6 Search Results for "Zhang, Tianyi"


Document
Track A: Algorithms, Complexity and Games
Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching

Authors: S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the problem of solving linear program in the streaming model. Given a constraint matrix A ∈ ℝ^{m×n} and vectors b ∈ ℝ^m, c ∈ ℝ^n, we develop a space-efficient interior point method that optimizes solely on the dual program. To this end, we obtain efficient algorithms for various different problems: - For general linear programs, we can solve them in Õ(√n log(1/ε)) passes and Õ(n²) space for an ε-approximate solution. To the best of our knowledge, this is the most efficient LP solver in streaming with no polynomial dependence on m for both space and passes. - For bipartite graphs, we can solve the minimum vertex cover and maximum weight matching problem in Õ(√m) passes and Õ(n) space. In addition to our space-efficient IPM, we also give algorithms for solving SDD systems and isolation lemma in Õ(n) spaces, which are the cornerstones for our graph results.

Cite as

S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 88:1-88:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.ICALP.2023.88,
  author =	{Liu, S. Cliff and Song, Zhao and Zhang, Hengjie and Zhang, Lichen and Zhou, Tianyi},
  title =	{{Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{88:1--88:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.88},
  URN =		{urn:nbn:de:0030-drops-181408},
  doi =		{10.4230/LIPIcs.ICALP.2023.88},
  annote =	{Keywords: Convex optimization, interior point method, streaming algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Faster Cut-Equivalent Trees in Simple Graphs

Authors: Tianyi Zhang

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Let G = (V, E) be an undirected connected simple graph on n vertices. A cut-equivalent tree of G is an edge-weighted tree on the same vertex set V, such that for any pair of vertices s, t ∈ V, the minimum (s, t)-cut in the tree is also a minimum (s, t)-cut in G, and these two cuts have the same cut value. In a recent paper [Abboud, Krauthgamer and Trabelsi, STOC 2021], the authors propose the first subcubic time algorithm for constructing a cut-equivalent tree. More specifically, their algorithm has Õ(n^{2.5}) running time. Later on, this running time was significantly improved to n^{2+o(1)} by two independent works [Abboud, Krauthgamer and Trabelsi, FOCS 2021] and [Li, Panigrahi, Saranurak, FOCS 2021], and then to (m+n^{1.9})^{1+o(1)} by [Abboud, Krauthgamer and Trabelsi, SODA 2022]. In this paper, we improve the running time to Õ(n²) graphs if near-linear time max-flow algorithms exist, or Õ(n^{17/8}) using the currently fastest max-flow algorithm. Although our algorithm is slower than previous works, the runtime bound becomes better by a sub-polynomial factor in dense simple graphs when assuming near-linear time max-flow algorithms.

Cite as

Tianyi Zhang. Faster Cut-Equivalent Trees in Simple Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 109:1-109:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{zhang:LIPIcs.ICALP.2022.109,
  author =	{Zhang, Tianyi},
  title =	{{Faster Cut-Equivalent Trees in Simple Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{109:1--109:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.109},
  URN =		{urn:nbn:de:0030-drops-164507},
  doi =		{10.4230/LIPIcs.ICALP.2022.109},
  annote =	{Keywords: graph algorithms, minimum cuts, max-flow}
}
Document
Track A: Algorithms, Complexity and Games
Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time

Authors: Yong Gu and Hanlin Ren

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We continue the study of distance sensitivity oracles (DSOs). Given a directed graph G with n vertices and edge weights in {1, 2, … , M}, we want to build a data structure such that given any source vertex u, any target vertex v, and any failure f (which is either a vertex or an edge), it outputs the length of the shortest path from u to v not going through f. Our main result is a DSO with preprocessing time O(n^2.5794 M) and constant query time. Previously, the best preprocessing time of DSOs for directed graphs is O(n^2.7233 M), and even in the easier case of undirected graphs, the best preprocessing time is O(n^2.6865 M) [Ren, ESA 2020]. One drawback of our DSOs, though, is that it only supports distance queries but not path queries. Our main technical ingredient is an algorithm that computes the inverse of a degree-d polynomial matrix (i.e. a matrix whose entries are degree-d univariate polynomials) modulo x^r. The algorithm is adapted from [Zhou, Labahn and Storjohann, Journal of Complexity, 2015], and we replace some of its intermediate steps with faster rectangular matrix multiplication algorithms. We also show how to compute unique shortest paths in a directed graph with edge weights in {1, 2, … , M}, in O(n^2.5286 M) time. This algorithm is crucial in the preprocessing algorithm of our DSO. Our solution improves the O(n^2.6865 M) time bound in [Ren, ESA 2020], and matches the current best time bound for computing all-pairs shortest paths.

Cite as

Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 76:1-76:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gu_et_al:LIPIcs.ICALP.2021.76,
  author =	{Gu, Yong and Ren, Hanlin},
  title =	{{Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{76:1--76:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.76},
  URN =		{urn:nbn:de:0030-drops-141450},
  doi =		{10.4230/LIPIcs.ICALP.2021.76},
  annote =	{Keywords: graph theory, shortest paths, distance sensitivity oracles}
}
Document
Track A: Algorithms, Complexity and Games
Deterministic Maximum Flows in Simple Graphs

Authors: Tianyi Zhang

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In this paper we are interested in deterministically computing maximum flows in undirected simple graphs where edges have unit capacities. When the input graph has n vertices and m edges, and the maximum flow is known to be upper bounded by τ as prior knowledge, our algorithm has running time Õ(m + n^{5/3}τ^{1/2}); in the extreme case where τ = Θ(n), our algorithm has running time Õ(n^{2.17}). This always improves upon the previous best deterministic upper bound Õ(n^{9/4}τ^{1/8}) by [Duan, 2013]. Furthermore, when τ ≥ n^{0.67} our algorithm is faster than a classical upper bound of O(m + nτ^{3/2}) by [Karger and Levin, 1998].

Cite as

Tianyi Zhang. Deterministic Maximum Flows in Simple Graphs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 114:1-114:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{zhang:LIPIcs.ICALP.2021.114,
  author =	{Zhang, Tianyi},
  title =	{{Deterministic Maximum Flows in Simple Graphs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{114:1--114:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.114},
  URN =		{urn:nbn:de:0030-drops-141832},
  doi =		{10.4230/LIPIcs.ICALP.2021.114},
  annote =	{Keywords: graph algorithms, maximum flows, dynamic data structures}
}
Document
Track A: Algorithms, Complexity and Games
A Scaling Algorithm for Weighted f-Factors in General Graphs

Authors: Ran Duan, Haoqing He, and Tianyi Zhang

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study the maximum weight perfect f-factor problem on any general simple graph G = (V,E,ω) with positive integral edge weights w, and n = |V|, m = |E|. When we have a function f:V → ℕ_+ on vertices, a perfect f-factor is a generalized matching so that every vertex u is matched to exactly f(u) different edges. The previous best results on this problem have running time O(m f(V)) [Gabow 2018] or Õ(W(f(V))^2.373)) [Gabow and Sankowski 2013], where W is the maximum edge weight, and f(V) = ∑_{u ∈ V}f(u). In this paper, we present a scaling algorithm for this problem with running time Õ(mn^{2/3} log W). Previously this bound is only known for bipartite graphs [Gabow and Tarjan 1989]. The advantage is that the running time is independent of f(V), and consequently it breaks the Ω(mn) barrier for large f(V) even for the unweighted f-factor problem in general graphs.

Cite as

Ran Duan, Haoqing He, and Tianyi Zhang. A Scaling Algorithm for Weighted f-Factors in General Graphs. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 41:1-41:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{duan_et_al:LIPIcs.ICALP.2020.41,
  author =	{Duan, Ran and He, Haoqing and Zhang, Tianyi},
  title =	{{A Scaling Algorithm for Weighted f-Factors in General Graphs}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{41:1--41:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.41},
  URN =		{urn:nbn:de:0030-drops-124487},
  doi =		{10.4230/LIPIcs.ICALP.2020.41},
  annote =	{Keywords: Scaling Algorithm, f-Factors, General Graphs}
}
Document
An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Authors: Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph G=(V,E) with n vertices and m edges, the textbook algorithm takes O(n+m) time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in O(n) worst case time per operation, and requires O (min {m log n, n^2}) preprocessing time. Our result improves the previous O(n log^3 n) worst case update time algorithm by Baswana et al. [Baswana et al., 2016] and the O(n log n) time by Nakamura and Sadakane [Nakamura and Sadakane, 2017], and matches the trivial Omega(n) lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al. [Baswana et al., 2016], together with a novel use of a tree-partition lemma by Duan and Zhang [Duan and Zhang, 2016], and the celebrated fractional cascading technique by Chazelle and Guibas [Chazelle and Guibas, 1986a; Chazelle and Guibas, 1986b].

Cite as

Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang. An Improved Algorithm for Incremental DFS Tree in Undirected Graphs. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 16:1-16:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.SWAT.2018.16,
  author =	{Chen, Lijie and Duan, Ran and Wang, Ruosong and Zhang, Hanrui and Zhang, Tianyi},
  title =	{{An Improved Algorithm for Incremental DFS Tree in Undirected Graphs}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{16:1--16:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.16},
  URN =		{urn:nbn:de:0030-drops-88427},
  doi =		{10.4230/LIPIcs.SWAT.2018.16},
  annote =	{Keywords: DFS tree, fractional cascading, fully dynamic algorithm}
}
  • Refine by Author
  • 4 Zhang, Tianyi
  • 2 Duan, Ran
  • 1 Chen, Lijie
  • 1 Gu, Yong
  • 1 He, Haoqing
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Dynamic graph algorithms
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Linear programming
  • 1 Theory of computation → Network flows
  • Show More...

  • Refine by Keyword
  • 2 graph algorithms
  • 1 Convex optimization
  • 1 DFS tree
  • 1 General Graphs
  • 1 Scaling Algorithm
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 2 2021
  • 1 2018
  • 1 2020
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail