4 Search Results for "Li, Yuhao"


Document
On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching

Authors: Jingxun Liang, Zhihao Gavin Tang, Yixuan Even Xu, Yuhao Zhang, and Renfei Zhou

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Ranking and Balance are arguably the two most important algorithms in the online matching literature. They achieve the same optimal competitive ratio of 1-1/e for the integral version and fractional version of online bipartite matching by Karp, Vazirani, and Vazirani (STOC 1990) respectively. The two algorithms have been generalized to weighted online bipartite matching problems, including vertex-weighted online bipartite matching and AdWords, by utilizing a perturbation function. The canonical choice of the perturbation function is f(x) = 1-e^{x-1} as it leads to the optimal competitive ratio of 1-1/e in both settings. We advance the understanding of the weighted generalizations of Ranking and Balance in this paper, with a focus on studying the effect of different perturbation functions. First, we prove that the canonical perturbation function is the unique optimal perturbation function for vertex-weighted online bipartite matching. In stark contrast, all perturbation functions achieve the optimal competitive ratio of 1-1/e in the unweighted setting. Second, we prove that the generalization of Ranking to AdWords with unknown budgets using the canonical perturbation function is at most 0.624 competitive, refuting a conjecture of Vazirani (2021). More generally, as an application of the first result, we prove that no perturbation function leads to the prominent competitive ratio of 1-1/e by establishing an upper bound of 1-1/e-0.0003. Finally, we propose the online budget-additive welfare maximization problem that is intermediate between AdWords and AdWords with unknown budgets, and we design an optimal 1-1/e competitive algorithm by generalizing Balance.

Cite as

Jingxun Liang, Zhihao Gavin Tang, Yixuan Even Xu, Yuhao Zhang, and Renfei Zhou. On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 80:1-80:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liang_et_al:LIPIcs.ESA.2023.80,
  author =	{Liang, Jingxun and Tang, Zhihao Gavin and Xu, Yixuan Even and Zhang, Yuhao and Zhou, Renfei},
  title =	{{On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{80:1--80:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.80},
  URN =		{urn:nbn:de:0030-drops-187334},
  doi =		{10.4230/LIPIcs.ESA.2023.80},
  annote =	{Keywords: Online Matching, AdWords, Ranking, Water-Filling}
}
Document
Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs

Authors: Enze Sun, Zonghan Yang, and Yuhao Zhang

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We consider the Online Rent Minimization problem, where online jobs with release times, deadlines, and processing times must be scheduled on machines that can be rented for a fixed length period of T. The objective is to minimize the number of machine rents. This problem generalizes the Online Machine Minimization problem where machines can be rented for an infinite period, and both problems have an asymptotically optimal competitive ratio of O(log(p_max/p_min)) for general processing times, where p_max and p_min are the maximum and minimum processing times respectively. However, for small values of p_max/p_min, a better competitive ratio can be achieved by assuming unit-size jobs. Under this assumption, Devanur et al. (2014) gave an optimal e-competitive algorithm for Online Machine Minimization, and Chen and Zhang (2022) gave a (3e+7) ≈ 15.16-competitive algorithm for Online Rent Minimization. In this paper, we significantly improve the competitive ratio of the Online Rent Minimization problem under unit size to 6, by using a clean oracle-based online algorithm framework.

Cite as

Enze Sun, Zonghan Yang, and Yuhao Zhang. Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 97:1-97:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ESA.2023.97,
  author =	{Sun, Enze and Yang, Zonghan and Zhang, Yuhao},
  title =	{{Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{97:1--97:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.97},
  URN =		{urn:nbn:de:0030-drops-187500},
  doi =		{10.4230/LIPIcs.ESA.2023.97},
  annote =	{Keywords: Online Algorithm, Scheduling, Machine Minimization, Rent Minimization}
}
Document
Reducing Tarski to Unique Tarski (In the Black-Box Model)

Authors: Xi Chen, Yuhao Li, and Mihalis Yannakakis

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We study the problem of finding a Tarski fixed point over the k-dimensional grid [n]^k. We give a black-box reduction from the Tarski problem to the same problem with an additional promise that the input function has a unique fixed point. It implies that the Tarski problem and the unique Tarski problem have exactly the same query complexity. Our reduction is based on a novel notion of partial-information functions which we use to fool algorithms for the unique Tarski problem as if they were working on a monotone function with a unique fixed point.

Cite as

Xi Chen, Yuhao Li, and Mihalis Yannakakis. Reducing Tarski to Unique Tarski (In the Black-Box Model). In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 21:1-21:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CCC.2023.21,
  author =	{Chen, Xi and Li, Yuhao and Yannakakis, Mihalis},
  title =	{{Reducing Tarski to Unique Tarski (In the Black-Box Model)}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.21},
  URN =		{urn:nbn:de:0030-drops-182919},
  doi =		{10.4230/LIPIcs.CCC.2023.21},
  annote =	{Keywords: Tarski fixed point, Query complexity, TFNP}
}
Document
Minimizing the Maximum Flow Time in the Online Food Delivery Problem

Authors: Xiangyu Guo, Kelin Luo, Shi Li, and Yuhao Zhang

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We study a common delivery problem encountered in nowadays online food-ordering platforms: Customers order dishes online, and the restaurant delivers the food after receiving the order. Specifically, we study a problem where k vehicles of capacity c are serving a set of requests ordering food from one restaurant. After a request arrives, it can be served by a vehicle moving from the restaurant to its delivery location. We are interested in serving all requests while minimizing the maximum flow-time, i.e., the maximum time length a customer waits to receive his/her food after submitting the order. We show that the problem is hard in both offline and online settings even when k = 1 and c = ∞: There is a hardness of approximation of Ω(n) for the offline problem, and a lower bound of Ω(n) on the competitive ratio of any online algorithm, where n is number of points in the metric. We circumvent the strong negative results in two directions. Our main result is an O(1)-competitive online algorithm for the uncapacitated (i.e, c = ∞) food delivery problem on tree metrics; we also have negative result showing that the condition c = ∞ is needed. Then we explore the speed-augmentation model where our online algorithm is allowed to use vehicles with faster speed. We show that a moderate speeding factor leads to a constant competitive ratio, and we prove a tight trade-off between the speeding factor and the competitive ratio.

Cite as

Xiangyu Guo, Kelin Luo, Shi Li, and Yuhao Zhang. Minimizing the Maximum Flow Time in the Online Food Delivery Problem. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 33:1-33:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{guo_et_al:LIPIcs.ISAAC.2022.33,
  author =	{Guo, Xiangyu and Luo, Kelin and Li, Shi and Zhang, Yuhao},
  title =	{{Minimizing the Maximum Flow Time in the Online Food Delivery Problem}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.33},
  URN =		{urn:nbn:de:0030-drops-173181},
  doi =		{10.4230/LIPIcs.ISAAC.2022.33},
  annote =	{Keywords: Online algorithm, Capacitated Vehicle Routing, Flow Time Optimization}
}
  • Refine by Author
  • 3 Zhang, Yuhao
  • 1 Chen, Xi
  • 1 Guo, Xiangyu
  • 1 Li, Shi
  • 1 Li, Yuhao
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Online algorithms
  • 1 Theory of computation → Exact and approximate computation of equilibria
  • 1 Theory of computation → Problems, reductions and completeness

  • Refine by Keyword
  • 1 AdWords
  • 1 Capacitated Vehicle Routing
  • 1 Flow Time Optimization
  • 1 Machine Minimization
  • 1 Online Algorithm
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2023
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail