29 Search Results for "Ghosh, Arijit"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism

Authors: Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Many differentially private and classical non-private graph algorithms rely crucially on determining whether some property of each vertex meets a threshold. For example, for the k-core decomposition problem, the classic peeling algorithm iteratively removes a vertex if its induced degree falls below a threshold. The sparse vector technique (SVT) is generally used to transform non-private threshold queries into private ones with only a small additive loss in accuracy. However, a naive application of SVT in the graph setting leads to an amplification of the error by a factor of n due to composition, as SVT is applied to every vertex. In this paper, we resolve this problem by formulating a novel generalized sparse vector technique which we call the Multidimensional AboveThreshold (MAT) Mechanism which generalizes SVT (applied to vectors with one dimension) to vectors with multiple dimensions. When applied to vectors with n dimensions, we solve a number of important graph problems with better bounds than previous work. Specifically, we apply our MAT mechanism to obtain a set of improved bounds for a variety of problems including k-core decomposition, densest subgraph, low out-degree ordering, and vertex coloring. We give a tight local edge differentially private (LEDP) algorithm for k-core decomposition that results in an approximation with O(ε^{-1} log n) additive error and no multiplicative error in O(n) rounds. We also give a new (2+η)-factor multiplicative, O(ε^{-1} log n) additive error algorithm in O(log² n) rounds for any constant η > 0. Both of these results are asymptotically tight against our new lower bound of Ω(log n) for any constant-factor approximation algorithm for k-core decomposition. Our new algorithms for k-core decomposition also directly lead to new algorithms for the related problems of densest subgraph and low out-degree ordering. Finally, we give novel LEDP differentially private defective coloring algorithms that use number of colors given in terms of the arboricity of the graph.

Cite as

Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu. Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 91:1-91:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dhulipala_et_al:LIPIcs.ESA.2025.91,
  author =	{Dhulipala, Laxman and Henzinger, Monika and Li, George Z. and Liu, Quanquan C. and Sricharan, A. R. and Zhu, Leqi},
  title =	{{Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{91:1--91:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.91},
  URN =		{urn:nbn:de:0030-drops-245601},
  doi =		{10.4230/LIPIcs.ESA.2025.91},
  annote =	{Keywords: differential privacy, abovethreshold, densest subgraph}
}
Document
RANDOM
Testing Isomorphism of Boolean Functions over Finite Abelian Groups

Authors: Swarnalipa Datta, Arijit Ghosh, Chandrima Kayal, Manaswi Paraashar, and Manmatha Roy

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Let f and g be Boolean functions over a finite Abelian group 𝒢, where g is fully known and f is accessible via queries; that is, given any x ∈ 𝒢, we can obtain the value f(x). We study the problem of tolerant isomorphism testing: given parameters ε ≥ 0 and τ > 0, the goal is to determine, using as few queries as possible, whether there exists an automorphism σ of 𝒢 such that the fractional Hamming distance between f∘σ and g is at most ε, or whether for every automorphism σ, the distance is at least ε + τ. We design an efficient tolerant property testing algorithm for this problem over finite Abelian groups with constant exponent. The exponent of a finite group refers to the largest order of any element in the group. The query complexity of our algorithm is polynomial in s and 1/τ, where s bounds the spectral norm of the function g, and τ is the tolerance parameter. In addition, we present an improved algorithm in the case where g is Fourier sparse, meaning that its Fourier expansion contains only a small number of nonzero coefficients. Our approach draws on key ideas from Abelian group theory and Fourier analysis, including the annihilator of a subgroup, Pontryagin duality, and a pseudo inner product defined over finite Abelian groups. We believe that these techniques will be useful more broadly in the design of property testing algorithms.

Cite as

Swarnalipa Datta, Arijit Ghosh, Chandrima Kayal, Manaswi Paraashar, and Manmatha Roy. Testing Isomorphism of Boolean Functions over Finite Abelian Groups. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 66:1-66:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.APPROX/RANDOM.2025.66,
  author =	{Datta, Swarnalipa and Ghosh, Arijit and Kayal, Chandrima and Paraashar, Manaswi and Roy, Manmatha},
  title =	{{Testing Isomorphism of Boolean Functions over Finite Abelian Groups}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{66:1--66:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.66},
  URN =		{urn:nbn:de:0030-drops-244328},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.66},
  annote =	{Keywords: Analysis of Boolean functions, Abelian groups, Automorphism group, Function isomorphism, Spectral norm}
}
Document
Streaming Algorithms for Conflict-Free Coloring

Authors: Rogers Mathew, Fahad Panolan, and Seshikanth

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Conflict-free coloring of a hypergraph ℋ = (V,ℰ) using k colors is a function f:V → {1,2, …, k} such that for all E ∈ ℰ, there exists a vertex v ∈ E with a unique color. That is, f(v)≠ f(u) for all u ∈ E ⧵ {v}. The minimum k for which ℋ has a conflict-free coloring using k colors is called the conflict-free chromatic number of ℋ. For a simple graph G, a conflict-free coloring of the hypergraph with vertex set V(G) and edge set being the set of all closed neighborhoods of the vertices in G is called a conflict-free closed neighborhood (CFCN) coloring of G. CFCN chromatic number, denoted by χ_{CN}(G), is the minimum number of colors used in a conflict-free closed neighborhood coloring of G. Analogously, we define conflict-free open neighborhood (CFON) coloring and CFON chromatic number, χ_{ON}(G), of a graph G. There are various works on proving upper and lower bounds of χ_{ON}(G) and χ_{CN}(G). In this work, we develop streaming algorithms for CFCN and CFON coloring of a graph where the number of colors used matches the best-known upper bounds of χ_{ON}(G) and χi_{CN}(G). Our algorithms use as input an edge stream of the graph G in the insertion-only model. Our results and the best-known bounds for χ_{ON}(G) and χ_{CN}(G) are given below. 1. Pach and Tardos [Combinatorics, Probability and Computing, 2009] showed that, for any n vertex graph G, χ_{CN}(G) = O(ln² n). Glebov, Szabó and Tardos [Combinatorics, Probability and Computing, 2014] showed the existence of graphs G with χ_{CN}(G) = Ω(ln² n). We design a randomized single-pass semi-streaming algorithm (i.e., it uses O(n ln n) space that, given an n-vertex graph G, outputs a CFCN coloring of G using O(ln² n) colors with probability at least (1-2/n). 2. Bhyravarapu, Kalyanasundaram, Mathew [Journal of Graph Theory, 2021] showed that for a graph G with maximum degree Δ, χ_{CN}(G) = O(ln² Δ). The methods used by our algorithms give rise to a simpler, alternate proof for this bound. 3. It is known that χ_{ON}(G) ≤ 1/2 + √{2n + 1/4} (See Pach and Tardos [Combinatorics, Probability and Computing, 2009] and Ph.D. thesis of Cheilaris). This bound is asymptotically tight. - We design a deterministic single-pass O(n√n) space streaming algorithm that, given a graph G on n vertices, finds a CFON coloring using 2√n colors. - We design a randomized, single-pass, semi-streaming algorithm to find a CFON coloring of a graph G using O(√n ln² n) colors with success probability at least (1-2/n). 4. It is known that χ_{ON}(G) ≤ Δ+1, where Δ is the maximum degree of a vertex in G. Further, there are graphs G known with χ_{ON}(G) = Δ + 1. We design a randomized two-pass semi-streaming algorithm (uses O(1/(ε²) n ln³ n) space) that outputs a CFON coloring of G using (1+ε)Δ colors, for any ε > 0, with a probability at least (1-1/n).

Cite as

Rogers Mathew, Fahad Panolan, and Seshikanth. Streaming Algorithms for Conflict-Free Coloring. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 44:1-44:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mathew_et_al:LIPIcs.WADS.2025.44,
  author =	{Mathew, Rogers and Panolan, Fahad and Seshikanth},
  title =	{{Streaming Algorithms for Conflict-Free Coloring}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{44:1--44:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.44},
  URN =		{urn:nbn:de:0030-drops-242756},
  doi =		{10.4230/LIPIcs.WADS.2025.44},
  annote =	{Keywords: Streaming algorithm, conflict-free coloring, vertex coloring, randomized algorithms}
}
Document
A Min-Entropy Approach to Multi-Party Communication Lower Bounds

Authors: Mi-Ying (Miryam) Huang, Xinyu Mao, Shuo Wang, Guangxu Yang, and Jiapeng Zhang

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Information complexity is one of the most powerful techniques to prove information-theoretical lower bounds, in which Shannon entropy plays a central role. Though Shannon entropy has some convenient properties, such as the chain rule, it still has inherent limitations. One of the most notable barriers is the square-root loss, which appears in the square-root gap between entropy gaps and statistical distances, e.g., Pinsker’s inequality. To bypass this barrier, we introduce a new method based on min-entropy analysis. Building on this new method, we prove the following results. - An Ω(N^{∑_i α_i - max_i {α_i}}/k) randomized communication lower bound of the k-party set-intersection problem where the i-th party holds a random set of size ≈ N^{1-α_i}. - A tight Ω(n/k) randomized lower bound of the k-party Tree Pointer Jumping problems, improving an Ω(n/k²) lower bound by Chakrabarti, Cormode, and McGregor (STOC 08). - An Ω(n/k+√n) lower bound of the Chained Index problem, improving an Ω(n/k²) lower bound by Cormode, Dark, and Konrad (ICALP 19). Since these problems served as hard problems for numerous applications in streaming lower bounds and cryptography, our new lower bounds directly improve these streaming lower bounds and cryptography lower bounds. On the technical side, min-entropy does not have nice properties such as the chain rule. To address this issue, we enhance the structure-vs-pseudorandomness decomposition used by Göös, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24); both papers used this decomposition to prove communication lower bounds. In this paper, we give a new breath to this method in the multi-party setting, presenting a new toolkit for proving multi-party communication lower bounds.

Cite as

Mi-Ying (Miryam) Huang, Xinyu Mao, Shuo Wang, Guangxu Yang, and Jiapeng Zhang. A Min-Entropy Approach to Multi-Party Communication Lower Bounds. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 33:1-33:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.CCC.2025.33,
  author =	{Huang, Mi-Ying (Miryam) and Mao, Xinyu and Wang, Shuo and Yang, Guangxu and Zhang, Jiapeng},
  title =	{{A Min-Entropy Approach to Multi-Party Communication Lower Bounds}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{33:1--33:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.33},
  URN =		{urn:nbn:de:0030-drops-237273},
  doi =		{10.4230/LIPIcs.CCC.2025.33},
  annote =	{Keywords: communication complexity, lifting theorems, set intersection, chained index}
}
Document
When Alpha-Complexes Collapse onto Codimension-1 Submanifolds

Authors: Dominique Attali, Mattéo Clémot, Bianca B. Dornelas, and André Lieutier

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Given a finite set of points P sampling an unknown smooth surface ℳ ⊆ ℝ³, our goal is to triangulate ℳ based solely on P. Assuming ℳ is a smooth orientable submanifold of codimension 1 in ℝ^d, we introduce a simple algorithm, Naive Squash, which simplifies the α-complex of P by repeatedly applying a new type of collapse called vertical relative to ℳ. Naive Squash also has a practical version that does not require knowledge of ℳ. We establish conditions under which both the naive and practical Squash algorithms output a triangulation of ℳ. We provide a bound on the angle formed by triangles in the α-complex with ℳ, yielding sampling conditions on P that are competitive with existing literature for smooth surfaces embedded in ℝ³, while offering a more compartmentalized proof. As a by-product, we obtain that the restricted Delaunay complex of P triangulates ℳ when ℳ is a smooth surface in ℝ³ under weaker conditions than existing ones.

Cite as

Dominique Attali, Mattéo Clémot, Bianca B. Dornelas, and André Lieutier. When Alpha-Complexes Collapse onto Codimension-1 Submanifolds. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{attali_et_al:LIPIcs.SoCG.2025.11,
  author =	{Attali, Dominique and Cl\'{e}mot, Matt\'{e}o and Dornelas, Bianca B. and Lieutier, Andr\'{e}},
  title =	{{When Alpha-Complexes Collapse onto Codimension-1 Submanifolds}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.11},
  URN =		{urn:nbn:de:0030-drops-231630},
  doi =		{10.4230/LIPIcs.SoCG.2025.11},
  annote =	{Keywords: Submanifold reconstruction, triangulation, abstract simplicial complexes, collapses, convexity}
}
Document
k-Dimensional Transversals for Fat Convex Sets

Authors: Attila Jung and Dömötör Pálvölgyi

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We prove a fractional Helly theorem for k-flats intersecting fat convex sets. A family ℱ of sets is said to be ρ-fat if every set in the family contains a ball and is contained in a ball such that the ratio of the radii of these balls is bounded by ρ. We prove that for every dimension d and positive reals ρ and α there exists a positive β = β(d,ρ, α) such that if ℱ is a finite family of ρ-fat convex sets in ℝ^d and an α-fraction of the (k+2)-size subfamilies from ℱ can be hit by a k-flat, then there is a k-flat that intersects at least a β-fraction of the sets of ℱ. We prove spherical and colorful variants of the above results and prove a (p,k+2)-theorem for k-flats intersecting balls.

Cite as

Attila Jung and Dömötör Pálvölgyi. k-Dimensional Transversals for Fat Convex Sets. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 61:1-61:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.SoCG.2025.61,
  author =	{Jung, Attila and P\'{a}lv\"{o}lgyi, D\"{o}m\"{o}t\"{o}r},
  title =	{{k-Dimensional Transversals for Fat Convex Sets}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{61:1--61:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.61},
  URN =		{urn:nbn:de:0030-drops-232136},
  doi =		{10.4230/LIPIcs.SoCG.2025.61},
  annote =	{Keywords: discrete geometry, transversals, Helly, hypergraphs}
}
Document
Polychromatic Coloring of Tuples in Hypergraphs

Authors: Ahmad Biniaz, Jean-Lou De Carufel, Anil Maheshwari, Michiel Smid, Shakhar Smorodinsky, and Miloš Stojaković

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
A hypergraph H consists of a set V of vertices and a set E of hyperedges that are subsets of V. A t-tuple of H is a subset of t vertices of V. A t-tuple k-coloring of H is a mapping of its t-tuples into k colors. A coloring is called (t,k,f)-polychromatic if each hyperedge of E that has at least f vertices contains tuples of all the k colors. Let f_H(t,k) be the minimum f such that H has a (t,k,f)-polychromatic coloring. For a family of hypergraphs ℋ let f_H(t,k) be the maximum f_H(t,k) over all hypergraphs H in H. Determining f_H(t,k) has been an active research direction in recent years. This is challenging even for t = 1. We present several new results in this direction for t ≥ 2. - Let H be the family of hypergraphs H that is obtained by taking any set P of points in ℝ², setting V: = P and E: = {d ∩ P: d is a disk in ℝ²}. We prove that f_ H(2,k) ≤ 3.7^k, that is, the pairs of points (2-tuples) can be k-colored such that any disk containing at least 3.7^k points has pairs of all colors. We generalize this result to points and balls in higher dimensions. - For the family H of hypergraphs that are defined by grid vertices and axis-parallel rectangles in the plane, we show that f_H(2,k) ≤ √{ck ln k} for some constant c. We then generalize this to higher dimensions, to other shapes, and to tuples of larger size. - For the family H of shrinkable hypergraphs of VC-dimension at most d we prove that f_ H(d+1,k) ≤ c^k for some constant c = c(d). Towards this bound, we obtain a result of independent interest: Every hypergraph with n vertices and with VC-dimension at most d has a (d+1)-tuple T of depth at least n/c, i.e., any hyperedge that contains T also contains n/c other vertices. - For the relationship between t-tuple coloring and vertex coloring in any hypergraph H we establish the inequality 1/e⋅ tk^{1/t} ≤ f_H(t,k) ≤ f_H(1,tk^{1/t}). For the special case of k = 2, referred to as the bichromatic coloring, we prove that t+1 ≤ f_H(t,2) ≤ max{f_H(1,2), t+1}; this improves upon the previous best known upper bound. - We study the relationship between tuple coloring and epsilon nets. In particular we show that if f_H(1,k) = O(k) for a hypergraph H with n vertices, then for any 0 < ε < 1 the t-tuples of H can be partitioned into Ω((εn/t)^t) ε-t-nets. This bound is tight when t is a constant.

Cite as

Ahmad Biniaz, Jean-Lou De Carufel, Anil Maheshwari, Michiel Smid, Shakhar Smorodinsky, and Miloš Stojaković. Polychromatic Coloring of Tuples in Hypergraphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.19,
  author =	{Biniaz, Ahmad and De Carufel, Jean-Lou and Maheshwari, Anil and Smid, Michiel and Smorodinsky, Shakhar and Stojakovi\'{c}, Milo\v{s}},
  title =	{{Polychromatic Coloring of Tuples in Hypergraphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.19},
  URN =		{urn:nbn:de:0030-drops-231718},
  doi =		{10.4230/LIPIcs.SoCG.2025.19},
  annote =	{Keywords: Hypergraph Coloring, Polychromatic Coloring, Geometric Hypergraphs, Cover Decomposable Hypergraphs, Epsilon Nets}
}
Document
Settling the Complexity of Testing Grainedness of Distributions, and Application to Uniformity Testing in the Huge Object Model

Authors: Clément L. Canonne, Sayantan Sen, and Joy Qiping Yang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
In this work, we study the problem of testing m-grainedness of probability distributions over an n-element universe 𝒰, or, equivalently, of whether a probability distribution is induced by a multiset S ⊆ 𝒰 of size |S| = m. Recently, Goldreich and Ron (Computational Complexity, 2023) proved that Ω(n^c) samples are necessary for testing this property, for any c < 1 and m = Θ(n). They also conjectured that Ω(m/(log m)) samples are necessary for testing this property when m = Θ(n). In this work, we positively settle this conjecture. Using a known connection to the Distribution over Huge objects (DoHo) model introduced by Goldreich and Ron (TheoretiCS, 2023), we leverage our results to provide improved bounds for uniformity testing in the DoHo model.

Cite as

Clément L. Canonne, Sayantan Sen, and Joy Qiping Yang. Settling the Complexity of Testing Grainedness of Distributions, and Application to Uniformity Testing in the Huge Object Model. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{canonne_et_al:LIPIcs.ITCS.2025.26,
  author =	{Canonne, Cl\'{e}ment L. and Sen, Sayantan and Yang, Joy Qiping},
  title =	{{Settling the Complexity of Testing Grainedness of Distributions, and Application to Uniformity Testing in the Huge Object Model}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.26},
  URN =		{urn:nbn:de:0030-drops-226543},
  doi =		{10.4230/LIPIcs.ITCS.2025.26},
  annote =	{Keywords: Distribution testing, Uniformity testing, Huge Object Model, Lower bounds}
}
Document
APPROX
Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

Authors: Mridul Nandi, N. V. Vinodchandran, Arijit Ghosh, Kuldeep S. Meel, Soumit Pal, and Sourav Chakraborty

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Estimating the size of the union of a stream of sets S₁, S₂, …, S_M where each set is a subset of a known universe Ω is a fundamental problem in data streaming. This problem naturally generalizes the well-studied 𝖥₀ estimation problem in the streaming literature, where each set contains a single element from the universe. We consider the general case when the sets S_i can be succinctly represented and allow efficient membership, cardinality, and sampling queries (called a Delphic family of sets). A notable example in this framework is the Klee’s Measure Problem (KMP), where every set S_i is an axis-parallel rectangle in d-dimensional spaces (Ω = [Δ]^d where [Δ] := {1, … ,Δ} and Δ ∈ ℕ). Recently, Meel, Chakraborty, and Vinodchandran (PODS-21, PODS-22) designed a streaming algorithm for (ε,δ)-estimation of the size of the union of set streams over Delphic family with space and update time complexity O((log³|Ω|)/ε² ⋅ log 1/δ) and Õ((log⁴|Ω|)/ε² ⋅ log 1/(δ)), respectively. This work presents a new, sampling-based algorithm for estimating the size of the union of Delphic sets that has space and update time complexity Õ((log²|Ω|)/ε² ⋅ log 1/(δ)). This improves the space complexity bound by a log|Ω| factor and update time complexity bound by a log² |Ω| factor. A critical question is whether quadratic dependence of log|Ω| on space and update time complexities is necessary. Specifically, can we design a streaming algorithm for estimating the size of the union of sets over Delphic family with space and complexity linear in log|Ω| and update time poly(log|Ω|)? While this appears technically challenging, we show that establishing a lower bound of ω(log|Ω|) with poly(log|Ω|) update time is beyond the reach of current techniques. Specifically, we show that under certain hard-to-prove computational complexity hypothesis, there is a streaming algorithm for the problem with optimal space complexity O(log|Ω|) and update time poly(log(|Ω|)). Thus, establishing a space lower bound of ω(log|Ω|) will lead to break-through complexity class separation results.

Cite as

Mridul Nandi, N. V. Vinodchandran, Arijit Ghosh, Kuldeep S. Meel, Soumit Pal, and Sourav Chakraborty. Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 26:1-26:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{nandi_et_al:LIPIcs.APPROX/RANDOM.2024.26,
  author =	{Nandi, Mridul and Vinodchandran, N. V. and Ghosh, Arijit and Meel, Kuldeep S. and Pal, Soumit and Chakraborty, Sourav},
  title =	{{Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{26:1--26:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.26},
  URN =		{urn:nbn:de:0030-drops-210191},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.26},
  annote =	{Keywords: Sampling, Streaming, Klee’s Measure Problem}
}
Document
On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups

Authors: Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, and Swagato Sanyal

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given an Abelian group 𝒢, a Boolean-valued function f: 𝒢 → {-1,+1}, is said to be s-sparse, if it has at most s-many non-zero Fourier coefficients over the domain 𝒢. In a seminal paper, Gopalan et al. [Gopalan et al., 2011] proved "Granularity" for Fourier coefficients of Boolean valued functions over ℤ₂ⁿ, that have found many diverse applications in theoretical computer science and combinatorics. They also studied structural results for Boolean functions over ℤ₂ⁿ which are approximately Fourier-sparse. In this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions over Abelian groups 𝒢 of the form, 𝒢: = ℤ_{p_1}^{n_1} × ⋯ × ℤ_{p_t}^{n_t}, for distinct primes p_i. We also obtain a lower bound of the form 1/(m²s)^⌈φ(m)/2⌉, on the absolute value of the smallest non-zero Fourier coefficient of an s-sparse function, where m = p_1 ⋯ p_t, and φ(m) = (p_1-1) ⋯ (p_t-1). We carefully apply probabilistic techniques from [Gopalan et al., 2011], to obtain our structural results, and use some non-trivial results from algebraic number theory to get the lower bound. We construct a family of at most s-sparse Boolean functions over ℤ_pⁿ, where p > 2, for arbitrarily large enough s, where the minimum non-zero Fourier coefficient is o(1/s). The "Granularity" result of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse Boolean valued function over ℤ₂ⁿ are Ω(1/s). So, our result shows that one cannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse functions, we design an efficient sparsity testing algorithm for Boolean function, which tests whether the given function is s-sparse, or ε-far from any sparse Boolean function, and it requires poly((ms)^φ(m),1/ε)-many queries. Further, we generalize the notion of degree of a Boolean function over an Abelian group 𝒢. We use it to prove an Ω(√s) lower bound on the query complexity of any adaptive sparsity testing algorithm.

Cite as

Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, and Swagato Sanyal. On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2024.40,
  author =	{Chakraborty, Sourav and Datta, Swarnalipa and Dutta, Pranjal and Ghosh, Arijit and Sanyal, Swagato},
  title =	{{On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{40:1--40:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.40},
  URN =		{urn:nbn:de:0030-drops-205963},
  doi =		{10.4230/LIPIcs.MFCS.2024.40},
  annote =	{Keywords: Fourier coefficients, sparse, Abelian, granularity}
}
Document
RANDOM
On the Complexity of Triangle Counting Using Emptiness Queries

Authors: Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Beame et al. [ITCS'18 & TALG'20] introduced and used the Bipartite Independent Set (BIS) and Independent Set (IS) oracle access to an unknown, simple, unweighted and undirected graph and solved the edge estimation problem. The introduction of this oracle set forth a series of works in a short time that either solved open questions mentioned by Beame et al. or were generalizations of their work as in Dell and Lapinskas [STOC'18 and TOCT'21], Dell, Lapinskas, and Meeks [SODA'20 and SICOMP'22], Bhattacharya et al. [ISAAC'19 & TOCS'21], and Chen et al. [SODA'20]. Edge estimation using BIS can be done using polylogarithmic queries, while IS queries need sub-linear but more than polylogarithmic queries. Chen et al. improved Beame et al.’s upper bound result for edge estimation using IS and also showed an almost matching lower bound. Beame et al. in their introductory work asked a few open questions out of which one was on estimating structures of higher order than edges, like triangles and cliques, using BIS queries. In this work, we almost resolve the query complexity of estimating triangles using BIS oracle. While doing so, we prove a lower bound for an even stronger query oracle called Edge Emptiness (EE) oracle, recently introduced by Assadi, Chakrabarty, and Khanna [ESA'21] to test graph connectivity.

Cite as

Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. On the Complexity of Triangle Counting Using Emptiness Queries. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 48:1-48:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bishnu_et_al:LIPIcs.APPROX/RANDOM.2023.48,
  author =	{Bishnu, Arijit and Ghosh, Arijit and Mishra, Gopinath},
  title =	{{On the Complexity of Triangle Counting Using Emptiness Queries}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{48:1--48:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.48},
  URN =		{urn:nbn:de:0030-drops-188739},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.48},
  annote =	{Keywords: Triangle Counting, Emptiness Queries, Bipartite Independent Set Query}
}
Document
Counting and Sampling from Substructures Using Linear Algebraic Queries

Authors: Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
For an unknown n × n matrix A having non-negative entries, the inner product (IP) oracle takes as inputs a specified row (or a column) of A and a vector 𝐯 ∈ ℝⁿ with non-negative entries, and returns their inner product. Given two input vectors x and y in ℝⁿ with non-negative entries, and an unknown matrix A with non-negative entries with IP oracle access, we design almost optimal sublinear time algorithms for the following two fundamental matrix problems: - Find an estimate 𝒳 for the bilinear form x^T A y such that 𝒳 ≈ x^T A y. - Designing a sampler 𝒵 for the entries of the matrix A such that ℙ(𝒵 = (i,j)) ≈ x_i A_{ij} y_j /(x^T A y), where x_i and y_j are i-th and j-th coordinate of 𝐱 and 𝐲 respectively. As special cases of the above results, for any submatrix of an unknown matrix with non-negative entries and IP oracle access, we can efficiently estimate the sum of the entries of any submatrix, and also sample a random entry from the submatrix with probability proportional to its weight. We will show that the above results imply that if we are given IP oracle access to the adjacency matrix of a graph, with non-negative weights on the edges, then we can design sublinear time algorithms for the following two fundamental graph problems: - Estimating the sum of the weights of the edges of an induced subgraph, and - Sampling edges proportional to their weights from an induced subgraph. We show that compared to the classical local queries (degree, adjacency, and neighbor queries) on graphs, we can get a quadratic speedup if we use IP oracle access for the above two problems. Apart from the above, we study several matrix problems through the lens of IP oracle, like testing if the matrix is diagonal, symmetric, doubly stochastic, etc. Note that IP oracle is in the class of linear algebraic queries used lately in a series of works by Ben-Eliezer et al. [SODA'08], Nisan [SODA'21], Rashtchian et al. [RANDOM'20], Sun et al. [ICALP'19], and Shi and Woodruff [AAAI'19]. Recently, IP oracle was used by Bishnu et al. [RANDOM'21] to estimate dissimilarities between two matrices.

Cite as

Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar. Counting and Sampling from Substructures Using Linear Algebraic Queries. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bishnu_et_al:LIPIcs.FSTTCS.2022.8,
  author =	{Bishnu, Arijit and Ghosh, Arijit and Mishra, Gopinath and Paraashar, Manaswi},
  title =	{{Counting and Sampling from Substructures Using Linear Algebraic Queries}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.8},
  URN =		{urn:nbn:de:0030-drops-174009},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.8},
  annote =	{Keywords: Query complexity, Bilinear form, Uniform sampling, Weighted graphs}
}
Document
RANDOM
Exploring the Gap Between Tolerant and Non-Tolerant Distribution Testing

Authors: Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
The framework of distribution testing is currently ubiquitous in the field of property testing. In this model, the input is a probability distribution accessible via independently drawn samples from an oracle. The testing task is to distinguish a distribution that satisfies some property from a distribution that is far in some distance measure from satisfying it. The task of tolerant testing imposes a further restriction, that distributions close to satisfying the property are also accepted. This work focuses on the connection between the sample complexities of non-tolerant testing of distributions and their tolerant testing counterparts. When limiting our scope to label-invariant (symmetric) properties of distributions, we prove that the gap is at most quadratic, ignoring poly-logarithmic factors. Conversely, the property of being the uniform distribution is indeed known to have an almost-quadratic gap. When moving to general, not necessarily label-invariant properties, the situation is more complicated, and we show some partial results. We show that if a property requires the distributions to be non-concentrated, that is, the probability mass of the distribution is sufficiently spread out, then it cannot be non-tolerantly tested with o(√n) many samples, where n denotes the universe size. Clearly, this implies at most a quadratic gap, because a distribution can be learned (and hence tolerantly tested against any property) using 𝒪(n) many samples. Being non-concentrated is a strong requirement on properties, as we also prove a close to linear lower bound against their tolerant tests. Apart from the case where the distribution is non-concentrated, we also show if an input distribution is very concentrated, in the sense that it is mostly supported on a subset of size s of the universe, then it can be learned using only 𝒪(s) many samples. The learning procedure adapts to the input, and works without knowing s in advance.

Cite as

Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen. Exploring the Gap Between Tolerant and Non-Tolerant Distribution Testing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 27:1-27:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.APPROX/RANDOM.2022.27,
  author =	{Chakraborty, Sourav and Fischer, Eldar and Ghosh, Arijit and Mishra, Gopinath and Sen, Sayantan},
  title =	{{Exploring the Gap Between Tolerant and Non-Tolerant Distribution Testing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{27:1--27:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.27},
  URN =		{urn:nbn:de:0030-drops-171497},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.27},
  annote =	{Keywords: Distribution Testing, Tolerant Testing, Non-tolerant Testing, Sample Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Tolerant Bipartiteness Testing in Dense Graphs

Authors: Arijit Ghosh, Gopinath Mishra, Rahul Raychaudhury, and Sayantan Sen

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Bipartite testing has been a central problem in the area of property testing since its inception in the seminal work of Goldreich, Goldwasser, and Ron. Though the non-tolerant version of bipartite testing has been extensively studied in the literature, the tolerant variant is not well understood. In this paper, we consider the following version of tolerant bipartite testing problem: Given two parameters ε, δ ∈ (0,1), with δ > ε, and access to the adjacency matrix of a graph G, we have to decide whether G can be made bipartite by editing at most ε n² entries of the adjacency matrix of G, or we have to edit at least δ n² entries of the adjacency matrix to make G bipartite. In this paper, we prove that for δ = (2+Ω(1))ε, tolerant bipartite testing can be decided by performing 𝒪̃(1/ε³) many adjacency queries and in 2^𝒪̃(1/ε) time complexity. This improves upon the state-of-the-art query and time complexities of this problem of 𝒪̃(1/ε⁶) and 2^𝒪̃(1/ε²), respectively, due to Alon, Fernandez de la Vega, Kannan and Karpinski, where 𝒪̃(⋅) hides a factor polynomial in log (1/ε).

Cite as

Arijit Ghosh, Gopinath Mishra, Rahul Raychaudhury, and Sayantan Sen. Tolerant Bipartiteness Testing in Dense Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 69:1-69:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ICALP.2022.69,
  author =	{Ghosh, Arijit and Mishra, Gopinath and Raychaudhury, Rahul and Sen, Sayantan},
  title =	{{Tolerant Bipartiteness Testing in Dense Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{69:1--69:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.69},
  URN =		{urn:nbn:de:0030-drops-164101},
  doi =		{10.4230/LIPIcs.ICALP.2022.69},
  annote =	{Keywords: Tolerant Testing, Bipartite Testing, Query Complexity, Graph Property Testing}
}
  • Refine by Type
  • 29 Document/PDF
  • 8 Document/HTML

  • Refine by Publication Year
  • 9 2025
  • 2 2024
  • 1 2023
  • 5 2022
  • 4 2021
  • Show More...

  • Refine by Author
  • 20 Ghosh, Arijit
  • 12 Mishra, Gopinath
  • 7 Bishnu, Arijit
  • 5 Chakraborty, Sourav
  • 4 Dutta, Kunal
  • Show More...

  • Refine by Series/Journal
  • 28 LIPIcs
  • 1 TGDK

  • Refine by Classification
  • 11 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 4 Theory of computation → Computational geometry
  • 3 Mathematics of computing → Probabilistic algorithms
  • 3 Theory of computation
  • 2 Theory of computation → Communication complexity
  • Show More...

  • Refine by Keyword
  • 3 Query Complexity
  • 3 Query complexity
  • 2 Tolerant Testing
  • 2 communication complexity
  • 2 discrete geometry
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail