14 Search Results for "Jones, Mitchell"


Document
Transaction Fee Mechanism Design in a Post-MEV World

Authors: Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
The incentive-compatibility properties of blockchain transaction fee mechanisms have been investigated with passive block producers that are motivated purely by the net rewards earned at the consensus layer. This paper introduces a model of active block producers that have their own private valuations for blocks (representing, for example, additional value derived from the application layer). The block producer surplus in our model can be interpreted as one of the more common colloquial meanings of the phrase "maximal extractable value (MEV)." We first prove that transaction fee mechanism design is fundamentally more difficult with active block producers than with passive ones: With active block producers, no non-trivial or approximately welfare-maximizing transaction fee mechanism can be incentive-compatible for both users and block producers. These results can be interpreted as a mathematical justification for augmenting transaction fee mechanisms with additional components such as order flow auctions, block producer competition, trusted hardware, or cryptographic techniques. We then consider a more fine-grained model of block production that more accurately reflects current practice, in which we distinguish the roles of "searchers" (who actively identify opportunities for value extraction from the application layer and compete for the right to take advantage of them) and "proposers" (who participate directly in the blockchain protocol and make the final choice of the published block). Searchers can effectively act as an "MEV oracle" for a transaction fee mechanism, thereby enlarging the design space. Here, we first consider a TFM that is inspired by how searchers have traditionally been incorporated into the block production process, with each transaction effectively sold off to a searcher through a first-price auction. We then explore the TFM design space with searchers more generally, and design a mechanism that circumvents our impossibility results for TFMs without searchers. Our mechanism (the "SAKA" mechanism) is incentive-compatible (for users, searchers, and the block producer), sybil-proof, and guarantees roughly 50% of the maximum-possible welfare when transaction sizes are small relative to block sizes. We conclude with a matching negative result: even when transaction sizes are small, no DSIC and sybil-proof deterministic TFM can guarantee more than 50% of the maximum-possible welfare.

Cite as

Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. Transaction Fee Mechanism Design in a Post-MEV World. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 29:1-29:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bahrani_et_al:LIPIcs.AFT.2024.29,
  author =	{Bahrani, Maryam and Garimidi, Pranav and Roughgarden, Tim},
  title =	{{Transaction Fee Mechanism Design in a Post-MEV World}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{29:1--29:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.29},
  URN =		{urn:nbn:de:0030-drops-209658},
  doi =		{10.4230/LIPIcs.AFT.2024.29},
  annote =	{Keywords: MEV, Transaction Fee Mechanisms, Auctions}
}
Document
InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference

Authors: Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Supporting automatic type inference is in demand in modern language development. It is a challenging task but without appropriate supporting toolkits. This paper presents InferType, a Java library that helps implement constraint-based type inference. A compiler writer uses InferType’s classes and methods to describe type constraints and typing rules for type inference. InferType then performs constraint solving by translation to the Z3 SMT solver. InferType is equipped with our developed optimization technique. It reduces the search space for type variables by pre-computing the structures of those type variables for mitigating the performance bottleneck of constraint solving with deeply nested types. We use InferType to implement type inference for a subset of Python, and conduct experiments to evaluate how the developed optimization technique can affect the performance of type inference. Our results show that InferType’s optimization can greatly mitigate the performance bottleneck for programs with deeply nested types, and can potentially improve the performance for large nested types.

Cite as

Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba. InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 23:1-23:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.23,
  author =	{Li, Senxi and Yamazaki, Tetsuro and Chiba, Shigeru},
  title =	{{InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{23:1--23:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.23},
  URN =		{urn:nbn:de:0030-drops-208728},
  doi =		{10.4230/LIPIcs.ECOOP.2024.23},
  annote =	{Keywords: Domain Specific Languages, Compilation, Static Analysis, Type Inference, Constraint Solving, SMT Solver}
}
Document
Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Authors: Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Refinement types have been extensively used in class-based languages to specify and verify fine-grained logical specifications. Despite the advances in practical aspects such as applicability and usability, two fundamental issues persist. First, the soundness of existing class-based refinement type systems is inadequately explored, casting doubts on their reliability. Second, the expressiveness of existing systems is limited, restricting the depiction of semantic properties related to object-oriented constructs. This work tackles these issues through a systematic framework. We formalize a declarative class-based refinement type calculus (named RFJ), that is expressive and concise. We rigorously develop the soundness meta-theory of this calculus, followed by its mechanization in Coq. Finally, to ensure the calculus’s verifiability, we propose an algorithmic verification approach based on a fragment of first-order logic (named LFJ), and implement this approach as a type checker.

Cite as

Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao. Formalizing, Mechanizing, and Verifying Class-Based Refinement Types. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 39:1-39:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECOOP.2024.39,
  author =	{Sun, Ke and Wang, Di and Chen, Sheng and Wang, Meng and Hao, Dan},
  title =	{{Formalizing, Mechanizing, and Verifying Class-Based Refinement Types}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{39:1--39:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.39},
  URN =		{urn:nbn:de:0030-drops-208881},
  doi =		{10.4230/LIPIcs.ECOOP.2024.39},
  annote =	{Keywords: Refinement Types, Program Verification, Object-oriented Programming}
}
Document
Type Tailoring

Authors: Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Type systems evolve too slowly to keep up with the quick evolution of libraries - especially libraries that introduce abstractions. Type tailoring offers a lightweight solution by equipping the core language with an API for modifying the elaboration of surface code into the internal language of the typechecker. Through user-programmable elaboration, tailoring rules appear to improve the precision and expressiveness of the underlying type system. Furthermore, type tailoring cooperates with the host type system by expanding to code that the host then typechecks. In the context of a hygienic metaprogramming system, tailoring rules can even harmoniously compose with one another. Type tailoring has emerged as a theme across several languages and metaprogramming systems, but never with direct support and rarely in the same shape twice. For example, both OCaml and Typed Racket enable forms of tailoring, but in quite different ways. This paper identifies key dimensions of type tailoring systems and tradeoffs along each dimension. It demonstrates the usefulness of tailoring with examples that cover sized vectors, database queries, and optional types. Finally, it outlines a vision for future research at the intersection of types and metaprogramming.

Cite as

Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman. Type Tailoring. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 44:1-44:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wiersdorf_et_al:LIPIcs.ECOOP.2024.44,
  author =	{Wiersdorf, Ashton and Chang, Stephen and Felleisen, Matthias and Greenman, Ben},
  title =	{{Type Tailoring}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{44:1--44:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.44},
  URN =		{urn:nbn:de:0030-drops-208933},
  doi =		{10.4230/LIPIcs.ECOOP.2024.44},
  annote =	{Keywords: Types, Metaprogramming, Macros, Partial Evaluation}
}
Document
Abstractions for Multi-Sorted Substitutions

Authors: Hannes Saffrich

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Formalizing a typed programming language in a proof assistant requires to choose representations for variables and typing. Variables are often represented as de Bruijn indices, where substitution is usually defined in terms of renamings to allow for proofs by structural induction. Typing can be represented extrinsically by defining untyped terms and a typing relation, or intrinsically by combining syntax and typing into a single definition of well-typed terms. For extrinsic typing, there is again a choice between extrinsic scoping, where terms and the notion of free variables are defined separately, and intrinsic scoping, where terms are indexed by their free variables. This paper describes an Agda framework for formalizing programming languages with extrinsic typing, intrinsic scoping, and de Bruijn Indices for variables. The framework supports object languages with arbitrary many variable sorts and dependencies, making it suitable for polymorphic languages and dependent types. Given an Agda definition of syntax and typing, the framework derives substitution operations and lemmas for untyped terms, and provides an abstraction to prove type preservation of these operations with just a single lemma. The key insights behind the framework are the use of multi-sorted syntax definitions, which enable parallel substitutions that replace all variables of all sorts simultaneously, and abstractions that unify the definitions, compositions, typings, and type preservation lemmas of multi-sorted renamings and substitutions. Case studies have been conducted to prove subject reduction for System F with subtyping, dependently typed lambda calculus, and lambda calculus with pattern matching.

Cite as

Hannes Saffrich. Abstractions for Multi-Sorted Substitutions. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saffrich:LIPIcs.ITP.2024.32,
  author =	{Saffrich, Hannes},
  title =	{{Abstractions for Multi-Sorted Substitutions}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.32},
  URN =		{urn:nbn:de:0030-drops-207609},
  doi =		{10.4230/LIPIcs.ITP.2024.32},
  annote =	{Keywords: Agda, Metatheory, Framework}
}
Document
Combining Constraint Programming Reasoning with Large Language Model Predictions

Authors: Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation due to CP’s struggle with implementing "meaning" and ML’s difficulty with structural constraints. This paper proposes a solution by combining both approaches and embedding a Large Language Model (LLM) in CP. The LLM handles word generation and meaning, while CP manages structural constraints. This approach builds on GenCP, an improved version of On-the-fly Constraint Programming Search (OTFS) using LLM-generated domains. Compared to Beam Search (BS), a standard NLP method, this combined approach (GenCP with LLM) is faster and produces better results, ensuring all constraints are satisfied. This fusion of CP and ML presents new possibilities for enhancing text generation under constraints.

Cite as

Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron. Combining Constraint Programming Reasoning with Large Language Model Predictions. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 25:1-25:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{regin_et_al:LIPIcs.CP.2024.25,
  author =	{R\'{e}gin, Florian and De Maria, Elisabetta and Bonlarron, Alexandre},
  title =	{{Combining Constraint Programming Reasoning with Large Language Model Predictions}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{25:1--25:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.25},
  URN =		{urn:nbn:de:0030-drops-207109},
  doi =		{10.4230/LIPIcs.CP.2024.25},
  annote =	{Keywords: Solver and Tools, ML-augmented CP, Constrained Text Generation, ML alongside CO}
}
Document
AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction

Authors: Adam Cicherski, Anna Lisiecka, and Norbert Dojer

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
The success of pangenome-based approaches to genomics analysis depends largely on the existence of efficient methods for constructing pangenome graphs that are applicable to large genome collections. In the current paper we present AlfaPang, a new pangenome graph building algorithm. AlfaPang is based on a novel alignment-free approach that allows to construct pangenome graphs using significantly less computational resources than state-of-the-art tools. The code of AlfaPang is freely available at https://github.com/AdamCicherski/AlfaPang.

Cite as

Adam Cicherski, Anna Lisiecka, and Norbert Dojer. AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cicherski_et_al:LIPIcs.WABI.2024.23,
  author =	{Cicherski, Adam and Lisiecka, Anna and Dojer, Norbert},
  title =	{{AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.23},
  URN =		{urn:nbn:de:0030-drops-206673},
  doi =		{10.4230/LIPIcs.WABI.2024.23},
  annote =	{Keywords: pangenome, variation graph, genome alignment, population genomics}
}
Document
Stabbing Convex Bodies with Lines and Flats

Authors: Sariel Har-Peled and Mitchell Jones

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We study the problem of constructing weak ε-nets where the stabbing elements are lines or k-flats instead of points. We study this problem in the simplest setting where it is still interesting - namely, the uniform measure of volume over the hypercube [0,1]^d. Specifically, a (k,ε)-net is a set of k-flats, such that any convex body in [0,1]^d of volume larger than ε is stabbed by one of these k-flats. We show that for k ≥ 1, one can construct (k,ε)-nets of size O(1/ε^{1-k/d}). We also prove that any such net must have size at least Ω(1/ε^{1-k/d}). As a concrete example, in three dimensions all ε-heavy bodies in [0,1]³ can be stabbed by Θ(1/ε^{2/3}) lines. Note, that these bounds are sublinear in 1/ε, and are thus somewhat surprising.

Cite as

Sariel Har-Peled and Mitchell Jones. Stabbing Convex Bodies with Lines and Flats. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 42:1-42:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{harpeled_et_al:LIPIcs.SoCG.2021.42,
  author =	{Har-Peled, Sariel and Jones, Mitchell},
  title =	{{Stabbing Convex Bodies with Lines and Flats}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{42:1--42:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.42},
  URN =		{urn:nbn:de:0030-drops-138412},
  doi =		{10.4230/LIPIcs.SoCG.2021.42},
  annote =	{Keywords: Discrete geometry, combinatorics, weak \epsilon-nets, k-flats}
}
Document
Track A: Algorithms, Complexity and Games
Active Learning a Convex Body in Low Dimensions

Authors: Sariel Har-Peled, Mitchell Jones, and Saladi Rahul

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Consider a set P ⊆ ℝ^d of n points, and a convex body C provided via a separation oracle. The task at hand is to decide for each point of P if it is in C using the fewest number of oracle queries. We show that one can solve this problem in two and three dimensions using O(⬡_P log n) queries, where ⬡_P is the largest subset of points of P in convex position. In 2D, we provide an algorithm which efficiently generates these adaptive queries. Furthermore, we show that in two dimensions one can solve this problem using O(⊚(P,C) log² n) oracle queries, where ⊚(P,C) is a lower bound on the minimum number of queries that any algorithm for this specific instance requires. Finally, we consider other variations on the problem, such as using the fewest number of queries to decide if C contains all points of P. As an application of the above, we show that the discrete geometric median of a point set P in ℝ² can be computed in O(n log² n (log n log log n + ⬡(P))) expected time.

Cite as

Sariel Har-Peled, Mitchell Jones, and Saladi Rahul. Active Learning a Convex Body in Low Dimensions. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 64:1-64:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{harpeled_et_al:LIPIcs.ICALP.2020.64,
  author =	{Har-Peled, Sariel and Jones, Mitchell and Rahul, Saladi},
  title =	{{Active Learning a Convex Body in Low Dimensions}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{64:1--64:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.64},
  URN =		{urn:nbn:de:0030-drops-124711},
  doi =		{10.4230/LIPIcs.ICALP.2020.64},
  annote =	{Keywords: Approximation algorithms, computational geometry, separation oracles, active learning}
}
Document
Fast Algorithms for Geometric Consensuses

Authors: Sariel Har-Peled and Mitchell Jones

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Let P be a set of n points in ℝ^d in general position. A median hyperplane (roughly) splits the point set P in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of P. The egg of P is the ball of smallest radius intersecting all hyperplanes which contain exactly d points of P. We present exact algorithms for computing the yolk and the egg of a point set, both running in expected time O(n^(d-1) log n). The running time of the new algorithm is a polynomial time improvement over existing algorithms. We also present algorithms for several related problems, such as computing the Tukey and center balls of a point set, among others.

Cite as

Sariel Har-Peled and Mitchell Jones. Fast Algorithms for Geometric Consensuses. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 50:1-50:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{harpeled_et_al:LIPIcs.SoCG.2020.50,
  author =	{Har-Peled, Sariel and Jones, Mitchell},
  title =	{{Fast Algorithms for Geometric Consensuses}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{50:1--50:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.50},
  URN =		{urn:nbn:de:0030-drops-122088},
  doi =		{10.4230/LIPIcs.SoCG.2020.50},
  annote =	{Keywords: Geometric optimization, centerpoint, voting games}
}
Document
Dynamic Geometric Data Structures via Shallow Cuttings

Authors: Timothy M. Chan

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We present new results on a number of fundamental problems about dynamic geometric data structures: 1) We describe the first fully dynamic data structures with sublinear amortized update time for maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the largest empty circle for a 2D point set, (iii) the Hausdorff distance between two 2D point sets, (iv) the discrete 1-center of a 2D point set, (v) the number of maximal (i.e., skyline) points in a 3D point set. The update times are near n^{11/12} for (i) and (ii), n^{7/8} for (iii) and (iv), and n^{2/3} for (v). Previously, sublinear bounds were known only for restricted "semi-online" settings [Chan, SODA 2002]. 2) We slightly improve previous fully dynamic data structures for answering extreme point queries for the convex hull of a 3D point set and nearest neighbor search for a 2D point set. The query time is O(log^2n), and the amortized update time is O(log^4n) instead of O(log^5n) [Chan, SODA 2006; Kaplan et al., SODA 2017]. 3) We also improve previous fully dynamic data structures for maintaining the bichromatic closest pair between two 2D point sets and the diameter of a 2D point set. The amortized update time is O(log^4n) instead of O(log^7n) [Eppstein 1995; Chan, SODA 2006; Kaplan et al., SODA 2017].

Cite as

Timothy M. Chan. Dynamic Geometric Data Structures via Shallow Cuttings. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 24:1-24:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chan:LIPIcs.SoCG.2019.24,
  author =	{Chan, Timothy M.},
  title =	{{Dynamic Geometric Data Structures via Shallow Cuttings}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{24:1--24:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.24},
  URN =		{urn:nbn:de:0030-drops-104288},
  doi =		{10.4230/LIPIcs.SoCG.2019.24},
  annote =	{Keywords: dynamic data structures, convex hulls, nearest neighbor search, closest pair, shallow cuttings}
}
Document
Journey to the Center of the Point Set

Authors: Sariel Har-Peled and Mitchell Jones

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We revisit an algorithm of Clarkson et al. [K. L. Clarkson et al., 1996], that computes (roughly) a 1/(4d^2)-centerpoint in O~(d^9) time, for a point set in R^d, where O~ hides polylogarithmic terms. We present an improved algorithm that computes (roughly) a 1/d^2-centerpoint with running time O~(d^7). While the improvements are (arguably) mild, it is the first progress on this well known problem in over twenty years. The new algorithm is simpler, and the running time bound follows by a simple random walk argument, which we believe to be of independent interest. We also present several new applications of the improved centerpoint algorithm.

Cite as

Sariel Har-Peled and Mitchell Jones. Journey to the Center of the Point Set. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{harpeled_et_al:LIPIcs.SoCG.2019.41,
  author =	{Har-Peled, Sariel and Jones, Mitchell},
  title =	{{Journey to the Center of the Point Set}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{41:1--41:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.41},
  URN =		{urn:nbn:de:0030-drops-104454},
  doi =		{10.4230/LIPIcs.SoCG.2019.41},
  annote =	{Keywords: Computational geometry, Centerpoints, Random walks}
}
Document
On Locality-Sensitive Orderings and Their Applications

Authors: Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
For any constant d and parameter epsilon > 0, we show the existence of (roughly) 1/epsilon^d orderings on the unit cube [0,1)^d, such that any two points p, q in [0,1)^d that are close together under the Euclidean metric are "close together" in one of these linear orderings in the following sense: the only points that could lie between p and q in the ordering are points with Euclidean distance at most epsilon | p - q | from p or q. These orderings are extensions of the Z-order, and they can be efficiently computed. Functionally, the orderings can be thought of as a replacement to quadtrees and related structures (like well-separated pair decompositions). We use such orderings to obtain surprisingly simple algorithms for a number of basic problems in low-dimensional computational geometry, including (i) dynamic approximate bichromatic closest pair, (ii) dynamic spanners, (iii) dynamic approximate minimum spanning trees, (iv) static and dynamic fault-tolerant spanners, and (v) approximate nearest neighbor search.

Cite as

Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. On Locality-Sensitive Orderings and Their Applications. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 21:1-21:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ITCS.2019.21,
  author =	{Chan, Timothy M. and Har-Peled, Sariel and Jones, Mitchell},
  title =	{{On Locality-Sensitive Orderings and Their Applications}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{21:1--21:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.21},
  URN =		{urn:nbn:de:0030-drops-101140},
  doi =		{10.4230/LIPIcs.ITCS.2019.21},
  annote =	{Keywords: Approximation algorithms, Data structures, Computational geometry}
}
Document
Turbocharging Treewidth Heuristics

Authors: Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rümmele

Published in: LIPIcs, Volume 63, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)


Abstract
A widely used class of algorithms for computing tree decompositions of graphs are heuristics that compute an elimination order, i.e., a permutation of the vertex set. In this paper, we propose to turbocharge these heuristics. For a target treewidth k, suppose the heuristic has already computed a partial elimination order of width at most k, but extending it by one more vertex exceeds the target width k. At this moment of regret, we solve a subproblem which is to recompute the last c positions of the partial elimination order such that it can be extended without exceeding width k. We show that this subproblem is fixed-parameter tractable when parameterized by k and c, but it is para-NP-hard and W[1]-hard when parameterized by only k or c, respectively. Our experimental evaluation of the FPT algorithm shows that we can trade a reasonable increase of the running time for quality of the solution.

Cite as

Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rümmele. Turbocharging Treewidth Heuristics. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.IPEC.2016.13,
  author =	{Gaspers, Serge and Gudmundsson, Joachim and Jones, Mitchell and Mestre, Juli\'{a}n and R\"{u}mmele, Stefan},
  title =	{{Turbocharging Treewidth Heuristics}},
  booktitle =	{11th International Symposium on Parameterized and Exact Computation (IPEC 2016)},
  pages =	{13:1--13:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-023-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{63},
  editor =	{Guo, Jiong and Hermelin, Danny},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.13},
  URN =		{urn:nbn:de:0030-drops-69322},
  doi =		{10.4230/LIPIcs.IPEC.2016.13},
  annote =	{Keywords: tree decomposition, heuristic, fixed-parameter tractability, local search}
}
  • Refine by Author
  • 6 Jones, Mitchell
  • 5 Har-Peled, Sariel
  • 2 Chan, Timothy M.
  • 1 Bahrani, Maryam
  • 1 Bonlarron, Alexandre
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Computational geometry
  • 2 Theory of computation → Type theory
  • 1 Applied computing → Computational genomics
  • 1 Security and privacy → Distributed systems security
  • 1 Software and its engineering → Domain specific languages
  • Show More...

  • Refine by Keyword
  • 2 Approximation algorithms
  • 2 Computational geometry
  • 1 Agda
  • 1 Auctions
  • 1 Centerpoints
  • Show More...

  • Refine by Type
  • 14 document

  • Refine by Publication Year
  • 7 2024
  • 3 2019
  • 2 2020
  • 1 2017
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail