29 Search Results for "Raghavendra, Prasad"


Document
On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups

Authors: Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, and Swagato Sanyal

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given an Abelian group 𝒢, a Boolean-valued function f: 𝒢 → {-1,+1}, is said to be s-sparse, if it has at most s-many non-zero Fourier coefficients over the domain 𝒢. In a seminal paper, Gopalan et al. [Gopalan et al., 2011] proved "Granularity" for Fourier coefficients of Boolean valued functions over ℤ₂ⁿ, that have found many diverse applications in theoretical computer science and combinatorics. They also studied structural results for Boolean functions over ℤ₂ⁿ which are approximately Fourier-sparse. In this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions over Abelian groups 𝒢 of the form, 𝒢: = ℤ_{p_1}^{n_1} × ⋯ × ℤ_{p_t}^{n_t}, for distinct primes p_i. We also obtain a lower bound of the form 1/(m²s)^⌈φ(m)/2⌉, on the absolute value of the smallest non-zero Fourier coefficient of an s-sparse function, where m = p_1 ⋯ p_t, and φ(m) = (p_1-1) ⋯ (p_t-1). We carefully apply probabilistic techniques from [Gopalan et al., 2011], to obtain our structural results, and use some non-trivial results from algebraic number theory to get the lower bound. We construct a family of at most s-sparse Boolean functions over ℤ_pⁿ, where p > 2, for arbitrarily large enough s, where the minimum non-zero Fourier coefficient is o(1/s). The "Granularity" result of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse Boolean valued function over ℤ₂ⁿ are Ω(1/s). So, our result shows that one cannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse functions, we design an efficient sparsity testing algorithm for Boolean function, which tests whether the given function is s-sparse, or ε-far from any sparse Boolean function, and it requires poly((ms)^φ(m),1/ε)-many queries. Further, we generalize the notion of degree of a Boolean function over an Abelian group 𝒢. We use it to prove an Ω(√s) lower bound on the query complexity of any adaptive sparsity testing algorithm.

Cite as

Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, and Swagato Sanyal. On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2024.40,
  author =	{Chakraborty, Sourav and Datta, Swarnalipa and Dutta, Pranjal and Ghosh, Arijit and Sanyal, Swagato},
  title =	{{On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{40:1--40:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.40},
  URN =		{urn:nbn:de:0030-drops-205963},
  doi =		{10.4230/LIPIcs.MFCS.2024.40},
  annote =	{Keywords: Fourier coefficients, sparse, Abelian, granularity}
}
Document
The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

Authors: Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Finding a simple path of even length between two designated vertices in a directed graph is a fundamental NP-complete problem [Andrea S. LaPaugh and Christos H. Papadimitriou, 1984] known as the EP problem. Nedev [Zhivko Prodanov Nedev, 1999] proved in 1999, that for directed planar graphs, the problem can be solved in polynomial time. More than two decades since then, we make the first progress in extending the tractable classes of graphs for this problem. We give a polynomial time algorithm to solve the EP problem for classes of H-minor-free directed graphs, where H is a single-crossing graph. We make two new technical contributions along the way, that might be of independent interest. The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking networks. These are graphs that mimic parities of all possible paths between a designated set of terminals of the original graph. Finding vertex disjoint paths between given source-destination pairs of vertices is another fundamental problem, known to be NP-complete in directed graphs [Steven Fortune et al., 1980], though known to be tractable in planar directed graphs [Alexander Schrijver, 1994]. We encounter a natural variant of this problem, that of finding disjoint paths between given pairs of vertices, but with constraints on parity of the total length of paths. The other significant contribution of our paper is to give a polynomial time algorithm for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions (and also in directed graphs of bounded treewidth).

Cite as

Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma. The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chauhan_et_al:LIPIcs.MFCS.2024.43,
  author =	{Chauhan, Archit and Datta, Samir and Gupta, Chetan and Sharma, Vimal Raj},
  title =	{{The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.43},
  URN =		{urn:nbn:de:0030-drops-205992},
  doi =		{10.4230/LIPIcs.MFCS.2024.43},
  annote =	{Keywords: Graph Algorithms, EvenPath, Polynomial-time Algorithms, Reachability}
}
Document
Nearly-Tight Bounds for Flow Sparsifiers in Quasi-Bipartite Graphs

Authors: Syamantak Das, Nikhil Kumar, and Daniel Vaz

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Flow sparsification is a classic graph compression technique which, given a capacitated graph G on k terminals, aims to construct another capacitated graph H, called a flow sparsifier, that preserves, either exactly or approximately, every multicommodity flow between terminals (ideally, with size as a small function of k). Cut sparsifiers are a restricted variant of flow sparsifiers which are only required to preserve maximum flows between bipartitions of the terminal set. It is known that exact cut sparsifiers require 2^Ω(k) many vertices [Krauthgamer and Rika, SODA 2013], with the hard instances being quasi-bipartite graphs, where there are no edges between non-terminals. On the other hand, it has been shown recently that exact (or even (1+ε)-approximate) flow sparsifiers on networks with just 6 terminals require unbounded size [Krauthgamer and Mosenzon, SODA 2023, Chen and Tan, SODA 2024]. In this paper, we construct exact flow sparsifiers of size 3^k³ and exact cut sparsifiers of size 2^k² for quasi-bipartite graphs. In particular, the flow sparsifiers are contraction-based, that is, they are obtained from the input graph by (vertex) contraction operations. Our main contribution is a new technique to construct sparsifiers that exploits connections to polyhedral geometry, and that can be generalized to graphs with a small separator that separates the graph into small components. We also give an improved reduction theorem for graphs of bounded treewidth [Andoni et al., SODA 2011], implying a flow sparsifier of size O(k⋅w) and quality O((log w)/log log w), where w is the treewidth.

Cite as

Syamantak Das, Nikhil Kumar, and Daniel Vaz. Nearly-Tight Bounds for Flow Sparsifiers in Quasi-Bipartite Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 45:1-45:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.MFCS.2024.45,
  author =	{Das, Syamantak and Kumar, Nikhil and Vaz, Daniel},
  title =	{{Nearly-Tight Bounds for Flow Sparsifiers in Quasi-Bipartite Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{45:1--45:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.45},
  URN =		{urn:nbn:de:0030-drops-206018},
  doi =		{10.4230/LIPIcs.MFCS.2024.45},
  annote =	{Keywords: Graph Sparsification, Cut Sparsifiers, Flow Sparsifiers, Quasi-bipartite Graphs, Bounded Treewidth}
}
Document
Solving Unique Games over Globally Hypercontractive Graphs

Authors: Mitali Bafna and Dor Minzer

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-case optimization. In particular, our algorithm shows how to round "low-entropy" pseudodistributions, broadly extending the algorithmic framework of [Mitali Bafna et al., 2021]. At a high level, [Mitali Bafna et al., 2021] showed how to round pseudodistributions for problems where there is a "unique" good solution. We extend their framework by exhibiting a rounding for problems where there might be "few good solutions". Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG.

Cite as

Mitali Bafna and Dor Minzer. Solving Unique Games over Globally Hypercontractive Graphs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bafna_et_al:LIPIcs.CCC.2024.3,
  author =	{Bafna, Mitali and Minzer, Dor},
  title =	{{Solving Unique Games over Globally Hypercontractive Graphs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.3},
  URN =		{urn:nbn:de:0030-drops-203996},
  doi =		{10.4230/LIPIcs.CCC.2024.3},
  annote =	{Keywords: unique games, approximation algorithms}
}
Document
The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise

Authors: Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The class MIP^* of quantum multiprover interactive proof systems with entanglement is much more powerful than its classical counterpart MIP [Babai et al., 1991; Zhengfeng Ji et al., 2020; Zhengfeng Ji et al., 2020]: while MIP = NEXP, the quantum class MIP^* is equal to RE, a class including the halting problem. This is because the provers in MIP^* can share unbounded quantum entanglement. However, recent works [Qin and Yao, 2021; Qin and Yao, 2023] have shown that this advantage is significantly reduced if the provers' shared state contains noise. This paper attempts to exactly characterize the effect of noise on the computational power of quantum multiprover interactive proof systems. We investigate the quantum two-prover one-round interactive system MIP^*[poly,O(1)], where the verifier sends polynomially many bits to the provers and the provers send back constantly many bits. We show noise completely destroys the computational advantage given by shared entanglement in this model. Specifically, we show that if the provers are allowed to share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential time) [Qin and Yao, 2021]. We also show that this collapse in power is due to the noise, rather than the O(1) answer size, by showing that allowing for noiseless EPR states gives the class the full power of RE = MIP^*[poly, poly]. Along the way, we develop two technical tools of independent interest. First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new invariance principle for smooth matrix functions having bounded third-order Fréchet derivatives or which are Lipschitz continuous.

Cite as

Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao. The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 30:1-30:71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.CCC.2024.30,
  author =	{Dong, Yangjing and Fu, Honghao and Natarajan, Anand and Qin, Minglong and Xu, Haochen and Yao, Penghui},
  title =	{{The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{30:1--30:71},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.30},
  URN =		{urn:nbn:de:0030-drops-204263},
  doi =		{10.4230/LIPIcs.CCC.2024.30},
  annote =	{Keywords: Interactive proofs, Quantum complexity theory, Quantum entanglement, Fourier analysis, Matrix analysis, Invariance principle, Derandomization, PCP, Locally testable code, Positivity testing}
}
Document
Track A: Algorithms, Complexity and Games
Lower Bounds on 0-Extension with Steiner Nodes

Authors: Yu Chen and Zihan Tan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the 0-Extension problem, we are given an edge-weighted graph G = (V,E,c), a set T ⊆ V of its vertices called terminals, and a semi-metric D over T, and the goal is to find an assignment f of each non-terminal vertex to a terminal, minimizing the sum, over all edges (u,v) ∈ E, the product of the edge weight c(u,v) and the distance D(f(u),f(v)) between the terminals that u,v are mapped to. Current best approximation algorithms on 0-Extension are based on rounding a linear programming relaxation called the semi-metric LP relaxation. The integrality gap of this LP, is upper bounded by O(log|T|/log log|T|) and lower bounded by Ω((log|T|)^{2/3}), has been shown to be closely related to the quality of cut and flow vertex sparsifiers. We study a variant of the 0-Extension problem where Steiner vertices are allowed. Specifically, we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following from previous work, this new integrality gap turns out to be closely related to the quality achievable by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. We show that the new integrality gap stays superconstant Ω(log log |T|) even if we allow a super-linear O(|T|log^{1-ε}|T|) number of Steiner nodes.

Cite as

Yu Chen and Zihan Tan. Lower Bounds on 0-Extension with Steiner Nodes. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.47,
  author =	{Chen, Yu and Tan, Zihan},
  title =	{{Lower Bounds on 0-Extension with Steiner Nodes}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.47},
  URN =		{urn:nbn:de:0030-drops-201905},
  doi =		{10.4230/LIPIcs.ICALP.2024.47},
  annote =	{Keywords: Graph Algorithms, Zero Extension, Integrality Gap}
}
Document
Track A: Algorithms, Complexity and Games
Computing Tree Decompositions with Small Independence Number

Authors: Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The independence number of a tree decomposition is the maximum of the independence numbers of the subgraphs induced by its bags. The tree-independence number of a graph is the minimum independence number of a tree decomposition of it. Several NP-hard graph problems, like maximum weight independent set, can be solved in time n^𝒪(k) if the input n-vertex graph is given together with a tree decomposition of independence number k. Yolov in [SODA 2018] gave an algorithm that given an n-vertex graph G and an integer k, in time n^𝒪(k³) either constructs a tree decomposition of G whose independence number is 𝒪(k³) or correctly reports that the tree-independence number of G is larger than k. In this paper, we first give an algorithm for computing the tree-independence number with a better approximation ratio and running time and then prove that our algorithm is, in some sense, the best one can hope for. More precisely, our algorithm runs in time 2^𝒪(k²) n^𝒪(k) and either outputs a tree decomposition of G with independence number at most 8k, or determines that the tree-independence number of G is larger than k. This implies 2^𝒪(k²) n^𝒪(k)-time algorithms for various problems, like maximum weight independent set, parameterized by the tree-independence number k without needing the decomposition as an input. Assuming Gap-ETH, an n^Ω(k) factor in the running time is unavoidable for any approximation algorithm for the tree-independence number. Our second result is that the exact computation of the tree-independence number is para-NP-hard: We show that for every constant k ≥ 4 it is NP-hard to decide if a given graph has the tree-independence number at most k.

Cite as

Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič. Computing Tree Decompositions with Small Independence Number. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dallard_et_al:LIPIcs.ICALP.2024.51,
  author =	{Dallard, Cl\'{e}ment and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Milani\v{c}, Martin},
  title =	{{Computing Tree Decompositions with Small Independence Number}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.51},
  URN =		{urn:nbn:de:0030-drops-201945},
  doi =		{10.4230/LIPIcs.ICALP.2024.51},
  annote =	{Keywords: tree-independence number, approximation, parameterized algorithms}
}
Document
Track A: Algorithms, Complexity and Games
A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs

Authors: Charlie Carlson, Ewan Davies, Alexandra Kolla, and Aditya Potukuchi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a randomized algorithm that approximates the number of independent sets in a dense, regular bipartite graph - in the language of approximate counting, we give an FPRAS for #BIS on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to "high-temperature" problems on bounded-degree graphs, and our contribution is a notable exception as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused complement to the long line of work in combinatorial optimization showing that CSPs such as Max-Cut and Unique Games are easy on dense graphs via spectral arguments. Our contributions include a novel extension of the method of graph containers that differs considerably from other recent low-temperature algorithms. The additional key insights come from spectral graph theory and have previously been successful in approximation algorithms. As a result, we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e., bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently.

Cite as

Charlie Carlson, Ewan Davies, Alexandra Kolla, and Aditya Potukuchi. A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 35:1-35:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carlson_et_al:LIPIcs.ICALP.2024.35,
  author =	{Carlson, Charlie and Davies, Ewan and Kolla, Alexandra and Potukuchi, Aditya},
  title =	{{A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{35:1--35:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.35},
  URN =		{urn:nbn:de:0030-drops-201782},
  doi =		{10.4230/LIPIcs.ICALP.2024.35},
  annote =	{Keywords: approximate counting, independent sets, bipartite graphs, graph containers}
}
Document
Track A: Algorithms, Complexity and Games
Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH

Authors: Shuangle Li, Bingkai Lin, and Yuwei Liu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we present a new gap-creating randomized self-reduction for the parameterized Maximum Likelihood Decoding problem over 𝔽_p (k-MLD_p). The reduction takes a k-MLD_p instance with k⋅ n d-dimensional vectors as input, runs in O(d2^{O(k)}n^{1.01}) time for some computable function f, outputs a (3/2-ε)-Gap-k'-MLD_p instance for any ε > 0, where k' = O(k²log k). Using this reduction, we show that assuming the randomized Exponential Time Hypothesis (ETH), no algorithms can approximate k-MLD_p (and therefore its dual problem k-NCP_p) within factor (3/2-ε) in f(k)⋅ n^{o(√{k/log k})} time for any ε > 0. We then use reduction by Bhattacharyya, Ghoshal, Karthik and Manurangsi (ICALP 2018) to amplify the (3/2-ε)-gap to any constant. As a result, we show that assuming ETH, no algorithms can approximate k-NCP_p and k-MDP_p within γ-factor in f(k)⋅ n^{o(k^{ε_γ})} time for some constant ε_γ > 0. Combining with the gap-preserving reduction by Bennett, Cheraghchi, Guruswami and Ribeiro (STOC 2023), we also obtain similar lower bounds for k-MDP_p, k-CVP_p and k-SVP_p. These results improve upon the previous f(k)⋅ n^{Ω(poly log k)} lower bounds for these problems under ETH using reductions by Bhattacharyya et al. (J.ACM 2021) and Bennett et al. (STOC 2023).

Cite as

Shuangle Li, Bingkai Lin, and Yuwei Liu. Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 107:1-107:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ICALP.2024.107,
  author =	{Li, Shuangle and Lin, Bingkai and Liu, Yuwei},
  title =	{{Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{107:1--107:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.107},
  URN =		{urn:nbn:de:0030-drops-202500},
  doi =		{10.4230/LIPIcs.ICALP.2024.107},
  annote =	{Keywords: Nearest Codeword Problem, Hardness of Approximations, Fine-grained Complexity, Parameterized Complexity, Minimum Distance Problem, Shortest Vector Problem}
}
Document
Track A: Algorithms, Complexity and Games
A Sublinear Time Tester for Max-Cut on Clusterable Graphs

Authors: Agastya Vibhuti Jha and Akash Kumar

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
One natural question in the area of sublinear time algorithms asks whether we can distinguish between graphs with max-cut value at least 1-ε from graphs with max-cut value at most 1/2+ε in the adjacency list model where we can make degree queries and neighbor queries. Chiplunkar, Kapralov, Khanna, Mousavifar, and Peres (FOCS' 18) showed that in graphs of bounded degree, one cannot hope for a factor 1/2+ε approximation to the max-cut value in time n^{1/2+o(ε)}. Recently, Peng and Yoshida (SODA '23) obtained o(n) time algorithms which can distinguish expanders with max-cut value at least 1-ε from expanders with small max-cut value (their running time is n^{1/2+O(ε)}). In this paper, going beyond the results of Peng-Yoshida, we develop sublinear time algorithms for this problem on clusterable graphs (which is a graph class with a good community structure). Our algorithms run in ≈ n^{0.5001+ O(ε)} time. A natural extension of Peng-Yoshida approach does not seem to work for clusterable graphs. Indeed, their random walk based technique tracks the 𝓁₂ length of random walk vectors and they exploit the difference in the length of these vectors to tell apart expanders with large cut value from expanders with small cut-value. Such approaches fail to be reliable when graph has loosely connected clusters. Taking inspiration from [Ashish Chiplunkar et al., 2018], we exploit the more refined geometry of spectra of clusterable graphs which leads to our sublinear time implementation. We prove a novel spectral lemma which shows that in a spectral expander 2 - λ_{n-1} ≥ Ω(λ₂). This lemma is leveraged to show that there is a suitable difference between spectra of clusterable graphs with large cut value and spectra of clusterable graphs with small cut value. We use this gap to obtain our sublinear time implementation. To do this, we obtain a nuanced understanding of the eigenvector structure of clusterable graphs and in particular, we show that the eigenvectors of the normalized Laplacian of a clusterable graph, corresponding to eigenvalues which are close to 2 have a small infinity norm.

Cite as

Agastya Vibhuti Jha and Akash Kumar. A Sublinear Time Tester for Max-Cut on Clusterable Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 91:1-91:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jha_et_al:LIPIcs.ICALP.2024.91,
  author =	{Jha, Agastya Vibhuti and Kumar, Akash},
  title =	{{A Sublinear Time Tester for Max-Cut on Clusterable Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{91:1--91:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.91},
  URN =		{urn:nbn:de:0030-drops-202344},
  doi =		{10.4230/LIPIcs.ICALP.2024.91},
  annote =	{Keywords: Sublinear Algorithms, Graph Algorithms, Clusterable Graphs, Property Testung}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for 𝓁_p-Shortest Path and 𝓁_p-Group Steiner Tree

Authors: Yury Makarychev, Max Ovsiankin, and Erasmo Tani

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has a vector cost c_e ∈ ℝ_{≥0}^𝓁. For a feasible solution - a path, subtree, or tour (respectively) - we find the total vector cost of all the edges in the solution and then compute the 𝓁_p-norm of the obtained cost vector (we assume that p ≥ 1 is an integer). Our algorithms for series-parallel graphs run in polynomial time and those for arbitrary graphs run in quasi-polynomial time. To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also obtain a number of hardness results.

Cite as

Yury Makarychev, Max Ovsiankin, and Erasmo Tani. Approximation Algorithms for 𝓁_p-Shortest Path and 𝓁_p-Group Steiner Tree. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 111:1-111:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{makarychev_et_al:LIPIcs.ICALP.2024.111,
  author =	{Makarychev, Yury and Ovsiankin, Max and Tani, Erasmo},
  title =	{{Approximation Algorithms for 𝓁\underlinep-Shortest Path and 𝓁\underlinep-Group Steiner Tree}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{111:1--111:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.111},
  URN =		{urn:nbn:de:0030-drops-202542},
  doi =		{10.4230/LIPIcs.ICALP.2024.111},
  annote =	{Keywords: Shortest Path, Asymmetric Group Steiner Tree, Sum-of-Squares}
}
Document
Track A: Algorithms, Complexity and Games
On the Cut-Query Complexity of Approximating Max-Cut

Authors: Orestis Plevrakis, Seyoon Ragavan, and S. Matthew Weinberg

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value oracle model examined by [Rubinstein et al., 2018]. Graph algorithms in this cut query model and other query models have recently been studied for various other problems such as min-cut, connectivity, bipartiteness, and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case of submodular function maximization: on query S ⊆ V, the oracle returns the total weight of the cut between S and V\S. Our first main technical result is a lower bound stating that a deterministic algorithm achieving a c-approximation for any c > 1/2 requires Ω(n) queries. This uses an extension of the cut dimension to rule out approximation (prior work of [Graur et al., 2020] introducing the cut dimension only rules out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds a c-approximation for any c < 1. We achieve this using a query-efficient sparsifier for undirected weighted graphs (prior work of [Rubinstein et al., 2018] holds only for unweighted graphs). To complement these results, for most constants c ∈ (0,1], we nail down the query complexity of achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic factors). Analogously to general submodular function maximization in the same model, we observe a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut in O(log n) queries for any c < 1/2, and show that any randomized algorithm requires Ω(n/log n) queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic algorithm requires Ω(n²) queries to find an exact max-cut (enough to learn the entire graph).

Cite as

Orestis Plevrakis, Seyoon Ragavan, and S. Matthew Weinberg. On the Cut-Query Complexity of Approximating Max-Cut. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 115:1-115:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{plevrakis_et_al:LIPIcs.ICALP.2024.115,
  author =	{Plevrakis, Orestis and Ragavan, Seyoon and Weinberg, S. Matthew},
  title =	{{On the Cut-Query Complexity of Approximating Max-Cut}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{115:1--115:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.115},
  URN =		{urn:nbn:de:0030-drops-202587},
  doi =		{10.4230/LIPIcs.ICALP.2024.115},
  annote =	{Keywords: query complexity, maximum cut, approximation algorithms, graph sparsification}
}
Document
Track A: Algorithms, Complexity and Games
Better Sparsifiers for Directed Eulerian Graphs

Authors: Sushant Sachdeva, Anvith Thudi, and Yibin Zhao

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Spectral sparsification for directed Eulerian graphs is a key component in the design of fast algorithms for solving directed Laplacian linear systems. Directed Laplacian linear system solvers are crucial algorithmic primitives to fast computation of fundamental problems on random walks, such as computing stationary distributions, hitting and commute times, and personalized PageRank vectors. While spectral sparsification is well understood for undirected graphs and it is known that for every graph G, (1+ε)-sparsifiers with O(nε^{-2}) edges exist [Batson-Spielman-Srivastava, STOC '09] (which is optimal), the best known constructions of Eulerian sparsifiers require Ω(nε^{-2}log⁴ n) edges and are based on short-cycle decompositions [Chu et al., FOCS '18]. In this paper, we give improved constructions of Eulerian sparsifiers, specifically: 1) We show that for every directed Eulerian graph G→, there exists an Eulerian sparsifier with O(nε^{-2} log² n log²log n + nε^{-4/3}log^{8/3} n) edges. This result is based on combining short-cycle decompositions [Chu-Gao-Peng-Sachdeva-Sawlani-Wang, FOCS '18, SICOMP] and [Parter-Yogev, ICALP '19], with recent progress on the matrix Spencer conjecture [Bansal-Meka-Jiang, STOC '23]. 2) We give an improved analysis of the constructions based on short-cycle decompositions, giving an m^{1+δ}-time algorithm for any constant δ > 0 for constructing Eulerian sparsifiers with O(nε^{-2}log³ n) edges.

Cite as

Sushant Sachdeva, Anvith Thudi, and Yibin Zhao. Better Sparsifiers for Directed Eulerian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 119:1-119:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sachdeva_et_al:LIPIcs.ICALP.2024.119,
  author =	{Sachdeva, Sushant and Thudi, Anvith and Zhao, Yibin},
  title =	{{Better Sparsifiers for Directed Eulerian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{119:1--119:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.119},
  URN =		{urn:nbn:de:0030-drops-202628},
  doi =		{10.4230/LIPIcs.ICALP.2024.119},
  annote =	{Keywords: Graph algorithms, Linear algebra and computation, Discrepancy theory}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
An Order out of Nowhere: A New Algorithm for Infinite-Domain {CSP}s

Authors: Antoine Mottet, Tomáš Nagy, and Michael Pinsker

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of satisfiability of sets of constraints in a given set of finite uniform hypergraphs. While the problem under consideration is similar in nature to the problem of satisfiability of constraints in graphs, the classical complexity reduction to finite-domain CSPs that was used in the proof of the complexity dichotomy for such problems cannot be used as a black box in our case. We therefore introduce an algorithmic technique inspired by classical notions from the theory of finite-domain CSPs, and prove its correctness based on symmetries that depend on a linear order that is external to the structures under consideration. Our second main result is a P/NP-complete complexity dichotomy for such problems over many sets of uniform hypergraphs. The proof is based on the translation of the problem into the framework of constraint satisfaction problems (CSPs) over infinite uniform hypergraphs. Our result confirms in particular the Bodirsky-Pinsker conjecture for CSPs of first-order reducts of some homogeneous hypergraphs. This forms a vast generalization of previous work by Bodirsky-Pinsker (STOC'11) and Bodirsky-Martin-Pinsker-Pongrácz (ICALP'16) on graph satisfiability.

Cite as

Antoine Mottet, Tomáš Nagy, and Michael Pinsker. An Order out of Nowhere: A New Algorithm for Infinite-Domain {CSP}s. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 148:1-148:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mottet_et_al:LIPIcs.ICALP.2024.148,
  author =	{Mottet, Antoine and Nagy, Tom\'{a}\v{s} and Pinsker, Michael},
  title =	{{An Order out of Nowhere: A New Algorithm for Infinite-Domain \{CSP\}s}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{148:1--148:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.148},
  URN =		{urn:nbn:de:0030-drops-202912},
  doi =		{10.4230/LIPIcs.ICALP.2024.148},
  annote =	{Keywords: Constraint Satisfaction Problems, Hypergraphs, Polymorphisms}
}
Document
Invited Talk
On Measuring Average Case Complexity via Sum-Of-Squares Degree (Invited Talk)

Authors: Prasad Raghavendra

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
Sum-of-squares semidefinite programming hierarchy is a sequence of increasingly complex semidefinite programs to reason about systems of polynomial inequalities. The k-th-level of the sum-of-squares SDP hierarchy is a semidefinite program that can be solved in time n^O(k). Sum-of-squares SDP hierarchies subsume fundamental algorithmic techniques such as linear programming and spectral methods. Many state-of-the-art algorithms for approximating NP-hard optimization problems are captured in the first few levels of the hierarchy. More recently, sum-of-squares SDPs have been applied extensively towards designing algorithms for average case problems. These include planted problems, random constraint satisfaction problems, and computational problems arising in statistics. From the standpoint of complexity theory, sum-of-squares SDPs can be applied towards measuring the average-case hardness of a problem. Most natural optimization problems can often be shown to be solvable by degree n sum-of-squares SDP, which corresponds to an exponential time algorithm. The smallest degree of the sum-of-squares relaxation needed to solve a problem can be used as a measure of the computational complexity of the problem. This approach seems especially useful for understanding average-case complexity under natural distributions. For example, the sum-of-squares degree has been used to nearly characterize the computational complexity of refuting random CSPs as a function of the number of constraints. Using the sum-of-squares degree as a proxy measure for average case complexity opens the door to formalizing certain computational phase transitions that have been conjectured for average case problems such as recovery in stochastic block models. In this talk, we discuss applications of this approach to average-case complexity and present some open problems.

Cite as

Prasad Raghavendra. On Measuring Average Case Complexity via Sum-Of-Squares Degree (Invited Talk). In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{raghavendra:LIPIcs.FSTTCS.2023.2,
  author =	{Raghavendra, Prasad},
  title =	{{On Measuring Average Case Complexity via Sum-Of-Squares Degree}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.2},
  URN =		{urn:nbn:de:0030-drops-193750},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.2},
  annote =	{Keywords: semidefinite programming, sum-of-squares SDP, average case complexity, random SAT, stochastic block models}
}
  • Refine by Author
  • 9 Raghavendra, Prasad
  • 3 Manurangsi, Pasin
  • 2 Hsieh, Jun-Ting
  • 2 Mohanty, Sidhanth
  • 2 Trevisan, Luca
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Graph algorithms analysis
  • 4 Theory of computation → Approximation algorithms analysis
  • 2 Mathematics of computing → Approximation algorithms
  • 2 Theory of computation → Complexity theory and logic
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 3 Graph Algorithms
  • 3 constraint satisfaction problems
  • 2 Constraint Satisfaction Problems
  • 2 Polymorphisms
  • 2 Sum-of-Squares
  • Show More...

  • Refine by Type
  • 29 document

  • Refine by Publication Year
  • 14 2024
  • 3 2017
  • 3 2023
  • 2 2018
  • 1 2013
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail