparse Graphs}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.29},
  URN =		{urn:nbn:de:0030-drops-96111},
  doi =		{10.4230/LIPIcs.MFCS.2018.29},
  annote =	{Keywords: model checking, degenerate graphs, interpretations, bounded expansion}
}
Document
First-Order Interpretations of Bounded Expansion Classes

Authors: Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
The notion of bounded expansion captures uniform sparsity of graph classes and renders various algorithmic problems that are hard in general tractable. In particular, the model-checking problem for first-order logic is fixed-parameter tractable over such graph classes. With the aim of generalizing such results to dense graphs, we introduce classes of graphs with structurally bounded expansion, defined as first-order interpretations of classes of bounded expansion. As a first step towards their algorithmic treatment, we provide their characterization analogous to the characterization of classes of bounded expansion via low treedepth decompositions, replacing treedepth by its dense analogue called shrubdepth.

Cite as

Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. First-Order Interpretations of Bounded Expansion Classes. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 126:1-126:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2018.126,
  author =	{Gajarsk\'{y}, Jakub and Kreutzer, Stephan and Nesetril, Jaroslav and Ossona de Mendez, Patrice and Pilipczuk, Michal and Siebertz, Sebastian and Torunczyk, Szymon},
  title =	{{First-Order Interpretations of Bounded Expansion Classes}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{126:1--126:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.126},
  URN =		{urn:nbn:de:0030-drops-91300},
  doi =		{10.4230/LIPIcs.ICALP.2018.126},
  annote =	{Keywords: Logical interpretations/transductions, structurally sparse graphs, bounded expansion}
}
Document
Meta-kernelization using Well-structured Modulators

Authors: Eduard Eiben, Robert Ganian, and Stefan Szeider

Published in: LIPIcs, Volume 43, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)


Abstract
Kernelization investigates exact preprocessing algorithms with performance guarantees. The most prevalent type of parameters used in kernelization is the solution size for optimization problems; however, also structural parameters have been successfully used to obtain polynomial kernels for a wide range of problems. Many of these parameters can be defined as the size of a smallest modulator of the given graph into a fixed graph class (i.e., a set of vertices whose deletion puts the graph into the graph class). Such parameters admit the construction of polynomial kernels even when the solution size is large or not applicable. This work follows up on the research on meta-kernelization frameworks in terms of structural parameters. We develop a class of parameters which are based on a more general view on modulators: instead of size, the parameters employ a combination of rank-width and split decompositions to measure structure inside the modulator. This allows us to lift kernelization results from modulator-size to more general parameters, hence providing smaller kernels. We show (i) how such large but well-structured modulators can be efficiently approximated, (ii) how they can be used to obtain polynomial kernels for any graph problem expressible in Monadic Second Order logic, and (iii) how they allow the extension of previous results in the area of structural meta-kernelization.

Cite as

Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using Well-structured Modulators. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 114-126, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.IPEC.2015.114,
  author =	{Eiben, Eduard and Ganian, Robert and Szeider, Stefan},
  title =	{{Meta-kernelization using Well-structured Modulators}},
  booktitle =	{10th International Symposium on Parameterized and Exact Computation (IPEC 2015)},
  pages =	{114--126},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-92-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{43},
  editor =	{Husfeldt, Thore and Kanj, Iyad},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.114},
  URN =		{urn:nbn:de:0030-drops-55769},
  doi =		{10.4230/LIPIcs.IPEC.2015.114},
  annote =	{Keywords: Kernelization, Parameterized complexity, Structural parameters, Rank-width, Split decompositions}
}
Document
Linear Kernels for Outbranching Problems in Sparse Digraphs

Authors: Marthe Bonamy, Lukasz Kowalik, Michal Pilipczuk, and Arkadiusz Socala

Published in: LIPIcs, Volume 43, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)


Abstract
In the k-Leaf Out-Branching and k-Internal Out-Branching problems we are given a directed graph D with a designated root r and a nonnegative integer k. The question is to determine the existence of an outbranching rooted at r that has at least k leaves, or at least k internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k^2) vertices are known on general graphs. In this work we show that k-Leaf Out-Branching admits a kernel with O(k) vertices on H-minor-free graphs, for any fixed H, whereas k-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded expansion.

Cite as

Marthe Bonamy, Lukasz Kowalik, Michal Pilipczuk, and Arkadiusz Socala. Linear Kernels for Outbranching Problems in Sparse Digraphs. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 199-211, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bonamy_et_al:LIPIcs.IPEC.2015.199,
  author =	{Bonamy, Marthe and Kowalik, Lukasz and Pilipczuk, Michal and Socala, Arkadiusz},
  title =	{{Linear Kernels for Outbranching Problems in Sparse Digraphs}},
  booktitle =	{10th International Symposium on Parameterized and Exact Computation (IPEC 2015)},
  pages =	{199--211},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-92-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{43},
  editor =	{Husfeldt, Thore and Kanj, Iyad},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.199},
  URN =		{urn:nbn:de:0030-drops-55839},
  doi =		{10.4230/LIPIcs.IPEC.2015.199},
  annote =	{Keywords: FPT algorithm, kernelization, outbranching, sparse graphs}
}
Document
Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences

Authors: Jakub Gajarsky and Petr Hlineny

Published in: LIPIcs, Volume 18, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)


Abstract
We prove, in the universe of trees of bounded height, that for any MSO formula with $m$ variables there exists a set of kernels such that the size of each of these kernels can be bounded by an elementary function of m. This yields a faster MSO model checking algorithm for trees of bounded height than the one for general trees. From that we obtain, by means of interpretation, corresponding results for the classes of graphs of bounded tree-depth (MSO_2) and shrub-depth (MSO_1), and thus we give wide generalizations of Lampis' (ESA 2010) and Ganian's (IPEC 2011) results. In the second part of the paper we use this kernel structure to show that FO has the same expressive power as MSO_1 on the graph classes of bounded shrub-depth. This makes bounded shrub-depth a good candidate for characterization of the hereditary classes of graphs on which FO and MSO_1 coincide, a problem recently posed by Elberfeld, Grohe, and Tantau (LICS 2012).

Cite as

Jakub Gajarsky and Petr Hlineny. Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 18, pp. 112-123, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.FSTTCS.2012.112,
  author =	{Gajarsky, Jakub and Hlineny, Petr},
  title =	{{Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)},
  pages =	{112--123},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-47-7},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{18},
  editor =	{D'Souza, Deepak and Radhakrishnan, Jaikumar and Telikepalli, Kavitha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2012.112},
  URN =		{urn:nbn:de:0030-drops-38553},
  doi =		{10.4230/LIPIcs.FSTTCS.2012.112},
  annote =	{Keywords: MSO graph property, tree-width, tree-depth, shrub-depth}
}
  • Refine by Author
  • 8 Gajarský, Jakub
  • 4 Toruńczyk, Szymon
  • 3 Kreutzer, Stephan
  • 3 Pilipczuk, Michał
  • 3 Przybyszewski, Wojciech
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Finite Model Theory
  • 3 Mathematics of computing → Graph theory
  • 3 Theory of computation → Fixed parameter tractability
  • 3 Theory of computation → Logic
  • 2 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 Parameterized complexity
  • 2 bounded expansion
  • 2 model checking
  • 2 shrub-depth
  • 2 tree-width
  • Show More...

  • Refine by Type
  • 15 document

  • Refine by Publication Year
  • 4 2023
  • 3 2022
  • 2 2015
  • 2 2018
  • 2 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail