11 Search Results for "Gilbert, Anna"


Document
RANDOM
Sublinear Space Graph Algorithms in the Continual Release Model

Authors: Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The graph continual release model of differential privacy seeks to produce differentially private solutions to graph problems under a stream of edge updates where new private solutions are released after each update. Thus far, previously known edge-differentially private algorithms for most graph problems including densest subgraph and matchings in the continual release setting only output real-value estimates (not vertex subset solutions) and do not use sublinear space. Instead, they rely on computing exact graph statistics on the input [Hendrik Fichtenberger et al., 2021; Shuang Song et al., 2018]. In this paper, we leverage sparsification to address the above shortcomings for edge-insertion streams. Our edge-differentially private algorithms use sublinear space with respect to the number of edges in the graph while some also achieve sublinear space in the number of vertices in the graph. In addition, for the densest subgraph problem, we also output edge-differentially private vertex subset solutions; no previous graph algorithms in the continual release model output such subsets. We make novel use of assorted sparsification techniques from the non-private streaming and static graph algorithms literature to achieve new results in the sublinear space, continual release setting. This includes algorithms for densest subgraph, maximum matching, as well as the first continual release k-core decomposition algorithm. We also develop a novel sparse level data structure for k-core decomposition that may be of independent interest. To complement our insertion-only algorithms, we conclude with polynomial additive error lower bounds for edge-privacy in the fully dynamic setting, where only logarithmic lower bounds were previously known.

Cite as

Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou. Sublinear Space Graph Algorithms in the Continual Release Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 40:1-40:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{epasto_et_al:LIPIcs.APPROX/RANDOM.2025.40,
  author =	{Epasto, Alessandro and Liu, Quanquan C. and Mukherjee, Tamalika and Zhou, Felix},
  title =	{{Sublinear Space Graph Algorithms in the Continual Release Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{40:1--40:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  URN =		{urn:nbn:de:0030-drops-244064},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  annote =	{Keywords: Differential Privacy, Continual Release, Densest Subgraph, k-Core Decomposition, Maximum Matching}
}
Document
RANDOM
List-Recovery of Random Linear Codes over Small Fields

Authors: Dean Doron, Jonathan Mosheiff, Nicolas Resch, and João Ribeiro

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study list-recoverability of random linear codes over small fields, both from errors and from erasures. We consider codes of rate ε-close to capacity, and aim to bound the dependence of the output list size L on ε, the input list size 𝓁, and the alphabet size q. Prior to our work, the best upper bound was L = q^O(𝓁/ε) (Zyablov and Pinsker, Prob. Per. Inf. 1981). Previous work has identified cases in which linear codes provably perform worse than non-linear codes with respect to list-recovery. While there exist non-linear codes that achieve L = O(𝓁/ε), we know that L ≥ 𝓁^Ω(1/ε) is necessary for list recovery from erasures over fields of small characteristic, and for list recovery from errors over large alphabets. We show that in other relevant regimes there is no significant price to pay for linearity, in the sense that we get the correct dependence on the gap-to-capacity ε and go beyond the Zyablov-Pinsker bound for the first time. Specifically, when q is constant and ε approaches zero, - For list-recovery from erasures over prime fields, we show that L ≤ C₁/ε. By prior work, such a result cannot be obtained for low-characteristic fields. - For list-recovery from errors over arbitrary fields, we prove that L ≤ C₂/ε. Above, C₁ and C₂ depend on the decoding radius, input list size, and field size. We provide concrete bounds on the constants above, and the upper bounds on L improve upon the Zyablov-Pinsker bound whenever q ≤ 2^{(1/ε)^c} for some small universal constant c > 0.

Cite as

Dean Doron, Jonathan Mosheiff, Nicolas Resch, and João Ribeiro. List-Recovery of Random Linear Codes over Small Fields. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 57:1-57:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2025.57,
  author =	{Doron, Dean and Mosheiff, Jonathan and Resch, Nicolas and Ribeiro, Jo\~{a}o},
  title =	{{List-Recovery of Random Linear Codes over Small Fields}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{57:1--57:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.57},
  URN =		{urn:nbn:de:0030-drops-244239},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.57},
  annote =	{Keywords: List recovery, random linear codes}
}
Document
RANDOM
Near-Optimal List-Recovery of Linear Code Families

Authors: Ray Li and Nikhil Shagrithaya

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We prove several results on linear codes achieving list-recovery capacity. We show that random linear codes achieve list-recovery capacity with constant output list size (independent of the alphabet size and length). That is, over alphabets of size at least 𝓁^Ω(1/ε), random linear codes of rate R are (1-R-ε, 𝓁, (𝓁/ε)^O(𝓁/ε))-list-recoverable for all R ∈ (0,1) and 𝓁. Together with a result of Levi, Mosheiff, and Shagrithaya, this implies that randomly punctured Reed-Solomon codes also achieve list-recovery capacity. We also prove that our output list size is near-optimal among all linear codes: all (1-R-ε, 𝓁, L)-list-recoverable linear codes must have L ≥ 𝓁^{Ω(R/ε)}. Our simple upper bound combines the Zyablov-Pinsker argument with recent bounds from Kopparty, Ron-Zewi, Saraf, Wootters, and Tamo on the maximum intersection of a "list-recovery ball" and a low-dimensional subspace with large distance. Our lower bound is inspired by a recent lower bound of Chen and Zhang.

Cite as

Ray Li and Nikhil Shagrithaya. Near-Optimal List-Recovery of Linear Code Families. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.APPROX/RANDOM.2025.53,
  author =	{Li, Ray and Shagrithaya, Nikhil},
  title =	{{Near-Optimal List-Recovery of Linear Code Families}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{53:1--53:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.53},
  URN =		{urn:nbn:de:0030-drops-244199},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.53},
  annote =	{Keywords: Error-Correcting Codes, Randomness, List-Recovery, Reed-Solomon Codes, Random Linear Codes}
}
Document
Approximating Prize-Collecting Variants of TSP

Authors: Morteza Alimi, Tobias Mömke, and Michael Ruderer

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We present an approximation algorithm for the Prize-collecting Ordered Traveling Salesman Problem (PCOTSP), which simultaneously generalizes the Prize-collecting TSP and the Ordered TSP. The Prize-collecting TSP is well-studied and has a long history, with the current best approximation factor slightly below 1.6, shown by Blauth, Klein and Nägele [IPCO 2024]. The best approximation ratio for Ordered TSP is 3/2+1/e, presented by Böhm, Friggstad, Mömke, Spoerhase [SODA 2025] and Armbruster, Mnich, Nägele [Approx 2024]. The former also present a factor 2.2131 approximation algorithm for Multi-Path-TSP. We present a 2.097-approximation algorithm for PCOTSP, which is, to the best of our knowledge, the first result for this problem. Key ideas in our approach are to sample a set of trees and then to probabilistically pick up some vertices, and to use the pruning ideas of Blauth, Klein, Nägele [IPCO 2024] on the sampled vertices. While the sampling probability of vertices for our problem is lower than for PCTSP, intuitively leaving less spare penalty to spend, we leverage the cycle structure induced by the sampled trees together with a simple combinatorial algorithm to bring the approximation factor below 2.1. Our techniques extend to Prize-collecting Multi-Path TSP, building on results from Böhm, Friggstad, Mömke, Spoerhase [SODA 2025], leading to a 2.41-approximation.

Cite as

Morteza Alimi, Tobias Mömke, and Michael Ruderer. Approximating Prize-Collecting Variants of TSP. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alimi_et_al:LIPIcs.MFCS.2025.7,
  author =	{Alimi, Morteza and M\"{o}mke, Tobias and Ruderer, Michael},
  title =	{{Approximating Prize-Collecting Variants of TSP}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.7},
  URN =		{urn:nbn:de:0030-drops-241141},
  doi =		{10.4230/LIPIcs.MFCS.2025.7},
  annote =	{Keywords: Approximation Algorithms, TSP}
}
Document
Estimation of Substitution and Indel Rates via k-mer Statistics

Authors: Mahmudur Rahman Hera, Paul Medvedev, David Koslicki, and Antonio Blanca

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Methods utilizing k-mers are widely used in bioinformatics, yet our understanding of their statistical properties under realistic mutation models remains incomplete. Previously, substitution-only mutation models have been considered to derive precise expectations and variances for mutated k-mers and intervals of mutated and non-mutated sequences. In this work, we consider a mutation model that incorporates insertions and deletions in addition to single-nucleotide substitutions. Within this framework, we derive closed-form k-mer-based estimators for the three fundamental mutation parameters: substitution, deletion rate, and insertion rates. We provide theoretical guarantees in the form of concentration inequalities, ensuring accuracy of our estimators under reasonable model assumptions. Empirical evaluations on simulated evolution of genomic sequences confirm our theoretical findings, demonstrating that accounting for insertions and deletions signals allows for accurate estimation of mutation rates and improves upon the results obtained by considering a substitution-only model. An implementation of estimating the mutation parameters from a pair of fasta files is available here: https://github.com/KoslickiLab/estimate_rates_using_mutation_model.git. The results presented in this manuscript can be reproduced using the code available here: https://github.com/KoslickiLab/est_rates_experiments.git.

Cite as

Mahmudur Rahman Hera, Paul Medvedev, David Koslicki, and Antonio Blanca. Estimation of Substitution and Indel Rates via k-mer Statistics. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{rahmanhera_et_al:LIPIcs.WABI.2025.16,
  author =	{Rahman Hera, Mahmudur and Medvedev, Paul and Koslicki, David and Blanca, Antonio},
  title =	{{Estimation of Substitution and Indel Rates via k-mer Statistics}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{16:1--16:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.16},
  URN =		{urn:nbn:de:0030-drops-239422},
  doi =		{10.4230/LIPIcs.WABI.2025.16},
  annote =	{Keywords: k-mers, mutation rate, indel, alignment-free, estimation, substitution, insertion, deletion}
}
Document
Track A: Algorithms, Complexity and Games
Fitting Tree Metrics and Ultrametrics in Data Streams

Authors: Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Fitting distances to tree metrics and ultrametrics are two widely used methods in hierarchical clustering, primarily explored within the context of numerical taxonomy. Formally, given a positive distance function D: binom(V,2) → ℝ_{>0}, the goal is to find a tree (or an ultrametric) T including all elements of set V, such that the difference between the distances among vertices in T and those specified by D is minimized. Numerical taxonomy was first introduced by Sneath and Sokal [Nature 1962], and since then it has been studied extensively in both biology and computer science. In this paper, we initiate the study of ultrametric and tree metric fitting problems in the semi-streaming model, where the distances between pairs of elements from V (with |V| = n), defined by the function D, can arrive in an arbitrary order. We study these problems under various distance norms; namely the 𝓁₀ objective, which aims to minimize the number of modified entries in D to fit a tree-metric or an ultrametric; the 𝓁₁ objective, which seeks to minimize the total sum of distance errors across all pairs of points in V; and the 𝓁_∞ objective, which focuses on minimizing the maximum error incurred by any entries in D. - Our first result addresses the 𝓁₀ objective. We provide a single-pass polynomial-time Õ(n)-space O(1) approximation algorithm for ultrametrics and prove that no single-pass exact algorithm exists, even with exponential time. - Next, we show that the algorithm for 𝓁₀ implies an O(Δ/δ) approximation for the 𝓁₁ objective, where Δ is the maximum, and δ is the minimum absolute difference between distances in the input. This bound matches the best-known approximation for the RAM model using a combinatorial algorithm when Δ/δ = O(n). - For the 𝓁_∞ objective, we provide a complete characterization of the ultrametric fitting problem. First, we present a single-pass polynomial-time Õ(n)-space 2-approximation algorithm and show that no better than 2-approximation is possible, even with exponential time. Furthermore, we show that with an additional pass, it is possible to achieve a polynomial-time exact algorithm for ultrametrics. - Finally, we extend all these results to tree metrics by using only one additional pass through the stream and without asymptotically increasing the approximation factor.

Cite as

Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis. Fitting Tree Metrics and Ultrametrics in Data Streams. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 42:1-42:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carmel_et_al:LIPIcs.ICALP.2025.42,
  author =	{Carmel, Amir and Das, Debarati and Kipouridis, Evangelos and Pipis, Evangelos},
  title =	{{Fitting Tree Metrics and Ultrametrics in Data Streams}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{42:1--42:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.42},
  URN =		{urn:nbn:de:0030-drops-234197},
  doi =		{10.4230/LIPIcs.ICALP.2025.42},
  annote =	{Keywords: Streaming, Clustering, Ultrametrics, Tree metrics, Distance fitting}
}
Document
When Distances Lie: Euclidean Embeddings in the Presence of Outliers and Distance Violations

Authors: Matthias Bentert, Fedor V. Fomin, Petr A. Golovach, M. S. Ramanujan, and Saket Saurabh

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Distance geometry explores the properties of distance spaces that can be exactly represented as the pairwise Euclidean distances between points in ℝ^d (d ≥ 1), or equivalently, distance spaces that can be isometrically embedded in ℝ^d. In this work, we investigate whether a distance space can be isometrically embedded in ℝ^d after applying a limited number of modifications. Specifically, we focus on two types of modifications: outlier deletion (removing points) and distance modification (adjusting distances between points). The central problem, Euclidean Embedding Editing, asks whether an input distance space on n points can be transformed, using at most k modifications, into a space that is isometrically embeddable in ℝ^d. We present several fixed-parameter tractable (FPT) and approximation algorithms for this problem. Our first result is an algorithm that solves Euclidean Embedding Editing in time (dk)^𝒪(d+k) + n^𝒪(1). The core subroutine of this algorithm, which is of independent interest, is a polynomial-time method for compressing the input distance space into an equivalent instance of Euclidean Embedding Editing with 𝒪((dk)²) points. For the special but important case of Euclidean Embedding Editing where only outlier deletions are allowed, we improve the parameter dependence of the FPT algorithm and obtain a running time of min{(d+3)^k, 2^{d+k}} ⋅ n^𝒪(1). Additionally, we provide an FPT-approximation algorithm for this problem, which outputs a set of at most 2 ⋅ Opt outliers in time 2^d ⋅ n^{𝒪(1)}. This 2-approximation algorithm improves upon the previous (3+ε)-approximation algorithm by Sidiropoulos, Wang, and Wang [SODA '17]. Furthermore, we complement our algorithms with hardness results motivating our choice of parameterizations.

Cite as

Matthias Bentert, Fedor V. Fomin, Petr A. Golovach, M. S. Ramanujan, and Saket Saurabh. When Distances Lie: Euclidean Embeddings in the Presence of Outliers and Distance Violations. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.SoCG.2025.15,
  author =	{Bentert, Matthias and Fomin, Fedor V. and Golovach, Petr A. and Ramanujan, M. S. and Saurabh, Saket},
  title =	{{When Distances Lie: Euclidean Embeddings in the Presence of Outliers and Distance Violations}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.15},
  URN =		{urn:nbn:de:0030-drops-231672},
  doi =		{10.4230/LIPIcs.SoCG.2025.15},
  annote =	{Keywords: Parameterized Complexity, Euclidean Embedding, FPT-approximation}
}
Document
Space Complexity of Minimum Cut Problems in Single-Pass Streams

Authors: Matthew Ding, Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson, Vihan Shah, and David P. Woodruff

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an Õ(n/ε) space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the Ω(n/ε²) space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of Õ(n/ε) for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is Õ(1), provided that the number of edges in the input graph is at least (n/ε²)^{1+o(1)}. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the exact minimum cut on a simple, unweighted graph using Õ(n) space. Finally, we give an Ω(n/ε²) space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors.

Cite as

Matthew Ding, Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson, Vihan Shah, and David P. Woodruff. Space Complexity of Minimum Cut Problems in Single-Pass Streams. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 43:1-43:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ding_et_al:LIPIcs.ITCS.2025.43,
  author =	{Ding, Matthew and Garces, Alexandro and Li, Jason and Lin, Honghao and Nelson, Jelani and Shah, Vihan and Woodruff, David P.},
  title =	{{Space Complexity of Minimum Cut Problems in Single-Pass Streams}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{43:1--43:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.43},
  URN =		{urn:nbn:de:0030-drops-226714},
  doi =		{10.4230/LIPIcs.ITCS.2025.43},
  annote =	{Keywords: minimum cut, approximate, random order, lower bound}
}
Document
Distributed Branching Random Walks and Their Applications

Authors: Vijeth Aradhya, Seth Gilbert, and Thorsten Götte

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
In recent years, the explosion of big data and analytics has necessitated distributed storage and processing with several compute nodes (e.g., multiple datacenters). These nodes collaboratively perform parallel computation, where the data is typically partitioned across these nodes to ensure scalability, redundancy and load-balancing. But the nodes may not always be co-located; in many cases, they are part of a larger communication network. Since those nodes only need to communicate among themselves, a key challenge is to design efficient routes catered to that subnetwork. In this work, we initiate the study of distributed sampling and routing problems for subnetworks in any well-connected network. Given any network G = (V, E) with mixing time τ_mix, consider the canonical problem of permutation routing [Ghaffari, Kuhn and Su, PODC 2017] that aims to minimize both congestion and dilation of the routes, where the demands (i.e., set of source-terminal pairs) are such that each node sends or receives number of messages proportional to its degree. We show that the permutation routing problem, when demands are restricted to any subset S ⊆ V (i.e., subnetwork), can be solved in exp(O(√(log|S|))) ⋅ Õ(τ_mix) rounds (where Õ(⋅) hides polylogarithmic factors of |V|). This means that the running time depends subpolynomially on the subnetwork size (i.e., not on the entire network size). The ability to solve permutation routing efficiently immediately implies that a large class of parallel algorithms can be simulated efficiently on the subnetwork. As a prerequisite to constructing efficient routes, we design and analyze distributed branching random walks that distribute tokens started by the nodes in the subnetwork. At a high-level, these algorithms operate by always moving each token according to a (lazy) simple random walk, but also branching a token into multiple tokens at some specified intervals; ultimately, if a node starts a branching walk, with its id in a token, then by the end of execution, several tokens with its id would be randomly distributed among the nodes. As these random walks can be started by many nodes, a crucial challenge is to ensure low-congestion, which is a primary focus of this paper.

Cite as

Vijeth Aradhya, Seth Gilbert, and Thorsten Götte. Distributed Branching Random Walks and Their Applications. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aradhya_et_al:LIPIcs.OPODIS.2024.36,
  author =	{Aradhya, Vijeth and Gilbert, Seth and G\"{o}tte, Thorsten},
  title =	{{Distributed Branching Random Walks and Their Applications}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.36},
  URN =		{urn:nbn:de:0030-drops-225723},
  doi =		{10.4230/LIPIcs.OPODIS.2024.36},
  annote =	{Keywords: Distributed Graph Algorithms, Random Walks, Permutation Routing}
}
Document
Track A: Algorithms, Complexity and Games
Sparse Recovery for Orthogonal Polynomial Transforms

Authors: Anna Gilbert, Albert Gu, Christopher Ré, Atri Rudra, and Mary Wootters

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In this paper we consider the following sparse recovery problem. We have query access to a vector 𝐱 ∈ ℝ^N such that x̂ = 𝐅 𝐱 is k-sparse (or nearly k-sparse) for some orthogonal transform 𝐅. The goal is to output an approximation (in an 𝓁₂ sense) to x̂ in sublinear time. This problem has been well-studied in the special case that 𝐅 is the Discrete Fourier Transform (DFT), and a long line of work has resulted in sparse Fast Fourier Transforms that run in time O(k ⋅ polylog N). However, for transforms 𝐅 other than the DFT (or closely related transforms like the Discrete Cosine Transform), the question is much less settled. In this paper we give sublinear-time algorithms - running in time poly(k log(N)) - for solving the sparse recovery problem for orthogonal transforms 𝐅 that arise from orthogonal polynomials. More precisely, our algorithm works for any 𝐅 that is an orthogonal polynomial transform derived from Jacobi polynomials. The Jacobi polynomials are a large class of classical orthogonal polynomials (and include Chebyshev and Legendre polynomials as special cases), and show up extensively in applications like numerical analysis and signal processing. One caveat of our work is that we require an assumption on the sparsity structure of the sparse vector, although we note that vectors with random support have this property with high probability. Our approach is to give a very general reduction from the k-sparse sparse recovery problem to the 1-sparse sparse recovery problem that holds for any flat orthogonal polynomial transform; then we solve this one-sparse recovery problem for transforms derived from Jacobi polynomials. Frequently, sparse FFT algorithms are described as implementing such a reduction; however, the technical details of such works are quite specific to the Fourier transform and moreover the actual implementations of these algorithms do not use the 1-sparse algorithm as a black box. In this work we give a reduction that works for a broad class of orthogonal polynomial families, and which uses any 1-sparse recovery algorithm as a black box.

Cite as

Anna Gilbert, Albert Gu, Christopher Ré, Atri Rudra, and Mary Wootters. Sparse Recovery for Orthogonal Polynomial Transforms. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 58:1-58:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gilbert_et_al:LIPIcs.ICALP.2020.58,
  author =	{Gilbert, Anna and Gu, Albert and R\'{e}, Christopher and Rudra, Atri and Wootters, Mary},
  title =	{{Sparse Recovery for Orthogonal Polynomial Transforms}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{58:1--58:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.58},
  URN =		{urn:nbn:de:0030-drops-124653},
  doi =		{10.4230/LIPIcs.ICALP.2020.58},
  annote =	{Keywords: Orthogonal polynomials, Jacobi polynomials, sublinear algorithms, sparse recovery}
}
Document
Generalized Metric Repair on Graphs

Authors: Chenglin Fan, Anna C. Gilbert, Benjamin Raichel, Rishi Sonthalia, and Gregory Van Buskirk

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
Many modern data analysis algorithms either assume or are considerably more efficient if the distances between the data points satisfy a metric. However, as real data sets are noisy, they often do not possess this fundamental property. For this reason, Gilbert and Jain [A. Gilbert and L. Jain, 2017] and Fan et al. [C. Fan et al., 2018] introduced the closely related sparse metric repair and metric violation distance problems. Given a matrix, representing all distances, the goal is to repair as few entries as possible to ensure they satisfy a metric. This problem was shown to be APX-hard, and an O(OPT^{1/3})-approximation was given, where OPT is the optimal solution size. In this paper, we generalize the problem, by describing distances by a possibly incomplete positively weighted graph, where again our goal is to find the smallest number of weight modifications so that they satisfy a metric. This natural generalization is more flexible as it takes into account different relationships among the data points. We demonstrate the inherent combinatorial structure of the problem, and give an approximation-preserving reduction from MULTICUT, which is hard to approximate within any constant factor assuming UGC. Conversely, we show that for any fixed constant ς, for the large class of ς-chordal graphs, the problem is fixed parameter tractable, answering an open question from previous work. Call a cycle broken if it contains an edge whose weight is larger than the sum of all its other edges, and call the amount of this difference its deficit. We present approximation algorithms, one depending on the maximum number of edges in a broken cycle, and one depending on the number of distinct deficit values, both quantities which may naturally be small. Finally, we give improved analysis of previous algorithms for complete graphs.

Cite as

Chenglin Fan, Anna C. Gilbert, Benjamin Raichel, Rishi Sonthalia, and Gregory Van Buskirk. Generalized Metric Repair on Graphs. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fan_et_al:LIPIcs.SWAT.2020.25,
  author =	{Fan, Chenglin and Gilbert, Anna C. and Raichel, Benjamin and Sonthalia, Rishi and Van Buskirk, Gregory},
  title =	{{Generalized Metric Repair on Graphs}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{25:1--25:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.25},
  URN =		{urn:nbn:de:0030-drops-122727},
  doi =		{10.4230/LIPIcs.SWAT.2020.25},
  annote =	{Keywords: Approximation, FPT, Hardness, Metric Spaces}
}
  • Refine by Type
  • 11 Document/PDF
  • 8 Document/HTML

  • Refine by Publication Year
  • 9 2025
  • 2 2020

  • Refine by Author
  • 1 Alimi, Morteza
  • 1 Aradhya, Vijeth
  • 1 Bentert, Matthias
  • 1 Blanca, Antonio
  • 1 Carmel, Amir
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Sketching and sampling
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Applied computing → Computational biology
  • 1 Mathematics of computing → Coding theory
  • 1 Mathematics of computing → Combinatorial algorithms
  • Show More...

  • Refine by Keyword
  • 1 Approximation
  • 1 Approximation Algorithms
  • 1 Clustering
  • 1 Continual Release
  • 1 Densest Subgraph
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail