14 Search Results for "Chepoi, Victor"


Document
Fine-Grained Classification of Detecting Dominating Patterns

Authors: Jonathan Dransfeld, Marvin Künnemann, and Mirza Redzic

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the following generalization of dominating sets: Let G be a host graph and P be a pattern graph P. A dominating P-pattern in G is a subset S of vertices in G that (1) forms a dominating set in G and (2) induces a subgraph isomorphic to P. The graph theory literature studies the properties of dominating P-patterns for various patterns P, including cliques, matchings, independent sets, cycles and paths. Previous work (Kunnemann, Redzic 2024) obtains algorithms and conditional lower bounds for detecting dominating P-patterns particularly for P being a k-clique, a k-independent set and a k-matching. Their results give conditionally tight lower bounds if k is sufficiently large (where the bound depends the matrix multiplication exponent ω). We ask: Can we obtain a classification of the fine-grained complexity for all patterns P? Indeed, we define a graph parameter ρ(P) such that if ω = 2, then (n^ρ(P) m^{(|V(P)|-ρ(P))/2})^{1±o(1)} is the optimal running time assuming the Orthogonal Vectors Hypothesis, for all patterns P except the triangle K₃. Here, the host graph G has n vertices and m = Θ(n^α) edges, where 1 ≤ α ≤ 2. The parameter ρ(P) is closely related (but sometimes different) to a parameter δ(P) = max_{S ⊆ V(P)} |S|-|N(S)| studied in (Alon 1981) to tightly quantify the maximum number of occurrences of induced subgraphs isomorphic to P. Our results stand in contrast to the lack of a full fine-grained classification of detecting an arbitrary (not necessarily dominating) induced P-pattern.

Cite as

Jonathan Dransfeld, Marvin Künnemann, and Mirza Redzic. Fine-Grained Classification of Detecting Dominating Patterns. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 98:1-98:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dransfeld_et_al:LIPIcs.ESA.2025.98,
  author =	{Dransfeld, Jonathan and K\"{u}nnemann, Marvin and Redzic, Mirza},
  title =	{{Fine-Grained Classification of Detecting Dominating Patterns}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{98:1--98:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.98},
  URN =		{urn:nbn:de:0030-drops-245679},
  doi =		{10.4230/LIPIcs.ESA.2025.98},
  annote =	{Keywords: fine-grained complexity theory, domination in graphs, subgraph isomorphism, classification theorem, parameterized algorithms}
}
Document
Going Beyond Surfaces in Diameter Approximation

Authors: Michał Włodarczyk

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Calculating the diameter of an undirected graph requires quadratic running time under the Strong Exponential Time Hypothesis and this barrier works even against any approximation better than 3/2. For planar graphs with positive edge weights, there are known (1+ε)-approximation algorithms with running time poly(1/ε, log n)⋅ n. However, these algorithms rely on shortest path separators and this technique falls short to yield efficient algorithms beyond graphs of bounded genus. In this work we depart from embedding-based arguments and obtain diameter approximations relying on VC set systems and the local treewidth property. We present two orthogonal extensions of the planar case by giving (1+ε)-approximation algorithms with the following running times: - 𝒪_h((1/ε)^𝒪(h) ⋅ nlog² n)-time algorithm for graphs excluding an apex graph of size h as a minor, - 𝒪_d((1/ε)^𝒪(d) ⋅ nlog² n)-time algorithm for the class of d-apex graphs. As a stepping stone, we obtain efficient (1+ε)-approximate distance oracles for graphs excluding an apex graph of size h as a minor. Our oracle has preprocessing time 𝒪_h((1/ε)⁸⋅ nlog nlog W) and query time 𝒪_h((1/ε)²⋅log n log W), where W is the metric stretch. Such oracles have been so far only known for bounded genus graphs. All our algorithms are deterministic.

Cite as

Michał Włodarczyk. Going Beyond Surfaces in Diameter Approximation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 39:1-39:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wlodarczyk:LIPIcs.ESA.2025.39,
  author =	{W{\l}odarczyk, Micha{\l}},
  title =	{{Going Beyond Surfaces in Diameter Approximation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{39:1--39:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.39},
  URN =		{urn:nbn:de:0030-drops-245076},
  doi =		{10.4230/LIPIcs.ESA.2025.39},
  annote =	{Keywords: diameter, approximation, distance oracles, graph minors, treewidth}
}
Document
Testing Whether a Subgraph Is Convex or Isometric

Authors: Sergio Cabello

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We consider the following two algorithmic problems: given a graph G and a subgraph H ⊆ G, decide whether H is an isometric or a geodesically convex subgraph of G. It is relatively easy to see that the problems can be solved by computing the distances between all pairs of vertices. We provide a conditional lower bound showing that, for sparse graphs with n vertices and Θ(n) edges, we cannot expect to solve the problem in O(n^{2-ε}) time for any constant ε > 0. We also show that the problem can be solved in subquadratic time for planar graphs and in near-linear time for graphs of bounded treewidth. Finally, we provide a near-linear time algorithm for the setting where G is a plane graph and H is defined by a few cycles in G.

Cite as

Sergio Cabello. Testing Whether a Subgraph Is Convex or Isometric. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cabello:LIPIcs.WADS.2025.12,
  author =	{Cabello, Sergio},
  title =	{{Testing Whether a Subgraph Is Convex or Isometric}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.12},
  URN =		{urn:nbn:de:0030-drops-242439},
  doi =		{10.4230/LIPIcs.WADS.2025.12},
  annote =	{Keywords: convex subgraph, isometric subgraph, plane graph}
}
Document
Track A: Algorithms, Complexity and Games
Fitting Tree Metrics and Ultrametrics in Data Streams

Authors: Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Fitting distances to tree metrics and ultrametrics are two widely used methods in hierarchical clustering, primarily explored within the context of numerical taxonomy. Formally, given a positive distance function D: binom(V,2) → ℝ_{>0}, the goal is to find a tree (or an ultrametric) T including all elements of set V, such that the difference between the distances among vertices in T and those specified by D is minimized. Numerical taxonomy was first introduced by Sneath and Sokal [Nature 1962], and since then it has been studied extensively in both biology and computer science. In this paper, we initiate the study of ultrametric and tree metric fitting problems in the semi-streaming model, where the distances between pairs of elements from V (with |V| = n), defined by the function D, can arrive in an arbitrary order. We study these problems under various distance norms; namely the 𝓁₀ objective, which aims to minimize the number of modified entries in D to fit a tree-metric or an ultrametric; the 𝓁₁ objective, which seeks to minimize the total sum of distance errors across all pairs of points in V; and the 𝓁_∞ objective, which focuses on minimizing the maximum error incurred by any entries in D. - Our first result addresses the 𝓁₀ objective. We provide a single-pass polynomial-time Õ(n)-space O(1) approximation algorithm for ultrametrics and prove that no single-pass exact algorithm exists, even with exponential time. - Next, we show that the algorithm for 𝓁₀ implies an O(Δ/δ) approximation for the 𝓁₁ objective, where Δ is the maximum, and δ is the minimum absolute difference between distances in the input. This bound matches the best-known approximation for the RAM model using a combinatorial algorithm when Δ/δ = O(n). - For the 𝓁_∞ objective, we provide a complete characterization of the ultrametric fitting problem. First, we present a single-pass polynomial-time Õ(n)-space 2-approximation algorithm and show that no better than 2-approximation is possible, even with exponential time. Furthermore, we show that with an additional pass, it is possible to achieve a polynomial-time exact algorithm for ultrametrics. - Finally, we extend all these results to tree metrics by using only one additional pass through the stream and without asymptotically increasing the approximation factor.

Cite as

Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis. Fitting Tree Metrics and Ultrametrics in Data Streams. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 42:1-42:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carmel_et_al:LIPIcs.ICALP.2025.42,
  author =	{Carmel, Amir and Das, Debarati and Kipouridis, Evangelos and Pipis, Evangelos},
  title =	{{Fitting Tree Metrics and Ultrametrics in Data Streams}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{42:1--42:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.42},
  URN =		{urn:nbn:de:0030-drops-234197},
  doi =		{10.4230/LIPIcs.ICALP.2025.42},
  annote =	{Keywords: Streaming, Clustering, Ultrametrics, Tree metrics, Distance fitting}
}
Document
Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs

Authors: James Davies, Agelos Georgakopoulos, Meike Hatzel, and Rose McCarty

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
In this paper, we consider the class 𝒞^d of sphere intersection graphs in R^d for d ≥ 2. We show that for each integer t, the class of all graphs in 𝒞^d that exclude K_{t,t} as a subgraph has strongly sublinear separators. We also prove that 𝒞^d has asymptotic dimension at most 2d+2.

Cite as

James Davies, Agelos Georgakopoulos, Meike Hatzel, and Rose McCarty. Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.SoCG.2025.36,
  author =	{Davies, James and Georgakopoulos, Agelos and Hatzel, Meike and McCarty, Rose},
  title =	{{Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.36},
  URN =		{urn:nbn:de:0030-drops-231881},
  doi =		{10.4230/LIPIcs.SoCG.2025.36},
  annote =	{Keywords: Intersection graphs, strongly sublinear separators, asymptotic dimension}
}
Document
Sparse Bounded Hop-Spanners for Geometric Intersection Graphs

Authors: Sujoy Bhore, Timothy M. Chan, Zhengcheng Huang, Shakhar Smorodinsky, and Csaba D. Tóth

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}).

Cite as

Sujoy Bhore, Timothy M. Chan, Zhengcheng Huang, Shakhar Smorodinsky, and Csaba D. Tóth. Sparse Bounded Hop-Spanners for Geometric Intersection Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhore_et_al:LIPIcs.SoCG.2025.17,
  author =	{Bhore, Sujoy and Chan, Timothy M. and Huang, Zhengcheng and Smorodinsky, Shakhar and T\'{o}th, Csaba D.},
  title =	{{Sparse Bounded Hop-Spanners for Geometric Intersection Graphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.17},
  URN =		{urn:nbn:de:0030-drops-231698},
  doi =		{10.4230/LIPIcs.SoCG.2025.17},
  annote =	{Keywords: Geometric Spanners, Geometric Intersection Graphs}
}
Document
Half-Space Separation in Monophonic Convexity

Authors: Mohammed Elaroussi, Lhouari Nourine, and Simon Vilmin

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We study half-space separation in the convexity of chordless paths of a graph, i.e., monophonic convexity. In this problem, one is given a graph and two (disjoint) subsets of vertices and asks whether these two sets can be separated by complementary convex sets, called half-spaces. While it is known this problem is NP-complete for geodesic convexity - the convexity of shortest paths - we show that it can be solved in polynomial time for monophonic convexity.

Cite as

Mohammed Elaroussi, Lhouari Nourine, and Simon Vilmin. Half-Space Separation in Monophonic Convexity. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 51:1-51:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{elaroussi_et_al:LIPIcs.MFCS.2024.51,
  author =	{Elaroussi, Mohammed and Nourine, Lhouari and Vilmin, Simon},
  title =	{{Half-Space Separation in Monophonic Convexity}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{51:1--51:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.51},
  URN =		{urn:nbn:de:0030-drops-206070},
  doi =		{10.4230/LIPIcs.MFCS.2024.51},
  annote =	{Keywords: chordless paths, monophonic convexity, separation, half-space}
}
Document
Sample Compression Schemes for Balls in Graphs

Authors: Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
One of the open problems in machine learning is whether any set-family of VC-dimension d admits a sample compression scheme of size O(d). In this paper, we study this problem for balls in graphs. For balls of arbitrary radius r, we design proper sample compression schemes of size 4 for interval graphs, of size 6 for trees of cycles, and of size 22 for cube-free median graphs. We also design approximate sample compression schemes of size 2 for balls of δ-hyperbolic graphs.

Cite as

Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès. Sample Compression Schemes for Balls in Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.MFCS.2022.31,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Mc Inerney, Fionn and Ratel, S\'{e}bastien and Vax\`{e}s, Yann},
  title =	{{Sample Compression Schemes for Balls in Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{31:1--31:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.31},
  URN =		{urn:nbn:de:0030-drops-168298},
  doi =		{10.4230/LIPIcs.MFCS.2022.31},
  annote =	{Keywords: Proper Sample Compression Schemes, Balls, Graphs, VC-dimension}
}
Document
Track A: Algorithms, Complexity and Games
Medians in Median Graphs and Their Cube Complexes in Linear Time

Authors: Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, and Yann Vaxès

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the 𝓁₁-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the following fellow traveler property of independent interest: the parents of any two adjacent vertices of G are also adjacent.

Cite as

Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, and Yann Vaxès. Medians in Median Graphs and Their Cube Complexes in Linear Time. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{beneteau_et_al:LIPIcs.ICALP.2020.10,
  author =	{B\'{e}n\'{e}teau, Laurine and Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Vax\`{e}s, Yann},
  title =	{{Medians in Median Graphs and Their Cube Complexes in Linear Time}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.10},
  URN =		{urn:nbn:de:0030-drops-124171},
  doi =		{10.4230/LIPIcs.ICALP.2020.10},
  annote =	{Keywords: Median Graph, CAT(0) Cube Complex, Median Problem, Linear Time Algorithm, LexBFS}
}
Document
Distance Labeling Schemes for Cube-Free Median Graphs

Authors: Victor Chepoi, Arnaud Labourel, and Sébastien Ratel

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the distance between any two vertices u and v can be determined efficiently by merely inspecting the labels of u and v, without using any other information. One of the important problems is finding natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic size. In this paper, we show that the class of cube-free median graphs on n nodes enjoys distance labeling scheme with labels of O(log^3 n) bits.

Cite as

Victor Chepoi, Arnaud Labourel, and Sébastien Ratel. Distance Labeling Schemes for Cube-Free Median Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chepoi_et_al:LIPIcs.MFCS.2019.15,
  author =	{Chepoi, Victor and Labourel, Arnaud and Ratel, S\'{e}bastien},
  title =	{{Distance Labeling Schemes for Cube-Free Median Graphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.15},
  URN =		{urn:nbn:de:0030-drops-109598},
  doi =		{10.4230/LIPIcs.MFCS.2019.15},
  annote =	{Keywords: median graphs, labeling schemes, distributed distance computation}
}
Document
Track A: Algorithms, Complexity and Games
Unlabeled Sample Compression Schemes and Corner Peelings for Ample and Maximum Classes

Authors: Jérémie Chalopin, Victor Chepoi, Shay Moran, and Manfred K. Warmuth

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We examine connections between combinatorial notions that arise in machine learning and topological notions in cubical/simplicial geometry. These connections enable to export results from geometry to machine learning. Our first main result is based on a geometric construction by H. Tracy Hall (2004) of a partial shelling of the cross-polytope which can not be extended. We use it to derive a maximum class of VC dimension 3 that has no corners. This refutes several previous works in machine learning from the past 11 years. In particular, it implies that the previous constructions of optimal unlabeled compression schemes for maximum classes are erroneous. On the positive side we present a new construction of an optimal unlabeled compression scheme for maximum classes. We leave as open whether our unlabeled compression scheme extends to ample (a.k.a. lopsided or extremal) classes, which represent a natural and far-reaching generalization of maximum classes. Towards resolving this question, we provide a geometric characterization in terms of unique sink orientations of the 1-skeletons of associated cubical complexes.

Cite as

Jérémie Chalopin, Victor Chepoi, Shay Moran, and Manfred K. Warmuth. Unlabeled Sample Compression Schemes and Corner Peelings for Ample and Maximum Classes. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.ICALP.2019.34,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Moran, Shay and Warmuth, Manfred K.},
  title =	{{Unlabeled Sample Compression Schemes and Corner Peelings for Ample and Maximum Classes}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.34},
  URN =		{urn:nbn:de:0030-drops-106105},
  doi =		{10.4230/LIPIcs.ICALP.2019.34},
  annote =	{Keywords: VC-dimension, sample compression, Sauer-Shelah-Perles lemma, Sandwich lemma, maximum class, ample/extremal class, corner peeling, unique sink orientation}
}
Document
Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs

Authors: Jérémie Chalopin, Victor Chepoi, Feodor F. Dragan, Guillaume Ducoffe, Abdulhakeem Mohammed, and Yann Vaxès

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
In this paper, we study Gromov hyperbolicity and related parameters, that represent how close (locally) a metric space is to a tree from a metric point of view. The study of Gromov hyperbolicity for geodesic metric spaces can be reduced to the study of graph hyperbolicity. Our main contribution in this note is a new characterization of hyperbolicity for graphs (and for complete geodesic metric spaces). This characterization has algorithmic implications in the field of large-scale network analysis, which was one of our initial motivations. A sharp estimate of graph hyperbolicity is useful, {e.g.}, in embedding an undirected graph into hyperbolic space with minimum distortion [Verbeek and Suri, SoCG'14]. The hyperbolicity of a graph can be computed in polynomial-time, however it is unlikely that it can be done in subcubic time. This makes this parameter difficult to compute or to approximate on large graphs. Using our new characterization of graph hyperbolicity, we provide a simple factor 8 approximation algorithm for computing the hyperbolicity of an n-vertex graph G=(V,E) in optimal time O(n^2) (assuming that the input is the distance matrix of the graph). This algorithm leads to constant factor approximations of other graph-parameters related to hyperbolicity (thinness, slimness, and insize). We also present the first efficient algorithms for exact computation of these parameters. All of our algorithms can be used to approximate the hyperbolicity of a geodesic metric space.

Cite as

Jérémie Chalopin, Victor Chepoi, Feodor F. Dragan, Guillaume Ducoffe, Abdulhakeem Mohammed, and Yann Vaxès. Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.SoCG.2018.22,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Dragan, Feodor F. and Ducoffe, Guillaume and Mohammed, Abdulhakeem and Vax\`{e}s, Yann},
  title =	{{Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.22},
  URN =		{urn:nbn:de:0030-drops-87356},
  doi =		{10.4230/LIPIcs.SoCG.2018.22},
  annote =	{Keywords: Gromov hyperbolicity, Graphs, Geodesic metric spaces, Approximation algorithms}
}
Document
A Counterexample to Thiagarajan's Conjecture on Regular Event Structures

Authors: Jérémie Chalopin and Victor Chepoi

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We provide a counterexample to a conjecture by Thiagarajan (1996 and 2002) that regular prime event structures correspond exactly to those obtained as unfoldings of finite 1-safe Petri nets. The same counterexample is used to disprove a closely related conjecture by Badouel, Darondeau, and Raoult (1999) that domains of regular event structures with bounded natural-cliques are recognizable by finite trace automata. Event structures, trace automata, and Petri nets are fundamental models in concurrency theory. There exist nice interpretations of these structures as combinatorial and geometric objects and both conjectures can be reformulated in this framework. Namely, the domains of prime event structures correspond exactly to pointed median graphs; from a geometric point of view, these domains are in bijection with pointed CAT(0) cube complexes. A necessary condition for both conjectures to be true is that domains of respective regular event structures admit a regular nice labeling. To disprove these conjectures, we describe a regular event domain (with bounded natural-cliques) that does not admit a regular nice labeling. Our counterexample is derived from an example by Wise (1996 and 2007) of a nonpositively curved square complex whose universal cover is a CAT(0) square complex containing a particular plane with an aperiodic tiling.

Cite as

Jérémie Chalopin and Victor Chepoi. A Counterexample to Thiagarajan's Conjecture on Regular Event Structures. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 101:1-101:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.ICALP.2017.101,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor},
  title =	{{A Counterexample to Thiagarajan's Conjecture  on Regular Event Structures}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{101:1--101:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.101},
  URN =		{urn:nbn:de:0030-drops-74192},
  doi =		{10.4230/LIPIcs.ICALP.2017.101},
  annote =	{Keywords: Discrete event structures, Trace automata, Median graphs and CAT(0) cube Complexes, Unfoldings and universal covers}
}
Document
An Approximation Algorithm for l_infinity Fitting Robinson Structures to Distances

Authors: Victor Chepoi and Morgan Seston

Published in: LIPIcs, Volume 3, 26th International Symposium on Theoretical Aspects of Computer Science (2009)


Abstract
In this paper, we present a factor 16 approximation algorithm for the following NP-hard distance fitting problem: given a finite set $X$ and a distance $d$ on $X$, find a Robinsonian distance $d_R$ on $X$ minimizing the $l_{\infty}$-error $||d-d_R||_{\infty}=\mbox{max}_{x,y\in X}\{ |d(x,y)-d_R(x,y)|\}.$ A distance $d_R$ on a finite set $X$ is Robinsonian if its matrix can be symmetrically permuted so that its elements do not decrease when moving away from the main diagonalalong any row or column. Robinsonian distances generalize ultrametrics, line distances and occur in the seriation problems and in classification.

Cite as

Victor Chepoi and Morgan Seston. An Approximation Algorithm for l_infinity Fitting Robinson Structures to Distances. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 265-276, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{chepoi_et_al:LIPIcs.STACS.2009.1816,
  author =	{Chepoi, Victor and Seston, Morgan},
  title =	{{An Approximation Algorithm for l\underlineinfinity Fitting Robinson Structures to Distances}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{265--276},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Albers, Susanne and Marion, Jean-Yves},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2009.1816},
  URN =		{urn:nbn:de:0030-drops-18167},
  doi =		{10.4230/LIPIcs.STACS.2009.1816},
  annote =	{Keywords: Robinsonian dissimilarity, Approximation algorithm, Fitting problem}
}
  • Refine by Type
  • 14 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2024
  • 1 2022
  • 1 2020
  • 2 2019
  • Show More...

  • Refine by Author
  • 7 Chepoi, Victor
  • 5 Chalopin, Jérémie
  • 3 Vaxès, Yann
  • 2 Ratel, Sébastien
  • 1 Bhore, Sujoy
  • Show More...

  • Refine by Series/Journal
  • 14 LIPIcs

  • Refine by Classification
  • 4 Mathematics of computing → Graph algorithms
  • 3 Theory of computation → Computational geometry
  • 2 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Machine learning theory
  • 1 Mathematics of computing → Combinatorics
  • Show More...

  • Refine by Keyword
  • 2 Graphs
  • 2 VC-dimension
  • 1 Approximation algorithm
  • 1 Approximation algorithms
  • 1 Balls
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail