18 Search Results for "Karczmarz, Adam"


Document
Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Authors: Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
A classical problem in computational geometry and graph algorithms is: given a dynamic set 𝒮 of geometric shapes in the plane, efficiently maintain the connectivity of the intersection graph of 𝒮. Previous papers studied the setting where, before the updates, the data structure receives some parameter P. Then, updates could insert and delete disks as long as at all times the disks have a diameter that lies in a fixed range [1/P, 1]. As a consequence of that prerequisite, the aspect ratio ψ (i.e. the ratio between the largest and smallest diameter) of the disks would at all times satisfy ψ ≤ P. The state-of-the-art for storing disks in a dynamic connectivity data structure is a data structure that uses O(Pn) space and that has amortized O(P log⁴ n) expected amortized update time. Connectivity queries between disks are supported in O(log n / log log n) time. In the dynamic setting, one wishes for a more flexible data structure in which disks of any diameter may arrive and leave, independent of their diameter, changing the aspect ratio freely. Ideally, the aspect ratio should merely be part of the analysis. We restrict our attention to axis-aligned squares, and study fully-dynamic square intersection graph connectivity. Our result is fully-adaptive to the aspect ratio, spending time proportional to the current aspect ratio ψ, as opposed to some previously given maximum P. Our focus on squares allows us to simplify and streamline the connectivity pipeline from previous work. When n is the number of squares and ψ is the aspect ratio after insertion (or before deletion), our data structure answers connectivity queries in O(log n / log log n) time. We can update connectivity information in O(ψ log⁴ n + log⁶ n) amortized time. We also improve space usage from O(P ⋅ n log n) to O(n log³ n log ψ) - while generalizing to a fully-adaptive aspect ratio - which yields a space usage that is near-linear in n for any polynomially bounded ψ.

Cite as

Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals. Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 63:1-63:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.MFCS.2024.63,
  author =	{van der Hoog, Ivor and Nusser, Andr\'{e} and Rotenberg, Eva and Staals, Frank},
  title =	{{Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{63:1--63:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.63},
  URN =		{urn:nbn:de:0030-drops-206197},
  doi =		{10.4230/LIPIcs.MFCS.2024.63},
  annote =	{Keywords: Computational geometry, planar geometry, data structures, geometric intersection graphs, fully-dynamic algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles

Authors: Surender Baswana and Koustav Bhanja

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Let G be a directed weighted graph on n vertices and m edges with designated source and sink vertices s and t. An edge in G is vital if its removal reduces the capacity of (s,t)-mincut. Since the seminal work of Ford and Fulkerson [CJM 1956], a long line of work has been done on computing the most vital edge and all vital edges of G. However, even after 60 years, the existing results are for either undirected or unweighted graphs. We present the following result for directed weighted graphs that also solves an open problem by Ausiello, Franciosa, Lari, and Ribichini [NETWORKS 2019]. 1. Algorithmic Results: There is an algorithm that computes all vital edges as well as the most vital edge of G using {O}(n) maximum (s,t)-flow computations. Vital edges play a crucial role in the design of sensitivity oracle for (s,t)-mincut - a compact data structure for reporting (s,t)-mincut after insertion/failure of any edge. For directed graphs, the only existing sensitivity oracle is for unweighted graphs by Picard and Queyranne [MPS 1982]. We present the first and optimal sensitivity oracle for directed weighted graphs as follows. 2. Sensitivity Oracles: a) There is an optimal O(n²) space data structure that can report an (s,t)-mincut C in O(|C|) time after the failure/insertion of any edge. b) There is an O(n) space data structure that can report the capacity of (s,t)-mincut after failure or insertion of any edge e in O(1) time if the capacity of edge e is known. A mincut for a vital edge e is an (s,t)-cut of the least capacity in which edge e is outgoing. For unweighted graphs, in a classical work, Picard and Queyranne [MPS 1982] designed an O(m) space directed acyclic graph (DAG) that stores and characterizes all mincuts for all vital edges. Conversely, there is a set containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. We generalize these results for directed weighted graphs as follows. 3. Structural & Combinatorial Results: a) There is a set M containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. This bound is tight as well. We also show that set M can be computed using O(n) maximum (s,t)-flow computations. b) We design two compact structures for storing and characterizing all mincuts for all vital edges - (i) an O(m) space DAG for partial and (ii) an O(mn) space structure for complete characterization. To arrive at our results, we develop new techniques, especially a generalization of maxflow-mincut Theorem by Ford and Fulkerson [CJM 1956], which might be of independent interest.

Cite as

Surender Baswana and Koustav Bhanja. Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 17:1-17:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baswana_et_al:LIPIcs.ICALP.2024.17,
  author =	{Baswana, Surender and Bhanja, Koustav},
  title =	{{Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, \& Optimal Sensitivity Oracles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{17:1--17:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.17},
  URN =		{urn:nbn:de:0030-drops-201601},
  doi =		{10.4230/LIPIcs.ICALP.2024.17},
  annote =	{Keywords: maxflow, vital edges, graph algorithms, structures, st-cuts, sensitivity oracle}
}
Document
Track A: Algorithms, Complexity and Games
New Tradeoffs for Decremental Approximate All-Pairs Shortest Paths

Authors: Michal Dory, Sebastian Forster, Yasamin Nazari, and Tijn de Vos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide new tradeoffs between approximation and running time for the decremental all-pairs shortest paths (APSP) problem. For undirected graphs with m edges and n nodes undergoing edge deletions, we provide four new approximate decremental APSP algorithms, two for weighted and two for unweighted graphs. Our first result is (2+ε)-APSP with total update time Õ(m^{1/2}n^{3/2}) (when m = n^{1+c} for any constant 0 < c < 1). Prior to our work the fastest algorithm for weighted graphs with approximation at most 3 had total Õ(mn) update time for (1+ε)-APSP [Bernstein, SICOMP 2016]. Our second result is (2+ε, W_{u,v})-APSP with total update time Õ(nm^{3/4}), where the second term is an additive stretch with respect to W_{u,v}, the maximum weight on the shortest path from u to v. Our third result is (2+ε)-APSP for unweighted graphs in Õ(m^{7/4}) update time, which for sparse graphs (m = o(n^{8/7})) is the first subquadratic (2+ε)-approximation. Our last result for unweighted graphs is (1+ε, 2(k-1))-APSP, for k ≥ 2, with Õ(n^{2-1/k}m^{1/k}) total update time (when m = n^{1+c} for any constant c > 0). For comparison, in the special case of (1+ε, 2)-approximation, this improves over the state-of-the-art algorithm by [Henzinger, Krinninger, Nanongkai, SICOMP 2016] with total update time of Õ(n^{2.5}). All of our results are randomized, work against an oblivious adversary, and have constant query time.

Cite as

Michal Dory, Sebastian Forster, Yasamin Nazari, and Tijn de Vos. New Tradeoffs for Decremental Approximate All-Pairs Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 58:1-58:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dory_et_al:LIPIcs.ICALP.2024.58,
  author =	{Dory, Michal and Forster, Sebastian and Nazari, Yasamin and de Vos, Tijn},
  title =	{{New Tradeoffs for Decremental Approximate All-Pairs Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{58:1--58:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.58},
  URN =		{urn:nbn:de:0030-drops-202012},
  doi =		{10.4230/LIPIcs.ICALP.2024.58},
  annote =	{Keywords: Decremental Shortest Path, All-Pairs Shortest Paths}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Authors: Nick Fischer and Leo Wennmann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this work we revisit the elementary scheduling problem 1||∑ p_j U_j. The goal is to select, among n jobs with processing times and due dates, a subset of jobs with maximum total processing time that can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial time O(nP), where P is the total processing time of all jobs. With the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and Moore’s algorithm for 1||∑ p_j U_j: First to time Õ(P^{7/4}) [Bringmann, Fischer, Hermelin, Shabtay, Wellnitz; ICALP'20], then to time Õ(P^{5/3}) [Klein, Polak, Rohwedder; SODA'23], and finally to time Õ(P^{7/5}) [Schieber, Sitaraman; WADS'23]. It remained an exciting open question whether these works can be improved further. In this work we develop an algorithm in near-linear time Õ(P) for the 1||∑ p_j U_j problem. This running time not only significantly improves upon the previous results, but also matches conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the case of m machines in time Õ(P^m). In contrast to the previous improvements, we take a different, more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

Cite as

Nick Fischer and Leo Wennmann. Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ICALP.2024.64,
  author =	{Fischer, Nick and Wennmann, Leo},
  title =	{{Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.64},
  URN =		{urn:nbn:de:0030-drops-202079},
  doi =		{10.4230/LIPIcs.ICALP.2024.64},
  annote =	{Keywords: Scheduling, Fine-Grained Complexity, Dynamic Strings}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Cite as

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2024.95,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{Fully Dynamic Strongly Connected Components in Planar Digraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95},
  URN =		{urn:nbn:de:0030-drops-202388},
  doi =		{10.4230/LIPIcs.ICALP.2024.95},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability, planar graphs}
}
Document
On Fully Dynamic Strongly Connected Components

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We consider maintaining strongly connected components (SCCs) of a directed graph subject to edge insertions and deletions. For this problem, we show a randomized algebraic data structure with conditionally tight O(n^1.529) worst-case update time. The only previously described subquadratic update bound for this problem [Karczmarz, Mukherjee, and Sankowski, STOC'22] holds exclusively in the amortized sense. For the less general dynamic strong connectivity problem, where one is only interested in maintaining whether the graph is strongly connected, we give an efficient deterministic black-box reduction to (arbitrary-pair) dynamic reachability. Consequently, for dynamic strong connectivity we match the best-known O(n^1.407) worst-case upper bound for dynamic reachability [van den Brand, Nanongkai, and Saranurak FOCS'19]. This is also conditionally optimal and improves upon the previous O(n^1.529) bound. Our reduction also yields the first fully dynamic algorithms for maintaining the minimum strong connectivity augmentation of a digraph.

Cite as

Adam Karczmarz and Marcin Smulewicz. On Fully Dynamic Strongly Connected Components. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 68:1-68:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ESA.2023.68,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{On Fully Dynamic Strongly Connected Components}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{68:1--68:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.68},
  URN =		{urn:nbn:de:0030-drops-187211},
  doi =		{10.4230/LIPIcs.ESA.2023.68},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Decremental Connectivity in Non-Sparse Graphs

Authors: Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We present a dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and processes any sequence of edge deletions in O(m + n poly log n) total time. Interspersed with the deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-)connected component in constant time. Our result is based on a general Monte-Carlo randomized reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on a sparse graph. For non-sparse graphs with Ω(n poly log n) edges, our connectivity and 2-edge-connectivity algorithms handle all deletions in optimal linear total time, using existing algorithms for the respective fully-dynamic problems. This improves upon an O(m log (n² / m) + n poly log n)-time algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n²) edges. Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs should be contrasted with an Ω(log n/log log n) worst-case time lower bound in the decremental setting [Alstrup, Husfeldt, and Rauhe FOCS'98] as well as an Ω(log n) amortized time lower-bound in the fully-dynamic setting [Patrascu and Demaine STOC'04].

Cite as

Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup. Optimal Decremental Connectivity in Non-Sparse Graphs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{aamand_et_al:LIPIcs.ICALP.2023.6,
  author =	{Aamand, Anders and Karczmarz, Adam and {\L}\k{a}cki, Jakub and Parotsidis, Nikos and Rasmussen, Peter M. R. and Thorup, Mikkel},
  title =	{{Optimal Decremental Connectivity in Non-Sparse Graphs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.6},
  URN =		{urn:nbn:de:0030-drops-180581},
  doi =		{10.4230/LIPIcs.ICALP.2023.6},
  annote =	{Keywords: decremental connectivity, dynamic connectivity}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

Authors: Adam Karczmarz and Piotr Sankowski

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the exact fully dynamic shortest paths problem. For real-weighted directed graphs, we show a deterministic fully dynamic data structure with Õ(mn^{4/5}) worst-case update time processing arbitrary s,t-distance queries in Õ(n^{4/5}) time. This constitutes the first non-trivial update/query tradeoff for this problem in the regime of sparse weighted directed graphs. Moreover, we give a Monte Carlo randomized fully dynamic reachability data structure processing single-edge updates in Õ(n√m) worst-case time and queries in O(√m) time. For sparse digraphs, such a tradeoff has only been previously described with amortized update time [Roditty and Zwick, SIAM J. Comp. 2008].

Cite as

Adam Karczmarz and Piotr Sankowski. Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 84:1-84:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2023.84,
  author =	{Karczmarz, Adam and Sankowski, Piotr},
  title =	{{Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{84:1--84:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.84},
  URN =		{urn:nbn:de:0030-drops-181363},
  doi =		{10.4230/LIPIcs.ICALP.2023.84},
  annote =	{Keywords: dynamic shortest paths, dynamic reachability, dynamic transitive closure}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Algorithms for Minimum Weight Cycle and Related Problems

Authors: Adam Karczmarz

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We consider the directed minimum weight cycle problem in the fully dynamic setting. To the best of our knowledge, so far no fully dynamic algorithms have been designed specifically for the minimum weight cycle problem in general digraphs. One can achieve Õ(n²) amortized update time by simply invoking the fully dynamic APSP algorithm of Demetrescu and Italiano [J. ACM '04]. This bound, however, yields no improvement over the trivial recompute-from-scratch algorithm for sparse graphs. Our first contribution is a very simple deterministic (1+ε)-approximate algorithm supporting vertex updates (i.e., changing all edges incident to a specified vertex) in conditionally near-optimal Õ(mlog{(W)}/ε) amortized time for digraphs with real edge weights in [1,W]. Using known techniques, the algorithm can be implemented on planar graphs and also gives some new sublinear fully dynamic algorithms maintaining approximate cuts and flows in planar digraphs. Additionally, we show a Monte Carlo randomized exact fully dynamic minimum weight cycle algorithm with Õ(mn^{2/3}) worst-case update that works for real edge weights. To this end, we generalize the exact fully dynamic APSP data structure of Abraham et al. [SODA'17] to solve the multiple-pairs shortest paths problem, where one is interested in computing distances for some k (instead of all n²) fixed source-target pairs after each update. We show that in such a scenario, Õ((m+k)n^{2/3}) worst-case update time is possible.

Cite as

Adam Karczmarz. Fully Dynamic Algorithms for Minimum Weight Cycle and Related Problems. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 83:1-83:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{karczmarz:LIPIcs.ICALP.2021.83,
  author =	{Karczmarz, Adam},
  title =	{{Fully Dynamic Algorithms for Minimum Weight Cycle and Related Problems}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{83:1--83:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.83},
  URN =		{urn:nbn:de:0030-drops-141521},
  doi =		{10.4230/LIPIcs.ICALP.2021.83},
  annote =	{Keywords: Dynamic graph algorithms, minimum weight cycle, dynamic shortest paths}
}
Document
Sublinear Average-Case Shortest Paths in Weighted Unit-Disk Graphs

Authors: Adam Karczmarz, Jakub Pawlewicz, and Piotr Sankowski

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We consider the problem of computing shortest paths in weighted unit-disk graphs in constant dimension d. Although the single-source and all-pairs variants of this problem are well-studied in the plane case, no non-trivial exact distance oracles for unit-disk graphs have been known to date, even for d = 2. The classical result of Sedgewick and Vitter [Algorithmica '86] shows that for weighted unit-disk graphs in the plane the A^* search has average-case performance superior to that of a standard shortest path algorithm, e.g., Dijkstra’s algorithm. Specifically, if the n corresponding points of a weighted unit-disk graph G are picked from a unit square uniformly at random, and the connectivity radius is r ∈ (0,1), A^* finds a shortest path in G in O(n) expected time when r = Ω(√{log n/n}), even though G has Θ((nr)²) edges in expectation. In other words, the work done by the algorithm is in expectation proportional to the number of vertices and not the number of edges. In this paper, we break this natural barrier and show even stronger sublinear time results. We propose a new heuristic approach to computing point-to-point exact shortest paths in unit-disk graphs. We analyze the average-case behavior of our heuristic using the same random graph model as used by Sedgewick and Vitter and prove it superior to A^*. Specifically, we show that, if we are able to report the set of all k points of G from an arbitrary rectangular region of the plane in O(k + t(n)) time, then a shortest path between arbitrary two points of such a random graph on the plane can be found in O(1/r² + t(n)) expected time. In particular, the state-of-the-art range reporting data structures imply a sublinear expected bound for all r = Ω(√{log n/n}) and O(√n) expected bound for r = Ω(n^{-1/4}) after only near-linear preprocessing of the point set. Our approach naturally generalizes to higher dimensions d ≥ 3 and yields sublinear expected bounds for all d = O(1) and sufficiently large r.

Cite as

Adam Karczmarz, Jakub Pawlewicz, and Piotr Sankowski. Sublinear Average-Case Shortest Paths in Weighted Unit-Disk Graphs. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 46:1-46:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.SoCG.2021.46,
  author =	{Karczmarz, Adam and Pawlewicz, Jakub and Sankowski, Piotr},
  title =	{{Sublinear Average-Case Shortest Paths in Weighted Unit-Disk Graphs}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{46:1--46:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.46},
  URN =		{urn:nbn:de:0030-drops-138454},
  doi =		{10.4230/LIPIcs.SoCG.2021.46},
  annote =	{Keywords: unit-disk graphs, shortest paths, distance oracles}
}
Document
Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

Authors: Jacob Holm and Eva Rotenberg

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
We present a data structure that, given a graph G of n vertices and m edges, and a suitable pair of nested r-divisions of G, preprocesses G in O(m+n) time and handles any series of edge-deletions in O(m) total time while answering queries to pairwise biconnectivity in worst-case O(1) time. In case the vertices are not biconnected, the data structure can return a cutvertex separating them in worst-case O(1) time. As an immediate consequence, this gives optimal amortized decremental biconnectivity, 2-edge connectivity, and connectivity for large classes of graphs, including planar graphs and other minor free graphs.

Cite as

Jacob Holm and Eva Rotenberg. Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 42:1-42:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{holm_et_al:LIPIcs.STACS.2021.42,
  author =	{Holm, Jacob and Rotenberg, Eva},
  title =	{{Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{42:1--42:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.42},
  URN =		{urn:nbn:de:0030-drops-136875},
  doi =		{10.4230/LIPIcs.STACS.2021.42},
  annote =	{Keywords: Dynamic graphs, 2-connectivity, graph minors, r-divisions, graph separators}
}
Document
Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

Authors: Panagiotis Charalampopoulos and Adam Karczmarz

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
Efficient algorithms for computing and processing additively weighted Voronoi diagrams on planar graphs have been instrumental in obtaining several recent breakthrough results, most notably the almost-optimal exact distance oracle for planar graphs [Charalampopoulos et al., STOC'19], and subquadratic algorithms for planar diameter [Cabello, SODA'17, Gawrychowski et al., SODA'18]. In this paper, we show how Voronoi diagrams can be useful in obtaining dynamic planar graph algorithms and apply them to classical problems such as dynamic single-source shortest paths and dynamic strongly connected components. First, we give a fully dynamic single-source shortest paths data structure for planar weighted digraphs with Õ(n^{4/5}) worst-case update time and O(log² n) query time. Here, a single update can either change the graph by inserting or deleting an edge, or reset the source s of interest. All known non-trivial planarity-exploiting exact dynamic single-source shortest paths algorithms to date had polynomial query time. Further, note that a data structure with strongly sublinear update time capable of answering distance queries between all pairs of vertices in polylogarithmic time would refute the APSP conjecture [Abboud and Dahlgaard, FOCS'16]. Somewhat surprisingly, the Voronoi diagram based approach we take for single-source shortest paths can also be used in the fully dynamic strongly connected components problem. In particular, we obtain a data structure maintaining a planar digraph under edge insertions and deletions, capable of returning the identifier of the strongly connected component of any query vertex. The worst-case update and query time bounds are the same as for our single-source distance oracle. To the best of our knowledge, this is the first fully dynamic strong-connectivity algorithm achieving both sublinear update time and polylogarithmic query time for an important class of digraphs.

Cite as

Panagiotis Charalampopoulos and Adam Karczmarz. Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 31:1-31:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.ESA.2020.31,
  author =	{Charalampopoulos, Panagiotis and Karczmarz, Adam},
  title =	{{Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{31:1--31:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.31},
  URN =		{urn:nbn:de:0030-drops-128970},
  doi =		{10.4230/LIPIcs.ESA.2020.31},
  annote =	{Keywords: dynamic graph algorithms, planar graphs, single-source shortest paths, strong connectivity}
}
Document
Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

Authors: Adam Karczmarz and Jakub Łącki

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted directed graphs. Most importantly, we give a new deterministic incremental algorithm for the problem that handles updates in O~(mn^(4/3) log{W}/epsilon) total time (where the edge weights are from [1,W]) and explicitly maintains a (1+epsilon)-approximate distance matrix. For a fixed epsilon>0, this is the first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose update time is o(n^2) regardless of the number of edges. Furthermore, we also show how to improve the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et al. STOC’02, Bernstein STOC’13] from Monte Carlo randomized to Las Vegas randomized without increasing the running time bounds (with respect to the O~(*) notation). Our results are obtained by giving new algorithms for the problem of dynamically maintaining hubs, that is a set of O~(n/d) vertices which hit a shortest path between each pair of vertices, provided it has hop-length Omega(d). We give new subquadratic deterministic and Las Vegas algorithms for maintenance of hubs under either edge insertions or deletions.

Cite as

Adam Karczmarz and Jakub Łącki. Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 65:1-65:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ESA.2019.65,
  author =	{Karczmarz, Adam and {\L}\k{a}cki, Jakub},
  title =	{{Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{65:1--65:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.65},
  URN =		{urn:nbn:de:0030-drops-111862},
  doi =		{10.4230/LIPIcs.ESA.2019.65},
  annote =	{Keywords: shortest paths, dynamic, incremental, decremental, directed graphs, hubs}
}
Document
Min-Cost Flow in Unit-Capacity Planar Graphs

Authors: Adam Karczmarz and Piotr Sankowski

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
In this paper we give an O~((nm)^(2/3) log C) time algorithm for computing min-cost flow (or min-cost circulation) in unit capacity planar multigraphs where edge costs are integers bounded by C. For planar multigraphs, this improves upon the best known algorithms for general graphs: the O~(m^(10/7) log C) time algorithm of Cohen et al. [SODA 2017], the O(m^(3/2) log(nC)) time algorithm of Gabow and Tarjan [SIAM J. Comput. 1989] and the O~(sqrt(n) m log C) time algorithm of Lee and Sidford [FOCS 2014]. In particular, our result constitutes the first known fully combinatorial algorithm that breaks the Omega(m^(3/2)) time barrier for min-cost flow problem in planar graphs. To obtain our result we first give a very simple successive shortest paths based scaling algorithm for unit-capacity min-cost flow problem that does not explicitly operate on dual variables. This algorithm also runs in O~(m^(3/2) log C) time for general graphs, and, to the best of our knowledge, it has not been described before. We subsequently show how to implement this algorithm faster on planar graphs using well-established tools: r-divisions and efficient algorithms for computing (shortest) paths in so-called dense distance graphs.

Cite as

Adam Karczmarz and Piotr Sankowski. Min-Cost Flow in Unit-Capacity Planar Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 66:1-66:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ESA.2019.66,
  author =	{Karczmarz, Adam and Sankowski, Piotr},
  title =	{{Min-Cost Flow in Unit-Capacity Planar Graphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{66:1--66:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.66},
  URN =		{urn:nbn:de:0030-drops-111878},
  doi =		{10.4230/LIPIcs.ESA.2019.66},
  annote =	{Keywords: minimum-cost flow, minimum-cost circulation, planar graphs}
}
Document
Decremental SPQR-trees for Planar Graphs

Authors: Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Eva Rotenberg

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
We present a decremental data structure for maintaining the SPQR-tree of a planar graph subject to edge contractions and deletions. The update time, amortized over Omega(n) operations, is O(log^2 n). Via SPQR-trees, we give a decremental data structure for maintaining 3-vertex connectivity in planar graphs. It answers queries in O(1) time and processes edge deletions and contractions in O(log^2 n) amortized time. The previous best supported deletions and insertions in O(sqrt{n}) time.

Cite as

Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Eva Rotenberg. Decremental SPQR-trees for Planar Graphs. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{holm_et_al:LIPIcs.ESA.2018.46,
  author =	{Holm, Jacob and Italiano, Giuseppe F. and Karczmarz, Adam and Lacki, Jakub and Rotenberg, Eva},
  title =	{{Decremental SPQR-trees for Planar Graphs}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.46},
  URN =		{urn:nbn:de:0030-drops-95091},
  doi =		{10.4230/LIPIcs.ESA.2018.46},
  annote =	{Keywords: Graph embeddings, data structures, graph algorithms, planar graphs, SPQR-trees, triconnectivity}
}
  • Refine by Author
  • 13 Karczmarz, Adam
  • 4 Rotenberg, Eva
  • 4 Sankowski, Piotr
  • 3 Holm, Jacob
  • 2 Italiano, Giuseppe F.
  • Show More...

  • Refine by Classification
  • 11 Theory of computation → Dynamic graph algorithms
  • 4 Theory of computation → Shortest paths
  • 3 Theory of computation → Data structures design and analysis
  • 2 Mathematics of computing → Graph algorithms
  • 2 Theory of computation → Network flows
  • Show More...

  • Refine by Keyword
  • 5 planar graphs
  • 3 data structures
  • 3 dynamic reachability
  • 3 shortest paths
  • 2 dynamic shortest paths
  • Show More...

  • Refine by Type
  • 18 document

  • Refine by Publication Year
  • 5 2024
  • 3 2021
  • 3 2023
  • 2 2018
  • 2 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail