81 Search Results for "Harsha, Prahladh"


Volume

LIPIcs, Volume 45

35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)

FSTTCS 2015, December 16-18, 2015, Bangalore, India

Editors: Prahladh Harsha and G. Ramalingam

Document
Lower Bounds for Set-Multilinear Branching Programs

Authors: Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear algebraic branching programs, each with a possibly different ordering (∑smABP). Specifically, we give an explicit nd-variate polynomial of degree d such that any ∑smABP computing it must have size n^ω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a single ordered set-multilinear ABP. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs - for a polynomial of sufficiently low degree - would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n), then it would imply super-polynomial lower bounds against general ABPs. Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput. Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each of which established lower bounds for related or restricted versions of this model. They also strongly answer a question from the former two, which asked to prove super-polynomial lower bounds for general ∑smABP.

Cite as

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2024.20,
  author =	{Chatterjee, Prerona and Kush, Deepanshu and Saraf, Shubhangi and Shpilka, Amir},
  title =	{{Lower Bounds for Set-Multilinear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20},
  URN =		{urn:nbn:de:0030-drops-204167},
  doi =		{10.4230/LIPIcs.CCC.2024.20},
  annote =	{Keywords: Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials}
}
Document
Online Facility Location with Weights and Congestion

Authors: Arghya Chakraborty and Rahul Vaze

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
The classic online facility location problem deals with finding the optimal set of facilities in an online fashion when demand requests arrive one at a time and facilities need to be opened to service these requests. In this work, we study two variants of the online facility location problem; (1) weighted requests and (2) congestion. Both of these variants are motivated by their applications to real life scenarios and the previously known results on online facility location cannot be directly adapted to analyse them. - Weighted requests: In this variant, each demand request is a pair (x,w) where x is the standard location of the demand while w is the corresponding weight of the request. The cost of servicing request (x,w) at facility F is w⋅ d(x,F). For this variant, given n requests, we present an online algorithm attaining a competitive ratio of 𝒪(log n) in the secretarial model for the weighted requests and show that it is optimal. -Congestion: The congestion variant considers the case when there is a congestion cost that grows with the number of requests served by each facility. For this variant, when the congestion cost is a monomial, we show that there exists an algorithm attaining a constant competitive ratio. This constant is a function of the exponent of the monomial and the facility opening cost but independent of the number of requests.

Cite as

Arghya Chakraborty and Rahul Vaze. Online Facility Location with Weights and Congestion. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 6:1-6:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.FSTTCS.2023.6,
  author =	{Chakraborty, Arghya and Vaze, Rahul},
  title =	{{Online Facility Location with Weights and Congestion}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.6},
  URN =		{urn:nbn:de:0030-drops-193797},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.6},
  annote =	{Keywords: online algorithms, online facility location, probabilistic method, weighted-requests, congestion}
}
Document
Criticality of AC⁰-Formulae

Authors: Prahladh Harsha, Tulasimohan Molli, and Ashutosh Shankar

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
Rossman [In Proc. 34th Comput. Complexity Conf., 2019] introduced the notion of criticality. The criticality of a Boolean function f : {0,1}ⁿ → {0,1} is the minimum λ ≥ 1 such that for all positive integers t and all p ∈ [0,1], Pr_{ρ∼ℛ_p}[DT_{depth}(f|_ρ) ≥ t] ≤ (pλ)^t, where ℛ_p refers to the distribution of p-random restrictions. Håstad’s celebrated switching lemma shows that the criticality of any k-DNF is at most O(k). Subsequent improvements to correlation bounds of AC⁰-circuits against parity showed that the criticality of any AC⁰-circuit of size S and depth d+1 is at most O(log S)^d and any regular AC⁰-formula of size S and depth d+1 is at most O((1/d)⋅log S)^d. We strengthen these results by showing that the criticality of any AC⁰-formula (not necessarily regular) of size S and depth d+1 is at most O((log S)/d)^d, resolving a conjecture due to Rossman. This result also implies Rossman’s optimal lower bound on the size of any depth-d AC⁰-formula computing parity [Comput. Complexity, 27(2):209-223, 2018.]. Our result implies tight correlation bounds against parity, tight Fourier concentration results and improved #SAT algorithm for AC⁰-formulae.

Cite as

Prahladh Harsha, Tulasimohan Molli, and Ashutosh Shankar. Criticality of AC⁰-Formulae. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 19:1-19:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{harsha_et_al:LIPIcs.CCC.2023.19,
  author =	{Harsha, Prahladh and Molli, Tulasimohan and Shankar, Ashutosh},
  title =	{{Criticality of AC⁰-Formulae}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{19:1--19:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.19},
  URN =		{urn:nbn:de:0030-drops-182898},
  doi =		{10.4230/LIPIcs.CCC.2023.19},
  annote =	{Keywords: AC⁰ circuits, AC⁰ formulae, criticality, switching lemma, correlation bounds}
}
Document
Downward Self-Reducibility in TFNP

Authors: Prahladh Harsha, Daniel Mitropolsky, and Alon Rosen

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A problem is downward self-reducible if it can be solved efficiently given an oracle that returns solutions for strictly smaller instances. In the decisional landscape, downward self-reducibility is well studied and it is known that all downward self-reducible problems are in PSPACE. In this paper, we initiate the study of downward self-reducible search problems which are guaranteed to have a solution - that is, the downward self-reducible problems in TFNP. We show that most natural PLS-complete problems are downward self-reducible and any downward self-reducible problem in TFNP is contained in PLS. Furthermore, if the downward self-reducible problem is in TFUP (i.e. it has a unique solution), then it is actually contained in UEOPL, a subclass of CLS. This implies that if integer factoring is downward self-reducible then it is in fact in UEOPL, suggesting that no efficient factoring algorithm exists using the factorization of smaller numbers.

Cite as

Prahladh Harsha, Daniel Mitropolsky, and Alon Rosen. Downward Self-Reducibility in TFNP. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 67:1-67:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{harsha_et_al:LIPIcs.ITCS.2023.67,
  author =	{Harsha, Prahladh and Mitropolsky, Daniel and Rosen, Alon},
  title =	{{Downward Self-Reducibility in TFNP}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{67:1--67:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.67},
  URN =		{urn:nbn:de:0030-drops-175700},
  doi =		{10.4230/LIPIcs.ITCS.2023.67},
  annote =	{Keywords: downward self-reducibility, TFNP, TFUP, factoring, PLS, CLS}
}
Document
Vanishing Spaces of Random Sets and Applications to Reed-Muller Codes

Authors: Siddharth Bhandari, Prahladh Harsha, Ramprasad Saptharishi, and Srikanth Srinivasan

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We study the following natural question on random sets of points in 𝔽₂^m: Given a random set of k points Z = {z₁, z₂, … , z_k} ⊆ 𝔽₂^m, what is the dimension of the space of degree at most r multilinear polynomials that vanish on all points in Z? We show that, for r ≤ γ m (where γ > 0 is a small, absolute constant) and k = (1-ε)⋅binom(m, ≤ r) for any constant ε > 0, the space of degree at most r multilinear polynomials vanishing on a random set Z = {z_1,…, z_k} has dimension exactly binom(m, ≤ r) - k with probability 1 - o(1). This bound shows that random sets have a much smaller space of degree at most r multilinear polynomials vanishing on them, compared to the worst-case bound (due to Wei (IEEE Trans. Inform. Theory, 1991)) of binom(m, ≤ r) - binom(log₂ k, ≤ r) ≫ binom(m, ≤ r) - k. Using this bound, we show that high-degree Reed-Muller codes (RM(m,d) with d > (1-γ) m) "achieve capacity" under the Binary Erasure Channel in the sense that, for any ε > 0, we can recover from (1-ε)⋅binom(m, ≤ m-d-1) random erasures with probability 1 - o(1). This also implies that RM(m,d) is also efficiently decodable from ≈ binom(m, ≤ m-(d/2)) random errors for the same range of parameters.

Cite as

Siddharth Bhandari, Prahladh Harsha, Ramprasad Saptharishi, and Srikanth Srinivasan. Vanishing Spaces of Random Sets and Applications to Reed-Muller Codes. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bhandari_et_al:LIPIcs.CCC.2022.31,
  author =	{Bhandari, Siddharth and Harsha, Prahladh and Saptharishi, Ramprasad and Srinivasan, Srikanth},
  title =	{{Vanishing Spaces of Random Sets and Applications to Reed-Muller Codes}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{31:1--31:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.31},
  URN =		{urn:nbn:de:0030-drops-165934},
  doi =		{10.4230/LIPIcs.CCC.2022.31},
  annote =	{Keywords: Reed-Muller codes, polynomials, weight-distribution, vanishing ideals, erasures, capacity}
}
Document
One-Way Communication Complexity and Non-Adaptive Decision Trees

Authors: Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. More generally, we show the following when the gadget is Inner Product on 2b input bits for all b ≥ 2, denoted IP. - If f is a total Boolean function that depends on all of its n input bits, then the bounded-error one-way quantum communication complexity of f∘IP equals Ω(n(b-1)). - If f is a partial Boolean function, then the deterministic one-way communication complexity of f∘IP is at least Ω(b ⋅ 𝖣_{dt}^ → (f)), where 𝖣_{dt}^ → (f) denotes non-adaptive decision tree complexity of f. To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f∘IP. We then appeal to a result of Klauck [STOC'00], which immediately yields our quantum lower bound. Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede and Khachatrian [Adv. Appl. Math.'98], and Frankl and Tokushige [Comb.'99]. It is known due to a result of Montanaro and Osborne [arXiv'09] that the deterministic one-way communication complexity of f∘XOR equals the non-adaptive parity decision tree complexity of f. In contrast, we show the following when the inner gadget is the AND function on 2 input bits. - There exists a function for which even the quantum non-adaptive AND decision tree complexity of f is exponentially large in the deterministic one-way communication complexity of f∘AND. - However, for symmetric functions f, the non-adaptive AND decision tree complexity of f is at most quadratic in the (even two-way) communication complexity of f∘AND. In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does not lift to a lower bound on one-way communication complexity of f∘AND. The proof of the first bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a connection between the one-way communication complexity of f and the Möbius sparsity of f, and then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior work on combinatorial group testing; for the sake of completeness, we include a proof of this result. It is well known that the rank of the communication matrix of a function F is an upper bound on its deterministic one-way communication complexity. This bound is known to be tight for some F. However, in our final result we show that this is not the case when F = f∘AND. More precisely we show that for all f, the deterministic one-way communication complexity of F = f∘AND is at most (rank(M_{F}))(1 - Ω(1)), where M_{F} denotes the communication matrix of F.

Cite as

Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. One-Way Communication Complexity and Non-Adaptive Decision Trees. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 49:1-49:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mande_et_al:LIPIcs.STACS.2022.49,
  author =	{Mande, Nikhil S. and Sanyal, Swagato and Sherif, Suhail},
  title =	{{One-Way Communication Complexity and Non-Adaptive Decision Trees}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{49:1--49:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.49},
  URN =		{urn:nbn:de:0030-drops-158598},
  doi =		{10.4230/LIPIcs.STACS.2022.49},
  annote =	{Keywords: Decision trees, communication complexity, composed Boolean functions}
}
Document
Mixing of 3-Term Progressions in Quasirandom Groups

Authors: Amey Bhangale, Prahladh Harsha, and Sourya Roy

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
In this paper, we show the mixing of three-term progressions (x, xg, xg²) in every finite quasirandom group, fully answering a question of Gowers. More precisely, we show that for any D-quasirandom group G and any three sets A₁, A₂, A₃ ⊂ G, we have |Pr_{x,y∼ G}[x ∈ A₁, xy ∈ A₂, xy² ∈ A₃] - ∏_{i = 1}³ Pr_{x∼ G}[x ∈ A_i]| ≤ (2/(√{D)})^{1/4}. Prior to this, Tao answered this question when the underlying quasirandom group is SL_{d}(𝔽_q). Subsequently, Peluse extended the result to all non-abelian finite simple groups. In this work, we show that a slight modification of Peluse’s argument is sufficient to fully resolve Gowers' quasirandom conjecture for 3-term progressions. Surprisingly, unlike the proofs of Tao and Peluse, our proof is elementary and only uses basic facts from non-abelian Fourier analysis.

Cite as

Amey Bhangale, Prahladh Harsha, and Sourya Roy. Mixing of 3-Term Progressions in Quasirandom Groups. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 20:1-20:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bhangale_et_al:LIPIcs.ITCS.2022.20,
  author =	{Bhangale, Amey and Harsha, Prahladh and Roy, Sourya},
  title =	{{Mixing of 3-Term Progressions in Quasirandom Groups}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{20:1--20:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.20},
  URN =		{urn:nbn:de:0030-drops-156163},
  doi =		{10.4230/LIPIcs.ITCS.2022.20},
  annote =	{Keywords: Quasirandom groups, 3-term arithmetic progressions}
}
Document
Tight Chang’s-Lemma-Type Bounds for Boolean Functions

Authors: Sourav Chakraborty, Nikhil S. Mande, Rajat Mittal, Tulasimohan Molli, Manaswi Paraashar, and Swagato Sanyal

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
Chang’s lemma (Duke Mathematical Journal, 2002) is a classical result in mathematics, with applications spanning across additive combinatorics, combinatorial number theory, analysis of Boolean functions, communication complexity and algorithm design. For a Boolean function f that takes values in {-1, 1} let r(f) denote its Fourier rank (i.e., the dimension of the span of its Fourier support). For each positive threshold t, Chang’s lemma provides a lower bound on δ(f) := Pr[f(x) = -1] in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least 1/t. In this work we examine the tightness of Chang’s lemma with respect to the following three natural settings of the threshold: - the Fourier sparsity of f, denoted k(f), - the Fourier max-supp-entropy of f, denoted k'(f), defined to be the maximum value of the reciprocal of the absolute value of a non-zero Fourier coefficient, - the Fourier max-rank-entropy of f, denoted k''(f), defined to be the minimum t such that characters whose coefficients are at least 1/t in magnitude span a r(f)-dimensional space. In this work we prove new lower bounds on δ(f) in terms of the above measures. One of our lower bounds, δ(f) = Ω(r(f)²/(k(f) log² k(f))), subsumes and refines the previously best known upper bound r(f) = O(√{k(f)}log k(f)) on r(f) in terms of k(f) by Sanyal (Theory of Computing, 2019). We improve upon this bound and show r(f) = O(√{k(f)δ(f)}log k(f)). Another lower bound, δ(f) = Ω(r(f)/(k''(f) log k(f))), is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of absolute values of level-1 Fourier coefficients in terms of 𝔽₂-degree. We further show that Chang’s lemma for the above-mentioned choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions witnessing their tightness. All the functions we construct are modifications of the Addressing function, where we replace certain input variables by suitable functions. Our final contribution is to construct Boolean functions f for which our lower bounds asymptotically match δ(f), and for any choice of the threshold t, the lower bound obtained from Chang’s lemma is asymptotically smaller than δ(f). Our results imply more refined deterministic one-way communication complexity upper bounds for XOR functions. Given the wide-ranging application of Chang’s lemma to areas like additive combinatorics, learning theory and communication complexity, we strongly feel that our refinements of Chang’s lemma will find many more applications.

Cite as

Sourav Chakraborty, Nikhil S. Mande, Rajat Mittal, Tulasimohan Molli, Manaswi Paraashar, and Swagato Sanyal. Tight Chang’s-Lemma-Type Bounds for Boolean Functions. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 10:1-10:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.FSTTCS.2021.10,
  author =	{Chakraborty, Sourav and Mande, Nikhil S. and Mittal, Rajat and Molli, Tulasimohan and Paraashar, Manaswi and Sanyal, Swagato},
  title =	{{Tight Chang’s-Lemma-Type Bounds for Boolean Functions}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{10:1--10:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.10},
  URN =		{urn:nbn:de:0030-drops-155215},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.10},
  annote =	{Keywords: Analysis of Boolean functions, Chang’s lemma, Parity decision trees, Fourier dimension}
}
Document
RANDOM
Ideal-Theoretic Explanation of Capacity-Achieving Decoding

Authors: Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes, while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family of codes that were not previously known/studied. More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that good bounds on this distance lead to capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.

Cite as

Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan. Ideal-Theoretic Explanation of Capacity-Achieving Decoding. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 56:1-56:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhandari_et_al:LIPIcs.APPROX/RANDOM.2021.56,
  author =	{Bhandari, Siddharth and Harsha, Prahladh and Kumar, Mrinal and Sudan, Madhu},
  title =	{{Ideal-Theoretic Explanation of Capacity-Achieving Decoding}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{56:1--56:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.56},
  URN =		{urn:nbn:de:0030-drops-147499},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.56},
  annote =	{Keywords: List Decodability, List Decoding Capacity, Polynomial Ideal Codes, Multiplicity Codes, Folded Reed-Solomon Codes}
}
Document
Explicit SoS Lower Bounds from High-Dimensional Expanders

Authors: Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We construct an explicit and structured family of 3XOR instances which is hard for O(√{log n}) levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems are highly structured and can be constructed explicitly in deterministic polynomial time. Our construction is based on the high-dimensional expanders devised by Lubotzky, Samuels and Vishne, known as LSV complexes or Ramanujan complexes, and our analysis is based on two notions of expansion for these complexes: cosystolic expansion, and a local isoperimetric inequality due to Gromov. Our construction offers an interesting contrast to the recent work of Alev, Jeronimo and the last author (FOCS 2019). They showed that 3XOR instances in which the variables correspond to vertices in a high-dimensional expander are easy to solve. In contrast, in our instances the variables correspond to the edges of the complex.

Cite as

Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani. Explicit SoS Lower Bounds from High-Dimensional Expanders. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dinur_et_al:LIPIcs.ITCS.2021.38,
  author =	{Dinur, Irit and Filmus, Yuval and Harsha, Prahladh and Tulsiani, Madhur},
  title =	{{Explicit SoS Lower Bounds from High-Dimensional Expanders}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.38},
  URN =		{urn:nbn:de:0030-drops-135774},
  doi =		{10.4230/LIPIcs.ITCS.2021.38},
  annote =	{Keywords: High-dimensional expanders, sum-of-squares, integrality gaps}
}
Document
On Parity Decision Trees for Fourier-Sparse Boolean Functions

Authors: Nikhil S. Mande and Swagato Sanyal

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Our contributions are as follows. Let f : 𝔽₂ⁿ → {-1, 1} be a Boolean function with Fourier support 𝒮 and Fourier sparsity k. - We prove via the probabilistic method that there exists a parity decision tree of depth O(√k) that computes f. This matches the best known upper bound on the parity decision tree complexity of Boolean functions (Tsang, Wong, Xie, and Zhang, FOCS 2013). Moreover, while previous constructions (Tsang et al., FOCS 2013, Shpilka, Tal, and Volk, Comput. Complex. 2017) build the trees by carefully choosing the parities to be queried in each step, our proof shows that a naive sampling of the parities suffices. - We generalize the above result by showing that if the Fourier spectra of Boolean functions satisfy a natural "folding property", then the above proof can be adapted to establish existence of a tree of complexity polynomially smaller than O(√ k). More concretely, the folding property we consider is that for most distinct γ, δ in 𝒮, there are at least a polynomial (in k) number of pairs (α, β) of parities in 𝒮 such that α+β = γ+δ. We make a conjecture in this regard which, if true, implies that the communication complexity of an XOR function is bounded above by the fourth root of the rank of its communication matrix, improving upon the previously known upper bound of square root of rank (Tsang et al., FOCS 2013, Lovett, J. ACM. 2016). - Motivated by the above, we present some structural results about the Fourier spectra of Boolean functions. It can be shown by elementary techniques that for any Boolean function f and all (α, β) in binom(𝒮,2), there exists another pair (γ, δ) in binom(𝒮,2) such that α + β = γ + δ. One can view this as a "trivial" folding property that all Boolean functions satisfy. Prior to our work, it was conceivable that for all (α, β) ∈ binom(𝒮,2), there exists exactly one other pair (γ, δ) ∈ binom(𝒮,2) with α + β = γ + δ. We show, among other results, that there must exist several γ ∈ 𝔽₂ⁿ such that there are at least three pairs of parities (α₁, α₂) ∈ binom(𝒮,2) with α₁+α₂ = γ. This, in particular, rules out the possibility stated earlier.

Cite as

Nikhil S. Mande and Swagato Sanyal. On Parity Decision Trees for Fourier-Sparse Boolean Functions. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{mande_et_al:LIPIcs.FSTTCS.2020.29,
  author =	{Mande, Nikhil S. and Sanyal, Swagato},
  title =	{{On Parity Decision Trees for Fourier-Sparse Boolean Functions}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.29},
  URN =		{urn:nbn:de:0030-drops-132703},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.29},
  annote =	{Keywords: Parity decision trees, log-rank conjecture, analysis of Boolean functions, communication complexity}
}
Document
RANDOM
On Multilinear Forms: Bias, Correlation, and Tensor Rank

Authors: Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, and Mrinal Kumar

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
In this work, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over F₂. We show the following results for multilinear forms and tensors. Correlation bounds. We show that a random d-linear form has exponentially low correlation with low-degree polynomials. More precisely, for d = 2^{o(k)}, we show that a random d-linear form f(X₁,X₂, … , X_d) : (F₂^{k}) ^d → F₂ has correlation 2^{-k(1-o(1))} with any polynomial of degree at most d/2 with high probability. This result is proved by giving near-optimal bounds on the bias of a random d-linear form, which is in turn proved by giving near-optimal bounds on the probability that a sum of t random d-dimensional rank-1 tensors is identically zero. Tensor rank vs Bias. We show that if a 3-dimensional tensor has small rank then its bias, when viewed as a 3-linear form, is large. More precisely, given any 3-dimensional tensor T: [k]³ → F₂ of rank at most t, the bias of the 3-linear form f_T(X₁, X₂, X₃) : = ∑_{(i₁, i₂, i₃) ∈ [k]³} T(i₁, i₂, i₃)⋅ X_{1,i₁}⋅ X_{2,i₂}⋅ X_{3,i₃} is at least (3/4)^t. This bias vs tensor-rank connection suggests a natural approach to proving nontrivial tensor-rank lower bounds. In particular, we use this approach to give a new proof that the finite field multiplication tensor has tensor rank at least 3.52 k, which is the best known rank lower bound for any explicit tensor in three dimensions over F₂. Moreover, this relation between bias and tensor rank holds for d-dimensional tensors for any fixed d.

Cite as

Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, and Mrinal Kumar. On Multilinear Forms: Bias, Correlation, and Tensor Rank. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 29:1-29:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bhrushundi_et_al:LIPIcs.APPROX/RANDOM.2020.29,
  author =	{Bhrushundi, Abhishek and Harsha, Prahladh and Hatami, Pooya and Kopparty, Swastik and Kumar, Mrinal},
  title =	{{On Multilinear Forms: Bias, Correlation, and Tensor Rank}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{29:1--29:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.29},
  URN =		{urn:nbn:de:0030-drops-126325},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.29},
  annote =	{Keywords: polynomials, Boolean functions, tensor rank, bias, correlation}
}
Document
APPROX
Revisiting Alphabet Reduction in Dinur’s PCP

Authors: Venkatesan Guruswami, Jakub Opršal, and Sai Sandeep

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
Dinur’s celebrated proof of the PCP theorem alternates two main steps in several iterations: gap amplification to increase the soundness gap by a large constant factor (at the expense of much larger alphabet size), and a composition step that brings back the alphabet size to an absolute constant (at the expense of a fixed constant factor loss in the soundness gap). We note that the gap amplification can produce a Label Cover CSP. This allows us to reduce the alphabet size via a direct long-code based reduction from Label Cover to a Boolean CSP. Our composition step thus bypasses the concept of Assignment Testers from Dinur’s proof, and we believe it is more intuitive - it is just a gadget reduction. The analysis also uses only elementary facts (Parseval’s identity) about Fourier Transforms over the hypercube.

Cite as

Venkatesan Guruswami, Jakub Opršal, and Sai Sandeep. Revisiting Alphabet Reduction in Dinur’s PCP. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 34:1-34:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.APPROX/RANDOM.2020.34,
  author =	{Guruswami, Venkatesan and Opr\v{s}al, Jakub and Sandeep, Sai},
  title =	{{Revisiting Alphabet Reduction in Dinur’s PCP}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{34:1--34:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.34},
  URN =		{urn:nbn:de:0030-drops-126372},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.34},
  annote =	{Keywords: PCP theorem, CSP, discrete Fourier analysis, label cover, long code}
}
Document
Sum of Squares Bounds for the Ordering Principle

Authors: Aaron Potechin

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
In this paper, we analyze the sum of squares hierarchy (SOS) on the ordering principle on n elements (which has N = Θ(n²) variables). We prove that degree O(√nlog(n)) SOS can prove the ordering principle. We then show that this upper bound is essentially tight by proving that for any ε > 0, SOS requires degree Ω(n^(1/2 - ε)) to prove the ordering principle.

Cite as

Aaron Potechin. Sum of Squares Bounds for the Ordering Principle. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 38:1-38:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{potechin:LIPIcs.CCC.2020.38,
  author =	{Potechin, Aaron},
  title =	{{Sum of Squares Bounds for the Ordering Principle}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{38:1--38:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.38},
  URN =		{urn:nbn:de:0030-drops-125900},
  doi =		{10.4230/LIPIcs.CCC.2020.38},
  annote =	{Keywords: sum of squares hierarchy, proof complexity, ordering principle}
}
  • Refine by Author
  • 22 Harsha, Prahladh
  • 6 Srinivasan, Srikanth
  • 5 Dinur, Irit
  • 4 Sanyal, Swagato
  • 3 Bhandari, Siddharth
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 Approximation algorithms
  • 3 communication complexity
  • 2 Boolean functions
  • 2 FPT
  • 2 Graph algorithms
  • Show More...

  • Refine by Type
  • 80 document
  • 1 volume

  • Refine by Publication Year
  • 53 2015
  • 5 2019
  • 4 2016
  • 4 2020
  • 3 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail