13 Search Results for "Sun, He"

Document
Is the Algorithmic Kadison-Singer Problem Hard?

Authors: Ben Jourdan, Peter Macgregor, and He Sun

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

Abstract
We study the following KS₂(c) problem: let c ∈ ℝ^+ be some constant, and v₁,…, v_m ∈ ℝ^d be vectors such that ‖v_i‖² ≤ α for any i ∈ [m] and ∑_{i=1}^m ⟨v_i, x⟩² = 1 for any x ∈ ℝ^d with ‖x‖ = 1. The KS₂(c) problem asks to find some S ⊂ [m], such that it holds for all x ∈ ℝ^d with ‖x‖ = 1 that |∑_{i∈S} ⟨v_i, x⟩² - 1/2| ≤ c⋅√α, or report no if such S doesn't exist. Based on the work of Marcus et al. [Adam Marcus et al., 2013] and Weaver [Nicholas Weaver, 2004], the KS₂(c) problem can be seen as the algorithmic Kadison-Singer problem with parameter c ∈ ℝ^+. Our first result is a randomised algorithm with one-sided error for the KS₂(c) problem such that (1) our algorithm finds a valid set S ⊂ [m] with probability at least 1-2/d, if such S exists, or (2) reports no with probability 1, if no valid sets exist. The algorithm has running time O(binom(m,n)⋅poly(m, d)) for n = O(d/ε² log(d) log(1/(c√α))), where ε is a parameter which controls the error of the algorithm. This presents the first algorithm for the Kadison-Singer problem whose running time is quasi-polynomial in m in a certain regime, although having exponential dependency on d. Moreover, it shows that the algorithmic Kadison-Singer problem is easier to solve in low dimensions. Our second result is on the computational complexity of the KS₂(c) problem. We show that the KS₂(1/(4√2)) problem is FNP-hard for general values of d, and solving the KS₂(1/(4√2)) problem is as hard as solving the NAE-3SAT problem.

Cite as

Ben Jourdan, Peter Macgregor, and He Sun. Is the Algorithmic Kadison-Singer Problem Hard?. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 43:1-43:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

```@InProceedings{jourdan_et_al:LIPIcs.ISAAC.2023.43,
author =	{Jourdan, Ben and Macgregor, Peter and Sun, He},
title =	{{Is the Algorithmic Kadison-Singer Problem Hard?}},
booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
pages =	{43:1--43:18},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-289-1},
ISSN =	{1868-8969},
year =	{2023},
volume =	{283},
editor =	{Iwata, Satoru and Kakimura, Naonori},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.43},
URN =		{urn:nbn:de:0030-drops-193457},
doi =		{10.4230/LIPIcs.ISAAC.2023.43},
annote =	{Keywords: Kadison-Singer problem, spectral sparsification}
}```
Document
Track A: Algorithms, Complexity and Games
The Support of Open Versus Closed Random Walks

Authors: Thomas Sauerwald, He Sun, and Danny Vagnozzi

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)

Abstract
A closed random walk of length 𝓁 on an undirected and connected graph G = (V,E) is a random walk that returns to the start vertex at step 𝓁, and its properties have been recently related to problems in different mathematical fields, e.g., geometry and combinatorics (Jiang et al., Annals of Mathematics '21) and spectral graph theory (McKenzie et al., STOC '21). For instance, in the context of analyzing the eigenvalue multiplicity of graph matrices, McKenzie et al. show that, with high probability, the support of a closed random walk of length 𝓁 ⩾ 1 is Ω(𝓁^{1/5}) on any bounded-degree graph, and leaves as an open problem whether a stronger bound of Ω(𝓁^{1/2}) holds for any regular graph. First, we show that the support of a closed random walk of length 𝓁 is at least Ω(𝓁^{1/2} / √{log n}) for any regular or bounded-degree graph on n vertices. Secondly, we prove for every 𝓁 ⩾ 1 the existence of a family of bounded-degree graphs, together with a start vertex such that the support is bounded by O(𝓁^{1/2}/√{log n}). Besides addressing the open problem of McKenzie et al., these two results also establish a subtle separation between closed random walks and open random walks, for which the support on any regular (or bounded-degree) graph is well-known to be Ω(𝓁^{1/2}) for all 𝓁 ⩾ 1. For irregular graphs, we prove that even if the start vertex is chosen uniformly, the support of a closed random walk may still be O(log 𝓁). This rules out a general polynomial lower bound in 𝓁 for all graphs. Finally, we apply our results on random walks to obtain new bounds on the multiplicity of the second largest eigenvalue of the adjacency matrices of graphs.

Cite as

Thomas Sauerwald, He Sun, and Danny Vagnozzi. The Support of Open Versus Closed Random Walks. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 103:1-103:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

```@InProceedings{sauerwald_et_al:LIPIcs.ICALP.2023.103,
author =	{Sauerwald, Thomas and Sun, He and Vagnozzi, Danny},
title =	{{The Support of Open Versus Closed Random Walks}},
booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
pages =	{103:1--103:21},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-278-5},
ISSN =	{1868-8969},
year =	{2023},
volume =	{261},
editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.103},
URN =		{urn:nbn:de:0030-drops-181556},
doi =		{10.4230/LIPIcs.ICALP.2023.103},
annote =	{Keywords: support of random walks, eigenvalue multiplicity}
}```
Document
Polynomial-Time Verification and Testing of Implementations of the Snapshot Data Structure

Authors: Gal Amram, Avi Hayoun, Lior Mizrahi, and Gera Weiss

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)

Abstract
We analyze correctness of implementations of the snapshot data structure in terms of linearizability. We show that such implementations can be verified in polynomial time. Additionally, we identify a set of representative executions for testing and show that the correctness of each of these executions can be validated in linear time. These results present a significant speedup considering that verifying linearizability of implementations of concurrent data structures, in general, is EXPSPACE-complete in the number of program-states, and testing linearizability is NP-complete in the length of the tested execution. The crux of our approach is identifying a class of executions, which we call simple, such that a snapshot implementation is linearizable if and only if all of its simple executions are linearizable. We then divide all possible non-linearizable simple executions into three categories and construct a small automaton that recognizes each category. We describe two implementations (one for verification and one for testing) of an automata-based approach that we develop based on this result and an evaluation that demonstrates significant improvements over existing tools. For verification, we show that restricting a state-of-the-art tool to analyzing only simple executions saves resources and allows the analysis of more complex cases. Specifically, restricting attention to simple executions finds bugs in 27 instances, whereas, without this restriction, we were only able to find 14 of the 30 bugs in the instances we examined. We also show that our technique accelerates testing performance significantly. Specifically, our implementation solves the complete set of 900 problems we generated, whereas the state-of-the-art linearizability testing tool solves only 554 problems.

Cite as

Gal Amram, Avi Hayoun, Lior Mizrahi, and Gera Weiss. Polynomial-Time Verification and Testing of Implementations of the Snapshot Data Structure. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

```@InProceedings{amram_et_al:LIPIcs.DISC.2022.5,
author =	{Amram, Gal and Hayoun, Avi and Mizrahi, Lior and Weiss, Gera},
title =	{{Polynomial-Time Verification and Testing of Implementations of the Snapshot Data Structure}},
booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
pages =	{5:1--5:20},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-255-6},
ISSN =	{1868-8969},
year =	{2022},
volume =	{246},
editor =	{Scheideler, Christian},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.5},
URN =		{urn:nbn:de:0030-drops-171964},
doi =		{10.4230/LIPIcs.DISC.2022.5},
annote =	{Keywords: Snapshot, Linearizability, Verification, Formal Methods}
}```
Document
RANDOM
Improved Bounds for Randomly Colouring Simple Hypergraphs

Authors: Weiming Feng, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)

Abstract
We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree Δ. For any δ > 0, if k ≥ 20(1+δ)/δ and q ≥ 100Δ^({2+δ}/{k-4/δ-4}), the running time of our algorithm is Õ(poly(Δ k)⋅ n^1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require Ω(log n) colours unlike the work of Frieze and Anastos (2017).

Cite as

Weiming Feng, Heng Guo, and Jiaheng Wang. Improved Bounds for Randomly Colouring Simple Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 25:1-25:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

```@InProceedings{feng_et_al:LIPIcs.APPROX/RANDOM.2022.25,
author =	{Feng, Weiming and Guo, Heng and Wang, Jiaheng},
title =	{{Improved Bounds for Randomly Colouring Simple Hypergraphs}},
booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
pages =	{25:1--25:17},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-249-5},
ISSN =	{1868-8969},
year =	{2022},
volume =	{245},
editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.25},
URN =		{urn:nbn:de:0030-drops-171477},
doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.25},
annote =	{Keywords: Approximate counting, Markov chain, Mixing time, Hypergraph colouring}
}```
Document
Track A: Algorithms, Complexity and Games

Authors: Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)

Cite as

Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 20:1-20:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

```@InProceedings{bernstein_et_al:LIPIcs.ICALP.2022.20,
author =	{Bernstein, Aaron and van den Brand, Jan and Probst Gutenberg, Maximilian and Nanongkai, Danupon and Saranurak, Thatchaphol and Sidford, Aaron and Sun, He},
booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
pages =	{20:1--20:20},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-235-8},
ISSN =	{1868-8969},
year =	{2022},
volume =	{229},
editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.20},
URN =		{urn:nbn:de:0030-drops-163611},
doi =		{10.4230/LIPIcs.ICALP.2022.20},
}```
Document
Dynamic Inference in Probabilistic Graphical Models

Authors: Weiming Feng, Kun He, Xiaoming Sun, and Yitong Yin

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)

Abstract
Probabilistic graphical models, such as Markov random fields (MRFs), are useful for describing high-dimensional distributions in terms of local dependence structures. The {probabilistic inference} is a fundamental problem related to graphical models, and sampling is a main approach for the problem. In this paper, we study probabilistic inference problems when the graphical model itself is changing dynamically with time. Such dynamic inference problems arise naturally in today’s application, e.g. multivariate time-series data analysis and practical learning procedures. We give a dynamic algorithm for sampling-based probabilistic inferences in MRFs, where each dynamic update can change the underlying graph and all parameters of the MRF simultaneously, as long as the total amount of changes is bounded. More precisely, suppose that the MRF has n variables and polylogarithmic-bounded maximum degree, and N(n) independent samples are sufficient for the inference for a polynomial function N(⋅). Our algorithm dynamically maintains an answer to the inference problem using Õ(n N(n)) space cost, and Õ(N(n) + n) incremental time cost upon each update to the MRF, as long as the Dobrushin-Shlosman condition is satisfied by the MRFs. This well-known condition has long been used for guaranteeing the efficiency of Markov chain Monte Carlo (MCMC) sampling in the traditional static setting. Compared to the static case, which requires Ω(n N(n)) time cost for redrawing all N(n) samples whenever the MRF changes, our dynamic algorithm gives a 𝛺^~(min{n, N(n)})-factor speedup. Our approach relies on a novel dynamic sampling technique, which transforms local Markov chains (a.k.a. single-site dynamics) to dynamic sampling algorithms, and an "algorithmic Lipschitz" condition that we establish for sampling from graphical models, namely, when the MRF changes by a small difference, samples can be modified to reflect the new distribution, with cost proportional to the difference on MRF.

Cite as

Weiming Feng, Kun He, Xiaoming Sun, and Yitong Yin. Dynamic Inference in Probabilistic Graphical Models. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 25:1-25:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

```@InProceedings{feng_et_al:LIPIcs.ITCS.2021.25,
author =	{Feng, Weiming and He, Kun and Sun, Xiaoming and Yin, Yitong},
title =	{{Dynamic Inference in Probabilistic Graphical Models}},
booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
pages =	{25:1--25:20},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-177-1},
ISSN =	{1868-8969},
year =	{2021},
volume =	{185},
editor =	{Lee, James R.},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.25},
URN =		{urn:nbn:de:0030-drops-135643},
doi =		{10.4230/LIPIcs.ITCS.2021.25},
annote =	{Keywords: Dynamic inference, probabilistic graphical model, Gibbs sampling, Markov random filed}
}```
Document
Augmenting the Algebraic Connectivity of Graphs

Authors: Bogdan-Adrian Manghiuc, Pan Peng, and He Sun

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

Abstract
For any undirected graph G = (V,E) and a set E_W of candidate edges with E ∩ E_W = ∅, the (k,γ)-spectral augmentability problem is to find a set F of k edges from E_W with appropriate weighting, such that the algebraic connectivity of the resulting graph H = (V, E ∪ F) is least γ. Because of a tight connection between the algebraic connectivity and many other graph parameters, including the graph’s conductance and the mixing time of random walks in a graph, maximising the resulting graph’s algebraic connectivity by adding a small number of edges has been studied over the past 15 years, and has many practical applications in network optimisation. In this work we present an approximate and efficient algorithm for the (k,γ)-spectral augmentability problem, and our algorithm runs in almost-linear time under a wide regime of parameters. Our main algorithm is based on the following two novel techniques developed in the paper, which might have applications beyond the (k,γ)-spectral augmentability problem: - We present a fast algorithm for solving a feasibility version of an SDP for the algebraic connectivity maximisation problem from [Ghosh and Boyd, 2006]. Our algorithm is based on the classic primal-dual framework for solving SDP, which in turn uses the multiplicative weight update algorithm. We present a novel approach of unifying SDP constraints of different matrix and vector variables and give a good separation oracle accordingly. - We present an efficient algorithm for the subgraph sparsification problem, and for a wide range of parameters our algorithm runs in almost-linear time, in contrast to the previously best known algorithm running in at least Ω(n²mk) time [Kolla et al., 2010]. Our analysis shows how the randomised BSS framework can be generalised in the setting of subgraph sparsification, and how the potential functions can be applied to approximately keep track of different subspaces.

Cite as

Bogdan-Adrian Manghiuc, Pan Peng, and He Sun. Augmenting the Algebraic Connectivity of Graphs. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 70:1-70:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

```@InProceedings{manghiuc_et_al:LIPIcs.ESA.2020.70,
author =	{Manghiuc, Bogdan-Adrian and Peng, Pan and Sun, He},
title =	{{Augmenting the Algebraic Connectivity of Graphs}},
booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
pages =	{70:1--70:22},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-162-7},
ISSN =	{1868-8969},
year =	{2020},
volume =	{173},
editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.70},
URN =		{urn:nbn:de:0030-drops-129367},
doi =		{10.4230/LIPIcs.ESA.2020.70},
annote =	{Keywords: Graph sparsification, Algebraic connectivity, Semidefinite programming}
}```
Document
Track A: Algorithms, Complexity and Games
Contraction: A Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems

Authors: Shuai Shao and Yuxin Sun

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

Abstract
We study complex zeros of the partition function of 2-spin systems, viewed as a multivariate polynomial in terms of the edge interaction parameters and the uniform external field. We obtain new zero-free regions in which all these parameters are complex-valued. Crucially based on the zero-freeness, we are able to extend the existence of correlation decay to these complex regions from real parameters. As a consequence, we obtain an FPTAS for computing the partition function of 2-spin systems on graphs of bounded degree for these parameter settings. We introduce the contraction property as a unified sufficient condition to devise FPTAS via either Weitz’s algorithm or Barvinok’s algorithm. Our main technical contribution is a very simple but general approach to extend any real parameter of which the 2-spin system exhibits correlation decay to its complex neighborhood where the partition function is zero-free and correlation decay still exists. This result formally establishes the inherent connection between two distinct notions of phase transition for 2-spin systems: the existence of correlation decay and the zero-freeness of the partition function via a unified perspective, contraction.

Cite as

Shuai Shao and Yuxin Sun. Contraction: A Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 96:1-96:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

```@InProceedings{shao_et_al:LIPIcs.ICALP.2020.96,
author =	{Shao, Shuai and Sun, Yuxin},
title =	{{Contraction: A Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems}},
booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
pages =	{96:1--96:15},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-138-2},
ISSN =	{1868-8969},
year =	{2020},
volume =	{168},
editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.96},
URN =		{urn:nbn:de:0030-drops-125036},
doi =		{10.4230/LIPIcs.ICALP.2020.96},
annote =	{Keywords: 2-Spin system, Correlation decay, Zero-freeness, Phase transition, Contraction}
}```
Document
Hermitian Laplacians and a Cheeger Inequality for the Max-2-Lin Problem

Authors: Huan Li, He Sun, and Luca Zanetti

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)

Abstract
We study spectral approaches for the MAX-2-LIN(k) problem, in which we are given a system of m linear equations of the form x_i - x_j is equivalent to c_{ij} mod k, and required to find an assignment to the n variables {x_i} that maximises the total number of satisfied equations. We consider Hermitian Laplacians related to this problem, and prove a Cheeger inequality that relates the smallest eigenvalue of a Hermitian Laplacian to the maximum number of satisfied equations of a MAX-2-LIN(k) instance I. We develop an O~(kn^2) time algorithm that, for any (1-epsilon)-satisfiable instance, produces an assignment satisfying a (1 - O(k)sqrt{epsilon})-fraction of equations. We also present a subquadratic-time algorithm that, when the graph associated with I is an expander, produces an assignment satisfying a (1- O(k^2)epsilon)-fraction of the equations. Our Cheeger inequality and first algorithm can be seen as generalisations of the Cheeger inequality and algorithm for MAX-CUT developed by Trevisan.

Cite as

Huan Li, He Sun, and Luca Zanetti. Hermitian Laplacians and a Cheeger Inequality for the Max-2-Lin Problem. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 71:1-71:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

```@InProceedings{li_et_al:LIPIcs.ESA.2019.71,
author =	{Li, Huan and Sun, He and Zanetti, Luca},
title =	{{Hermitian Laplacians and a Cheeger Inequality for the Max-2-Lin Problem}},
booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
pages =	{71:1--71:14},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-124-5},
ISSN =	{1868-8969},
year =	{2019},
volume =	{144},
editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.71},
URN =		{urn:nbn:de:0030-drops-111926},
doi =		{10.4230/LIPIcs.ESA.2019.71},
annote =	{Keywords: Spectral methods, Hermitian Laplacians, the Max-2-Lin problem, Unique Games}
}```
Document
Track A: Algorithms, Complexity and Games
Querying a Matrix Through Matrix-Vector Products

Authors: Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

Abstract
We consider algorithms with access to an unknown matrix M in F^{n x d} via matrix-vector products, namely, the algorithm chooses vectors v^1, ..., v^q, and observes Mv^1, ..., Mv^q. Here the v^i can be randomized as well as chosen adaptively as a function of Mv^1, ..., Mv^{i-1}. Motivated by applications of sketching in distributed computation, linear algebra, and streaming models, as well as connections to areas such as communication complexity and property testing, we initiate the study of the number q of queries needed to solve various fundamental problems. We study problems in three broad categories, including linear algebra, statistics problems, and graph problems. For example, we consider the number of queries required to approximate the rank, trace, maximum eigenvalue, and norms of a matrix M; to compute the AND/OR/Parity of each column or row of M, to decide whether there are identical columns or rows in M or whether M is symmetric, diagonal, or unitary; or to compute whether a graph defined by M is connected or triangle-free. We also show separations for algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right, versus algorithms that can query vectors on both the left and the right. We also show separations depending on the underlying field the matrix-vector product occurs in. For graph problems, we show separations depending on the form of the matrix (bipartite adjacency versus signed edge-vertex incidence matrix) to represent the graph. Surprisingly, this fundamental model does not appear to have been studied on its own, and we believe a thorough investigation of problems in this model would be beneficial to a number of different application areas.

Cite as

Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. Querying a Matrix Through Matrix-Vector Products. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 94:1-94:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

```@InProceedings{sun_et_al:LIPIcs.ICALP.2019.94,
author =	{Sun, Xiaoming and Woodruff, David P. and Yang, Guang and Zhang, Jialin},
title =	{{Querying a Matrix Through Matrix-Vector Products}},
booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
pages =	{94:1--94:16},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-109-2},
ISSN =	{1868-8969},
year =	{2019},
volume =	{132},
editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.94},
URN =		{urn:nbn:de:0030-drops-106709},
doi =		{10.4230/LIPIcs.ICALP.2019.94},
annote =	{Keywords: Communication complexity, linear algebra, sketching}
}```
Document
On the Decision Tree Complexity of String Matching

Authors: Xiaoyu He, Neng Huang, and Xiaoming Sun

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)

Abstract
String matching is one of the most fundamental problems in computer science. A natural problem is to determine the number of characters that need to be queried (i.e. the decision tree complexity) in a string in order to decide whether this string contains a certain pattern. Rivest showed that for every pattern p, in the worst case any deterministic algorithm needs to query at least n-|p|+1 characters, where n is the length of the string and |p| is the length of the pattern. He further conjectured that this bound is tight. By using the adversary method, Tuza disproved this conjecture and showed that more than one half of binary patterns are evasive, i.e. any algorithm needs to query all the characters (see Section 1.1 for more details). In this paper, we give a query algorithm which settles the decision tree complexity of string matching except for a negligible fraction of patterns. Our algorithm shows that Tuza's criteria of evasive patterns are almost complete. Using the algebraic approach of Rivest and Vuillemin, we also give a new sufficient condition for the evasiveness of patterns, which is beyond Tuza's criteria. In addition, our result reveals an interesting connection to Skolem's Problem in mathematics.

Cite as

Xiaoyu He, Neng Huang, and Xiaoming Sun. On the Decision Tree Complexity of String Matching. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 45:1-45:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

```@InProceedings{he_et_al:LIPIcs.ESA.2018.45,
author =	{He, Xiaoyu and Huang, Neng and Sun, Xiaoming},
title =	{{On the Decision Tree Complexity of String Matching}},
booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
pages =	{45:1--45:13},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-081-1},
ISSN =	{1868-8969},
year =	{2018},
volume =	{112},
editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.45},
URN =		{urn:nbn:de:0030-drops-95082},
doi =		{10.4230/LIPIcs.ESA.2018.45},
annote =	{Keywords: String Matching, Decision Tree Complexity, Boolean Function, Algebraic Method}
}```
Document
Balls into bins via local search: cover time and maximum load

Authors: Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)

Abstract
We study a natural process for allocating m balls into n bins that are organized as the vertices of an undirected graph G. Balls arrive one at a time. When a ball arrives, it first chooses a vertex u in G uniformly at random. Then the ball performs a local search in G starting from u until it reaches a vertex with local minimum load, where the ball is finally placed on. Then the next ball arrives and this procedure is repeated. For the case m=n, we give an upper bound for the maximum load on graphs with bounded degrees. We also propose the study of the cover time of this process, which is defined as the smallest m so that every bin has at least one ball allocated to it. We establish an upper bound for the cover time on graphs with bounded degrees. Our bounds for the maximum load and the cover time are tight when the graph is vertex transitive or sufficiently homogeneous. We also give upper bounds for the maximum load when m>=n.

Cite as

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun. Balls into bins via local search: cover time and maximum load. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 187-198, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)

```@InProceedings{bringmann_et_al:LIPIcs.STACS.2014.187,
author =	{Bringmann, Karl and Sauerwald, Thomas and Stauffer, Alexandre and Sun, He},
title =	{{Balls into bins via local search: cover time and maximum load}},
booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
pages =	{187--198},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-939897-65-1},
ISSN =	{1868-8969},
year =	{2014},
volume =	{25},
editor =	{Mayr, Ernst W. and Portier, Natacha},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.187},
URN =		{urn:nbn:de:0030-drops-44570},
doi =		{10.4230/LIPIcs.STACS.2014.187},
annote =	{Keywords: Balls and Bins, Stochastic Process, Randomized Algorithm}
}```
Document
Low Randomness Rumor Spreading via Hashing

Authors: George Giakkoupis, Thomas Sauerwald, He Sun, and Philipp Woelfel

Published in: LIPIcs, Volume 14, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)

Abstract
We consider the classical rumor spreading problem, where a piece of information must be disseminated from a single node to all n nodes of a given network. We devise two simple push-based protocols, in which nodes choose the neighbor they send the information to in each round using pairwise independent hash functions, or a pseudo-random generator, respectively. For several well-studied topologies our algorithms use exponentially fewer random bits than previous protocols. For example, in complete graphs, expanders, and random graphs only a polylogarithmic number of random bits are needed in total to spread the rumor in O(log n) rounds with high probability. Previous explicit algorithms require Omega(n) random bits to achieve the same round complexity. For complete graphs, the amount of randomness used by our hashing-based algorithm is within an O(log n)-factor of the theoretical minimum determined by [Giakkoupis and Woelfel, 2011].

Cite as

George Giakkoupis, Thomas Sauerwald, He Sun, and Philipp Woelfel. Low Randomness Rumor Spreading via Hashing. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 314-325, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

```@InProceedings{giakkoupis_et_al:LIPIcs.STACS.2012.314,
author =	{Giakkoupis, George and Sauerwald, Thomas and Sun, He and Woelfel, Philipp},
title =	{{Low Randomness Rumor Spreading via Hashing}},
booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
pages =	{314--325},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-939897-35-4},
ISSN =	{1868-8969},
year =	{2012},
volume =	{14},
editor =	{D\"{u}rr, Christoph and Wilke, Thomas},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.314},
URN =		{urn:nbn:de:0030-drops-34417},
doi =		{10.4230/LIPIcs.STACS.2012.314},
annote =	{Keywords: Parallel and Distributed Computing, Randomness, Rumor Spreading}
}```
• Refine by Author
• 7 Sun, He
• 3 Sauerwald, Thomas
• 3 Sun, Xiaoming
• 2 Feng, Weiming
• 1 Amram, Gal

• Refine by Classification
• 2 Theory of computation → Design and analysis of algorithms
• 2 Theory of computation → Random walks and Markov chains
• 1 Computing methodologies → Machine learning
• 1 Mathematics of computing → Approximation algorithms
• 1 Mathematics of computing → Probabilistic algorithms

• Refine by Keyword
• 1 2-Spin system
• 1 Algebraic Method
• 1 Algebraic connectivity
• 1 Approximate counting
• 1 Balls and Bins

• Refine by Type
• 13 document

• Refine by Publication Year
• 3 2022
• 2 2019
• 2 2020
• 2 2023
• 1 2012