183 Search Results for "Gro�e-Rhode, Martin"


Document
The Complexity of Homomorphism Reconstructibility

Authors: Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism indistinguishability in recent years. Moreover, homomorphism counts have promising applications in database theory and machine learning, where one would like to answer queries or classify graphs solely based on the representation of a graph G as a finite vector of homomorphism counts from some fixed finite set of graphs to G. We study the computational complexity of the arguably most fundamental computational problem associated to these representations, the homomorphism reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural numbers, decide whether there exists a graph G that realises the given vector as the homomorphism counts from the given graphs. We show that this problem yields a natural example of an NP^#𝖯-hard problem, which still can be NP-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs. We further show that, when restricted to a finite input set of graphs and given an upper bound on the order of the graph G as additional input, the problem cannot be NP-hard unless 𝖯 = NP. For this regime, we obtain partial positive results. We also investigate the problem’s parameterised complexity and provide fpt-algorithms for the case that a single graph is given and that multiple graphs of the same order with subgraph instead of homomorphism counts are given.

Cite as

Jan Böker, Louis Härtel, Nina Runde, Tim Seppelt, and Christoph Standke. The Complexity of Homomorphism Reconstructibility. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boker_et_al:LIPIcs.STACS.2024.19,
  author =	{B\"{o}ker, Jan and H\"{a}rtel, Louis and Runde, Nina and Seppelt, Tim and Standke, Christoph},
  title =	{{The Complexity of Homomorphism Reconstructibility}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.19},
  URN =		{urn:nbn:de:0030-drops-197298},
  doi =		{10.4230/LIPIcs.STACS.2024.19},
  annote =	{Keywords: graph homomorphism, counting complexity, parameterised complexity}
}
Document
Algorithms for Claims Trading

Authors: Martin Hoefer, Carmine Ventre, and Lisa Wilhelmi

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The recent banking crisis has again emphasized the importance of understanding and mitigating systemic risk in financial networks. In this paper, we study a market-driven approach to rescue a bank in distress based on the idea of claims trading, a notion defined in Chapter 11 of the U.S. Bankruptcy Code. We formalize the idea in the context of the seminal model of financial networks by Eisenberg and Noe [Eisenberg and Noe, 2001]. For two given banks v and w, we consider the operation that w takes over some claims of v and in return gives liquidity to v (or creditors of v) to ultimately rescue v (or mitigate contagion effects). We study the structural properties and computational complexity of decision and optimization problems for several variants of claims trading. When trading incoming edges of v (i.e., claims for which v is the creditor), we show that there is no trade in which both banks v and w strictly improve their assets. We therefore consider creditor-positive trades, in which v profits strictly and w remains indifferent. For a given set C of incoming edges of v, we provide an efficient algorithm to compute payments by w that result in a creditor-positive trade and maximal assets of v. When the set C must also be chosen, the problem becomes weakly NP-hard. Our main result here is a bicriteria FPTAS to compute an approximate trade, which allows for slightly increased payments by w. The approximate trade results in nearly the optimal amount of assets of v in any exact trade. Our results extend to the case in which banks use general monotone payment functions to settle their debt and the emerging clearing state can be computed efficiently. In contrast, for trading outgoing edges of v (i.e., claims for which v is the debtor), the goal is to maximize the increase in assets for the creditors of v. Notably, for these results the characteristics of the payment functions of the banks are essential. For payments ranking creditors one by one, we show NP-hardness of approximation within a factor polynomial in the network size, in both problem variants when the set of claims C is part of the input or not. Instead, for payments proportional to the value of each debt, our results indicate more favorable conditions.

Cite as

Martin Hoefer, Carmine Ventre, and Lisa Wilhelmi. Algorithms for Claims Trading. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hoefer_et_al:LIPIcs.STACS.2024.42,
  author =	{Hoefer, Martin and Ventre, Carmine and Wilhelmi, Lisa},
  title =	{{Algorithms for Claims Trading}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.42},
  URN =		{urn:nbn:de:0030-drops-197523},
  doi =		{10.4230/LIPIcs.STACS.2024.42},
  annote =	{Keywords: Financial Networks, Claims Trade, Systemic Risk}
}
Document
From Local to Global Optimality in Concurrent Parity Games

Authors: Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We study two-player games on finite graphs. Turn-based games have many nice properties, but concurrent games are harder to tame: e.g. turn-based stochastic parity games have positional optimal strategies, whereas even basic concurrent reachability games may fail to have optimal strategies. We study concurrent stochastic parity games, and identify a local structural condition that, when satisfied at each state, guarantees existence of positional optimal strategies for both players.

Cite as

Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. From Local to Global Optimality in Concurrent Parity Games. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 18:1-18:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bordais_et_al:LIPIcs.CSL.2024.18,
  author =	{Bordais, Benjamin and Bouyer, Patricia and Le Roux, St\'{e}phane},
  title =	{{From Local to Global Optimality in Concurrent Parity Games}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{18:1--18:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.18},
  URN =		{urn:nbn:de:0030-drops-196612},
  doi =		{10.4230/LIPIcs.CSL.2024.18},
  annote =	{Keywords: Game forms, stochastic games, parity games, Blackwell/Martin values}
}
Document
Treewidth Is NP-Complete on Cubic Graphs

Authors: Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
In this paper, we show that Treewidth is NP-complete for cubic graphs, thereby improving the result by Bodlaender and Thilikos from 1997 that Treewidth is NP-complete on graphs with maximum degree at most 9. We add a new and simpler proof of the NP-completeness of treewidth, and show that Treewidth remains NP-complete on subcubic induced subgraphs of the infinite 3-dimensional grid.

Cite as

Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý. Treewidth Is NP-Complete on Cubic Graphs. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2023.7,
  author =	{Bodlaender, Hans L. and Bonnet, \'{E}douard and Jaffke, Lars and Knop, Du\v{s}an and Lima, Paloma T. and Milani\v{c}, Martin and Ordyniak, Sebastian and Pandey, Sukanya and Such\'{y}, Ond\v{r}ej},
  title =	{{Treewidth Is NP-Complete on Cubic Graphs}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{7:1--7:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.7},
  URN =		{urn:nbn:de:0030-drops-194263},
  doi =		{10.4230/LIPIcs.IPEC.2023.7},
  annote =	{Keywords: Treewidth, cubic graphs, degree, NP-completeness}
}
Document
Finding Diverse Minimum s-t Cuts

Authors: Mark de Berg, Andrés López Martínez, and Frits Spieksma

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Recently, many studies have been devoted to finding diverse solutions in classical combinatorial problems, such as Vertex Cover (Baste et al., IJCAI'20), Matching (Fomin et al., ISAAC'20) and Spanning Tree (Hanaka et al., AAAI'21). Finding diverse solutions is important in settings where the user is not able to specify all criteria of the desired solution. Motivated by an application in the field of system identification, we initiate the algorithmic study of k-Diverse Minimum s-t Cuts which, given a directed graph G = (V, E), two specified vertices s,t ∈ V, and an integer k > 0, asks for a collection of k minimum s-t cuts in G that has maximum diversity. We investigate the complexity of the problem for two diversity measures for a collection of cuts: (i) the sum of all pairwise Hamming distances, and (ii) the cardinality of the union of cuts in the collection. We prove that k-Diverse Minimum s-t Cuts can be solved in strongly polynomial time for both diversity measures via submodular function minimization. We obtain this result by establishing a connection between ordered collections of minimum s-t cuts and the theory of distributive lattices. When restricted to finding only collections of mutually disjoint solutions, we provide a more practical algorithm that finds a maximum set of pairwise disjoint minimum s-t cuts. For graphs with small minimum s-t cut, it runs in the time of a single max-flow computation. These results stand in contrast to the problem of finding k diverse global minimum cuts - which is known to be NP-hard even for the disjoint case (Hanaka et al., AAAI'23) - and partially answer a long-standing open question of Wagner (Networks 1990) about improving the complexity of finding disjoint collections of minimum s-t cuts.

Cite as

Mark de Berg, Andrés López Martínez, and Frits Spieksma. Finding Diverse Minimum s-t Cuts. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2023.24,
  author =	{de Berg, Mark and L\'{o}pez Mart{\'\i}nez, Andr\'{e}s and Spieksma, Frits},
  title =	{{Finding Diverse Minimum s-t Cuts}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{24:1--24:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.24},
  URN =		{urn:nbn:de:0030-drops-193267},
  doi =		{10.4230/LIPIcs.ISAAC.2023.24},
  annote =	{Keywords: S-T MinCut, Diversity, Lattice Theory, Submodular Function Minimization}
}
Document
Benchmarking Regression Models Under Spatial Heterogeneity

Authors: Nina Wiedemann, Henry Martin, and René Westerholt

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Machine learning methods have recently found much application on spatial data, for example in weather forecasting, traffic prediction, and soil analysis. At the same time, methods from spatial statistics were developed over the past decades to explicitly account for spatial structuring in analytical and inference tasks. In the light of this duality of having both types of methods available, we explore the following question: Under what circumstances are local, spatially-explicit models preferable over machine learning models that do not incorporate spatial structure explicitly in their specification? Local models are typically used to capture spatial non-stationarity. Thus, we study the effect of strength and type of spatial heterogeneity, which may originate from non-stationarity of a process itself or from heterogeneous noise, on the performance of different linear and non-linear, local and global machine learning and regression models. The results suggest that it is necessary to assess the performance of linear local models on an independent hold-out dataset, since models may overfit under certain conditions. We further show that local models are advantageous in settings with small sample size and high degrees of spatial heterogeneity. Our findings allow deriving model selection criteria, which are validated in benchmarking experiments on five well-known spatial datasets.

Cite as

Nina Wiedemann, Henry Martin, and René Westerholt. Benchmarking Regression Models Under Spatial Heterogeneity. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wiedemann_et_al:LIPIcs.GIScience.2023.11,
  author =	{Wiedemann, Nina and Martin, Henry and Westerholt, Ren\'{e}},
  title =	{{Benchmarking Regression Models Under Spatial Heterogeneity}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.11},
  URN =		{urn:nbn:de:0030-drops-189064},
  doi =		{10.4230/LIPIcs.GIScience.2023.11},
  annote =	{Keywords: spatial machine learning, spatial non-stationarity, Geographically Weighted Regression, local models, geostatistics}
}
Document
History-Deterministic Parikh Automata

Authors: Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run. Thereby, they preserve many of the desirable properties of finite automata. Deterministic Parikh automata are strictly weaker than nondeterministic ones, but enjoy better closure and algorithmic properties. This state of affairs motivates the study of intermediate forms of nondeterminism. Here, we investigate history-deterministic Parikh automata, i.e., automata whose nondeterminism can be resolved on the fly. This restricted form of nondeterminism is well-suited for applications which classically call for determinism, e.g., solving games and composition. We show that history-deterministic Parikh automata are strictly more expressive than deterministic ones, incomparable to unambiguous ones, and enjoy almost all of the closure properties of deterministic automata.

Cite as

Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. History-Deterministic Parikh Automata. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{erlich_et_al:LIPIcs.CONCUR.2023.31,
  author =	{Erlich, Enzo and Guha, Shibashis and Jecker, Isma\"{e}l and Lehtinen, Karoliina and Zimmermann, Martin},
  title =	{{History-Deterministic Parikh Automata}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.31},
  URN =		{urn:nbn:de:0030-drops-190250},
  doi =		{10.4230/LIPIcs.CONCUR.2023.31},
  annote =	{Keywords: Parikh automata, History-determinism, Reversal-bounded Counter Machines}
}
Document
What Else Can Voronoi Diagrams Do for Diameter in Planar Graphs?

Authors: Amir Abboud, Shay Mozes, and Oren Weimann

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The Voronoi diagrams technique, introduced by Cabello [SODA'17] to compute the diameter of planar graphs in subquadratic time, has revolutionized the field of distance computations in planar graphs. We present novel applications of this technique in static, fault-tolerant, and partially-dynamic undirected unweighted planar graphs, as well as some new limitations. - In the static case, we give n^{3+o(1)}/D² and Õ(n⋅D²) time algorithms for computing the diameter of a planar graph G with diameter D. These are faster than the state of the art Õ(n^{5/3}) [SODA'18] when D < n^{1/3} or D > n^{2/3}. - In the fault-tolerant setting, we give an n^{7/3+o(1)} time algorithm for computing the diameter of G⧵ {e} for every edge e in G (the replacement diameter problem). This should be compared with the naive Õ(n^{8/3}) time algorithm that runs the static algorithm for every edge. - In the incremental setting, where we wish to maintain the diameter while adding edges, we present an algorithm with total running time n^{7/3+o(1)}. This should be compared with the naive Õ(n^{8/3}) time algorithm that runs the static algorithm after every update. - We give a lower bound (conditioned on the SETH) ruling out an amortized O(n^{1-ε}) update time for maintaining the diameter in weighted planar graph. The lower bound holds even for incremental or decremental updates. Our upper bounds are obtained by novel uses and manipulations of Voronoi diagrams. These include maintaining the Voronoi diagram when edges of the graph are deleted, allowing the sites of the Voronoi diagram to lie on a BFS tree level (rather than on boundaries of r-division), and a new reduction from incremental diameter to incremental distance oracles that could be of interest beyond planar graphs. Our lower bound is the first lower bound for a dynamic planar graph problem that is conditioned on the SETH.

Cite as

Amir Abboud, Shay Mozes, and Oren Weimann. What Else Can Voronoi Diagrams Do for Diameter in Planar Graphs?. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2023.4,
  author =	{Abboud, Amir and Mozes, Shay and Weimann, Oren},
  title =	{{What Else Can Voronoi Diagrams Do for Diameter in Planar Graphs?}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.4},
  URN =		{urn:nbn:de:0030-drops-186575},
  doi =		{10.4230/LIPIcs.ESA.2023.4},
  annote =	{Keywords: Planar graphs, diameter, dynamic graphs, fault tolerance}
}
Document
A Parameterized Algorithm for Vertex Connectivity Survivable Network Design Problem with Uniform Demands

Authors: Jørgen Bang-Jensen, Kristine Vitting Klinkby, Pranabendu Misra, and Saket Saurabh

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In the Vertex Connectivity Survivable Network Design (VC-SNDP) problem, the input is a graph G and a function d: V(G) × V(G) → ℕ that encodes the vertex-connectivity demands between pairs of vertices. The objective is to find the smallest subgraph H of G that satisfies all these demands. It is a well-studied NP-complete problem that generalizes several network design problems. We consider the case of uniform demands, where for every vertex pair (u,v) the connectivity demand d(u,v) is a fixed integer κ. It is an important problem with wide applications. We study this problem in the realm of Parameterized Complexity. In this setting, in addition to G and d we are given an integer 𝓁 as the parameter and the objective is to determine if we can remove at least 𝓁 edges from G without violating any connectivity constraints. This was posed as an open problem by Bang-Jansen et.al. [SODA 2018], who studied the edge-connectivity variant of the problem under the same settings. Using a powerful classification result of Lokshtanov et al. [ICALP 2018], Gutin et al. [JCSS 2019] recently showed that this problem admits a (non-uniform) FPT algorithm where the running time was unspecified. Further they also gave an (uniform) FPT algorithm for the case of κ = 2. In this paper we present a (uniform) FPT algorithm any κ that runs in time 2^{O(κ² 𝓁⁴ log 𝓁)}⋅ |V(G)|^O(1). Our algorithm is built upon new insights on vertex connectivity in graphs. Our main conceptual contribution is a novel graph decomposition called the Wheel decomposition. Informally, it is a partition of the edge set of a graph G, E(G) = X₁ ∪ X₂ … ∪ X_r, with the parts arranged in a cyclic order, such that each vertex v ∈ V(G) either has edges in at most two consecutive parts, or has edges in every part of this partition. The first kind of vertices can be thought of as the rim of the wheel, while the second kind form the hub. Additionally, the vertex cuts induced by these edge-sets in G have highly symmetric properties. Our main technical result, informally speaking, establishes that "nearly edge-minimal’’ κ-vertex connected graphs admit a wheel decomposition - a fact that can be exploited for designing algorithms. We believe that this decomposition is of independent interest and it could be a useful tool in resolving other open problems.

Cite as

Jørgen Bang-Jensen, Kristine Vitting Klinkby, Pranabendu Misra, and Saket Saurabh. A Parameterized Algorithm for Vertex Connectivity Survivable Network Design Problem with Uniform Demands. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bangjensen_et_al:LIPIcs.ESA.2023.13,
  author =	{Bang-Jensen, J{\o}rgen and Klinkby, Kristine Vitting and Misra, Pranabendu and Saurabh, Saket},
  title =	{{A Parameterized Algorithm for Vertex Connectivity Survivable Network Design Problem with Uniform Demands}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{13:1--13:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.13},
  URN =		{urn:nbn:de:0030-drops-186663},
  doi =		{10.4230/LIPIcs.ESA.2023.13},
  annote =	{Keywords: Parameterized Complexity, Vertex Connectivity, Network Design}
}
Document
Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

Authors: Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition’s width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth. Here, shrubdepth is a bounded-depth analogue of cliquewidth, in the same way as treedepth is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. More precisely, we prove that on n-vertex graphs equipped with a tree-model (a decomposition notion underlying shrubdepth) of depth d and using k labels, - Independent Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using 𝒪(dk²log n) space; - Max Cut can be solved in time n^𝒪(dk) using 𝒪(dk log n) space; and - Dominating Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using n^𝒪(1) space via a randomized algorithm. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence, which shows that at least in the case of Independent Set the exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep the space complexity polynomial.

Cite as

Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen. Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ESA.2023.18,
  author =	{Bergougnoux, Benjamin and Chekan, Vera and Ganian, Robert and Kant\'{e}, Mamadou Moustapha and Mnich, Matthias and Oum, Sang-il and Pilipczuk, Micha{\l} and van Leeuwen, Erik Jan},
  title =	{{Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.18},
  URN =		{urn:nbn:de:0030-drops-186710},
  doi =		{10.4230/LIPIcs.ESA.2023.18},
  annote =	{Keywords: Parameterized complexity, shrubdepth, space complexity, algebraic methods}
}
Document
Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄

Authors: Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Dallard, Milanič, and Štorgel [arXiv '22] ask if, for every class excluding a fixed planar graph H as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when H is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when H is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the t-vertex cycle, C_t [Gartland et al., STOC '21], and the disjoint union of t triangles, tC₃ [Bonamy et al., SODA '23]. We give, for every integer t, a polynomial-time algorithm running in n^O(t⁵) when H is the friendship graph K₁ + tK₂ (t disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in n^{O(t² log n) + f(t)}, with f a single-exponential function, when H is tC₃ ⊎ C₄ (the disjoint union of t triangles and a 4-vertex cycle). The former generalizes the algorithm readily obtained from Alekseev’s structural result on graphs excluding tK₂ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.’s result.

Cite as

Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek. Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ESA.2023.23,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Geniet, Colin and Thomass\'{e}, St\'{e}phan and Wesolek, Alexandra},
  title =	{{Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.23},
  URN =		{urn:nbn:de:0030-drops-186769},
  doi =		{10.4230/LIPIcs.ESA.2023.23},
  annote =	{Keywords: Maximum Independent Set, forbidden induced minors, quasipolynomial-time algorithms}
}
Document
Oriented Spanners

Authors: Kevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin Rehs, André van Renssen, and Sampson Wong

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Given a point set P in the Euclidean plane and a parameter t, we define an oriented t-spanner as an oriented subgraph of the complete bi-directed graph such that for every pair of points, the shortest cycle in G through those points is at most a factor t longer than the shortest oriented cycle in the complete bi-directed graph. We investigate the problem of computing sparse graphs with small oriented dilation. As we can show that minimising oriented dilation for a given number of edges is NP-hard in the plane, we first consider one-dimensional point sets. While obtaining a 1-spanner in this setting is straightforward, already for five points such a spanner has no plane embedding with the leftmost and rightmost point on the outer face. This leads to restricting to oriented graphs with a one-page book embedding on the one-dimensional point set. For this case we present a dynamic program to compute the graph of minimum oriented dilation that runs in 𝒪(n⁸) time for n points, and a greedy algorithm that computes a 5-spanner in 𝒪(nlog n) time. Expanding these results finally gives us a result for two-dimensional point sets: we prove that for convex point sets the greedy triangulation results in an oriented 𝒪(1)-spanner.

Cite as

Kevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin Rehs, André van Renssen, and Sampson Wong. Oriented Spanners. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ESA.2023.26,
  author =	{Buchin, Kevin and Gudmundsson, Joachim and Kalb, Antonia and Popov, Aleksandr and Rehs, Carolin and van Renssen, Andr\'{e} and Wong, Sampson},
  title =	{{Oriented Spanners}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.26},
  URN =		{urn:nbn:de:0030-drops-186796},
  doi =		{10.4230/LIPIcs.ESA.2023.26},
  annote =	{Keywords: computational geometry, spanner, oriented graph, greedy triangulation}
}
Document
Online Coalition Formation Under Random Arrival or Coalition Dissolution

Authors: Martin Bullinger and René Romen

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Coalition formation considers the question of how to partition a set of n agents into disjoint coalitions according to their preferences. We consider a cardinal utility model with additively separable aggregation of preferences and study the online variant of coalition formation, where the agents arrive in sequence and whenever an agent arrives, they have to be assigned to a coalition immediately. The goal is to maximize social welfare. In a purely deterministic model, the greedy algorithm, where an agent is assigned to the coalition with the largest gain, is known to achieve an optimal competitive ratio, which heavily relies on the range of utilities. We complement this result by considering two related models. First, we study a model where agents arrive in a random order. We find that the competitive ratio of the greedy algorithm is Θ(1/(n²)), whereas an alternative algorithm, which is based on alternating between waiting and greedy phases, can achieve a competitive ratio of Θ(1/n). Second, we relax the irrevocability of decisions by allowing to dissolve coalitions into singleton coalitions, presenting a matching-based algorithm that once again achieves a competitive ratio of Θ(1/n). Hence, compared to the base model, we present two ways to achieve a competitive ratio that precisely gets rid of utility dependencies. Our results also give novel insights in weighted online matching.

Cite as

Martin Bullinger and René Romen. Online Coalition Formation Under Random Arrival or Coalition Dissolution. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bullinger_et_al:LIPIcs.ESA.2023.27,
  author =	{Bullinger, Martin and Romen, Ren\'{e}},
  title =	{{Online Coalition Formation Under Random Arrival or Coalition Dissolution}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{27:1--27:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.27},
  URN =		{urn:nbn:de:0030-drops-186809},
  doi =		{10.4230/LIPIcs.ESA.2023.27},
  annote =	{Keywords: Online Algorithms, Coalition Formation, Online Matching}
}
Document
On k-Means for Segments and Polylines

Authors: Sergio Cabello and Panos Giannopoulos

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the problem of k-means clustering in the space of straight-line segments in ℝ² under the Hausdorff distance. For this problem, we give a (1+ε)-approximation algorithm that, for an input of n segments, for any fixed k, and with constant success probability, runs in time O(n + ε^{-O(k)} + ε^{-O(k)} ⋅ log^O(k) (ε^{-1})). The algorithm has two main ingredients. Firstly, we express the k-means objective in our metric space as a sum of algebraic functions and use the optimization technique of Vigneron [Antoine Vigneron, 2014] to approximate its minimum. Secondly, we reduce the input size by computing a small size coreset using the sensitivity-based sampling framework by Feldman and Langberg [Dan Feldman and Michael Langberg, 2011; Feldman et al., 2020]. Our results can be extended to polylines of constant complexity with a running time of O(n + ε^{-O(k)}).

Cite as

Sergio Cabello and Panos Giannopoulos. On k-Means for Segments and Polylines. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 28:1-28:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cabello_et_al:LIPIcs.ESA.2023.28,
  author =	{Cabello, Sergio and Giannopoulos, Panos},
  title =	{{On k-Means for Segments and Polylines}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{28:1--28:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.28},
  URN =		{urn:nbn:de:0030-drops-186812},
  doi =		{10.4230/LIPIcs.ESA.2023.28},
  annote =	{Keywords: k-means clustering, segments, polylines, Hausdorff distance, Fr\'{e}chet mean}
}
Document
Revisiting the Random Subset Sum Problem

Authors: Arthur Carvalho Walraven Da Cunha, Francesco d'Amore, Frédéric Giroire, Hicham Lesfari, Emanuele Natale, and Laurent Viennot

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The average properties of the well-known Subset Sum Problem can be studied by means of its randomised version, where we are given a target value z, random variables X_1, …, X_n, and an error parameter ε > 0, and we seek a subset of the X_is whose sum approximates z up to error ε. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size 𝒪(log(1/ε)) suffices to obtain, with high probability, approximations for all values in [-1/2, 1/2]. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work, we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools.

Cite as

Arthur Carvalho Walraven Da Cunha, Francesco d'Amore, Frédéric Giroire, Hicham Lesfari, Emanuele Natale, and Laurent Viennot. Revisiting the Random Subset Sum Problem. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 37:1-37:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dacunha_et_al:LIPIcs.ESA.2023.37,
  author =	{Da Cunha, Arthur Carvalho Walraven and d'Amore, Francesco and Giroire, Fr\'{e}d\'{e}ric and Lesfari, Hicham and Natale, Emanuele and Viennot, Laurent},
  title =	{{Revisiting the Random Subset Sum Problem}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{37:1--37:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.37},
  URN =		{urn:nbn:de:0030-drops-186905},
  doi =		{10.4230/LIPIcs.ESA.2023.37},
  annote =	{Keywords: Random subset sum, Randomised method, Subset-sum, Combinatorics}
}
  • Refine by Author
  • 8 Martin, Barnaby
  • 6 Paulusma, Daniël
  • 5 Smith, Siani
  • 5 Wirsing, Martin
  • 4 Martin-Dorel, Érik
  • Show More...

  • Refine by Classification
  • 11 Theory of computation → Design and analysis of algorithms
  • 11 Theory of computation → Problems, reductions and completeness
  • 10 Theory of computation → Computational geometry
  • 9 Theory of computation → Type theory
  • 8 Mathematics of computing → Graph theory
  • Show More...

  • Refine by Keyword
  • 4 Agda
  • 4 Approximation Algorithms
  • 4 approximation algorithms
  • 4 model checking
  • 3 Computational Complexity
  • Show More...

  • Refine by Type
  • 183 document

  • Refine by Publication Year
  • 48 2023
  • 21 2020
  • 14 2022
  • 13 2018
  • 13 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail