12 Search Results for "Hamilton, Matthew"


Document
Algorithmic Hardness of the Partition Function for Nucleic Acid Strands

Authors: Gwendal Ducloz, Ahmed Shalaby, and Damien Woods

Published in: LIPIcs, Volume 347, 31st International Conference on DNA Computing and Molecular Programming (DNA 31) (2025)


Abstract
To understand and engineer biological and artificial nucleic acid systems, algorithms are employed for prediction of secondary structures at thermodynamic equilibrium. Dynamic programming algorithms are used to compute the most favoured, or Minimum Free Energy (MFE), structure, and the Partition Function (PF) - a tool for assigning a probability to any structure. However, in some situations, such as when there are large numbers of strands, or pseudoknotted systems, NP-hardness results show that such algorithms are unlikely, but only for MFE. Curiously, algorithmic hardness results were not shown for PF, leaving two open questions on the complexity of PF for multiple strands and single strands with pseudoknots. The challenge is that while the MFE problem cares only about one, or a few structures, PF is a summation over the entire secondary structure space, giving theorists the vibe that computing PF should not only be as hard as MFE, but should be even harder. We answer both questions. First, we show that computing PF is #P-hard for systems with an unbounded number of strands, answering a question of Condon Hajiaghayi, and Thachuk [DNA27]. Second, for even a single strand, but allowing pseudoknots, we find that PF is #P-hard. Our proof relies on a novel magnification trick that leads to a tightly-woven set of reductions between five key thermodynamic problems: MFE, PF, their decision versions, and #SSEL that counts structures of a given energy. Our reductions show these five problems are fundamentally related for any energy model amenable to magnification. That general classification clarifies the mathematical landscape of nucleic acid energy models and yields several open questions.

Cite as

Gwendal Ducloz, Ahmed Shalaby, and Damien Woods. Algorithmic Hardness of the Partition Function for Nucleic Acid Strands. In 31st International Conference on DNA Computing and Molecular Programming (DNA 31). Leibniz International Proceedings in Informatics (LIPIcs), Volume 347, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ducloz_et_al:LIPIcs.DNA.31.1,
  author =	{Ducloz, Gwendal and Shalaby, Ahmed and Woods, Damien},
  title =	{{Algorithmic Hardness of the Partition Function for Nucleic Acid Strands}},
  booktitle =	{31st International Conference on DNA Computing and Molecular Programming (DNA 31)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-399-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{347},
  editor =	{Schaeffer, Josie and Zhang, Fei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.31.1},
  URN =		{urn:nbn:de:0030-drops-238504},
  doi =		{10.4230/LIPIcs.DNA.31.1},
  annote =	{Keywords: Partition function, minimum free energy, nucleic acid, DNA, RNA, secondary structure, computational complexity, #P-hardness}
}
Document
Tile Blockers as a Simple Motif to Control Self-Assembly: Kinetics and Thermodynamics

Authors: Constantine G. Evans, Angel Cervera Roldan, Trent Rogers, and Damien Woods

Published in: LIPIcs, Volume 347, 31st International Conference on DNA Computing and Molecular Programming (DNA 31) (2025)


Abstract
A fundamental problem in crystallisation, and in molecular tile-based self-assembly in particular, is how to simultaneously control its two main constituent processes: seeded growth and spontaneous nucleation. Often, we desire out-of-equilibrium growth without spontaneous nucleation, which can be achieved through careful calibration of temperature, concentration and experimental time-scale a laborious and overly-sensitive approach. Another technique is to find alternative nucleation-resistant tile designs [Minev et al, 2001]. Rogers, Evans and Woods [In prep] propose blockers: short DNA strands designed to dynamically block DNA tile sides, altering self-assembly dynamics. Experiments showed independent and tunable control on nucleation and growth rates. Here, we provide a theoretical explanation for these surprising results. We formally define the kBlock model where blockers bind to tiles at thermodynamic equilibrium in solution and stochastic kinetics allow self-assembly of a tiled structure. In an intentionally simplified mathematical setting we show that blockers permit reasonable seeded growth rates, akin to a non-blocked tile system at lower tile concentration, crucially giving nucleation rates that are exponentially suppressed. We then implement the kBlock model in a stochastic simulator, with results showing remarkable alignment with oversimplified theory. We provide evidence of blocker-induced tile buffering, where a large reservoir of blocked tiles slowly feeds a small unblocked tile subpopulation which acts like a regular, non-blocked, low tile concentration system, yet is capable of long-term buffered assembly. Finally, and perhaps most satisfyingly, theory and simulations align remarkably well with DNA self-assembly experiments over a wide range of concentrations and temperatures, matching the size of growth temperature windows to within 12%. Blockers are a straightforward solution to the challenging problem of simultaneously and independently controlling growth and nucleation, using a motif compatible with many DNA tile systems.

Cite as

Constantine G. Evans, Angel Cervera Roldan, Trent Rogers, and Damien Woods. Tile Blockers as a Simple Motif to Control Self-Assembly: Kinetics and Thermodynamics. In 31st International Conference on DNA Computing and Molecular Programming (DNA 31). Leibniz International Proceedings in Informatics (LIPIcs), Volume 347, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{evans_et_al:LIPIcs.DNA.31.7,
  author =	{Evans, Constantine G. and Cervera Roldan, Angel and Rogers, Trent and Woods, Damien},
  title =	{{Tile Blockers as a Simple Motif to Control Self-Assembly: Kinetics and Thermodynamics}},
  booktitle =	{31st International Conference on DNA Computing and Molecular Programming (DNA 31)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-399-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{347},
  editor =	{Schaeffer, Josie and Zhang, Fei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.31.7},
  URN =		{urn:nbn:de:0030-drops-238564},
  doi =		{10.4230/LIPIcs.DNA.31.7},
  annote =	{Keywords: Self-assembly, kinetic model, kinetic simulation, thermodynamic prediction}
}
Document
Expressivity of Bisimulation Pseudometrics over Analytic State Spaces

Authors: Daniel Luckhardt, Harsh Beohar, and Clemens Kupke

Published in: LIPIcs, Volume 342, 11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025)


Abstract
A Markov decision process (MDP) is a state-based dynamical system capable of describing probabilistic behaviour with rewards. In this paper, we view MDPs as coalgebras living in the category of analytic spaces, a very general class of measurable spaces. Note that analytic spaces were already studied in the literature on labelled Markov processes and bisimulation relations. Our results are twofold. First, we define bisimulation pseudometrics over such coalgebras using the framework of fibrations. Second, we develop a quantitative modal logic for such coalgebras and prove a quantitative form of Hennessy-Milner theorem in this new setting stating that the bisimulation pseudometric corresponds to the logical distance induced by modal formulae.

Cite as

Daniel Luckhardt, Harsh Beohar, and Clemens Kupke. Expressivity of Bisimulation Pseudometrics over Analytic State Spaces. In 11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 342, pp. 13:1-13:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{luckhardt_et_al:LIPIcs.CALCO.2025.13,
  author =	{Luckhardt, Daniel and Beohar, Harsh and Kupke, Clemens},
  title =	{{Expressivity of Bisimulation Pseudometrics over Analytic State Spaces}},
  booktitle =	{11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025)},
  pages =	{13:1--13:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-383-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{342},
  editor =	{C\^{i}rstea, Corina and Knapp, Alexander},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2025.13},
  URN =		{urn:nbn:de:0030-drops-235727},
  doi =		{10.4230/LIPIcs.CALCO.2025.13},
  annote =	{Keywords: Markov decision process, quantitative Hennessy-Milner theorem}
}
Document
Track A: Algorithms, Complexity and Games
Worst-Case and Average-Case Hardness of Hypercycle and Database Problems

Authors: Cheng-Hao Fu, Andrea Lincoln, and Rene Reyes

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In this paper we present tight lower-bounds and new upper-bounds for hypergraph and database problems. We give tight lower-bounds for finding minimum hypercycles. We give tight lower-bounds for a substantial regime of unweighted hypercycle. We also give a new faster algorithm for longer unweighted hypercycles. We give a worst-case to average-case reduction from detecting a subgraph of a hypergraph in the worst-case to counting subgraphs of hypergraphs in the average-case. We demonstrate two applications of this worst-case to average-case reduction, which result in average-case lower bounds for counting counting hypercycles in random hypergraphs and queries in average-case databases. Our tight upper and lower bounds for hypercycle detection in the worst-case have immediate implications for the average-case via our worst-case to average-case reductions.

Cite as

Cheng-Hao Fu, Andrea Lincoln, and Rene Reyes. Worst-Case and Average-Case Hardness of Hypercycle and Database Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 81:1-81:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2025.81,
  author =	{Fu, Cheng-Hao and Lincoln, Andrea and Reyes, Rene},
  title =	{{Worst-Case and Average-Case Hardness of Hypercycle and Database Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{81:1--81:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.81},
  URN =		{urn:nbn:de:0030-drops-234581},
  doi =		{10.4230/LIPIcs.ICALP.2025.81},
  annote =	{Keywords: Hypergraphs, hypercycles, fine-grained complexity, average-case complexity, databases}
}
Document
Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs

Authors: Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Mark Siggers, Siani Smith, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
For a fixed set H of graphs, a graph G is H-subgraph-free if G does not contain any H ∈ H as a (not necessarily induced) subgraph. A recent framework gives a complete classification on H-subgraph-free graphs (for finite sets H) for problems that are solvable in polynomial time on graph classes of bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under edge subdivision. While a lot of problems satisfy these conditions, there are also many problems that do not satisfy all three conditions and for which the complexity in H-subgraph-free graphs is unknown. We study problems for which only the first two conditions of the framework hold (they are solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs, but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the classification of the complexity of four such problems: Hamilton Cycle, k-Induced Disjoint Paths, C₅-Colouring and Star 3-Colouring. Although we do not complete the classifications, we show that the boundary between polynomial time and NP-complete differs among our problems and also from problems that do satisfy all three conditions of the framework, in particular when we forbid certain subdivisions of the "H"-graph (the graph that looks like the letter "H"). Hence, we exhibit a rich complexity landscape among problems for H-subgraph-free graph classes.

Cite as

Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Mark Siggers, Siani Smith, and Erik Jan van Leeuwen. Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lozin_et_al:LIPIcs.ISAAC.2024.47,
  author =	{Lozin, Vadim and Martin, Barnaby and Pandey, Sukanya and Paulusma, Dani\"{e}l and Siggers, Mark and Smith, Siani and van Leeuwen, Erik Jan},
  title =	{{Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.47},
  URN =		{urn:nbn:de:0030-drops-221747},
  doi =		{10.4230/LIPIcs.ISAAC.2024.47},
  annote =	{Keywords: forbidden subgraph, complexity dichotomy, edge subdivision, treewidth}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Survey
How Does Knowledge Evolve in Open Knowledge Graphs?

Authors: Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Openly available, collaboratively edited Knowledge Graphs (KGs) are key platforms for the collective management of evolving knowledge. The present work aims t o provide an analysis of the obstacles related to investigating and processing specifically this central aspect of evolution in KGs. To this end, we discuss (i) the dimensions of evolution in KGs, (ii) the observability of evolution in existing, open, collaboratively constructed Knowledge Graphs over time, and (iii) possible metrics to analyse this evolution. We provide an overview of relevant state-of-the-art research, ranging from metrics developed for Knowledge Graphs specifically to potential methods from related fields such as network science. Additionally, we discuss technical approaches - and their current limitations - related to storing, analysing and processing large and evolving KGs in terms of handling typical KG downstream tasks.

Cite as

Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs. How Does Knowledge Evolve in Open Knowledge Graphs?. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 11:1-11:59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{polleres_et_al:TGDK.1.1.11,
  author =	{Polleres, Axel and Pernisch, Romana and Bonifati, Angela and Dell'Aglio, Daniele and Dobriy, Daniil and Dumbrava, Stefania and Etcheverry, Lorena and Ferranti, Nicolas and Hose, Katja and Jim\'{e}nez-Ruiz, Ernesto and Lissandrini, Matteo and Scherp, Ansgar and Tommasini, Riccardo and Wachs, Johannes},
  title =	{{How Does Knowledge Evolve in Open Knowledge Graphs?}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{11:1--11:59},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.11},
  URN =		{urn:nbn:de:0030-drops-194855},
  doi =		{10.4230/TGDK.1.1.11},
  annote =	{Keywords: KG evolution, temporal KG, versioned KG, dynamic KG}
}
Document
Survey
Rule Learning over Knowledge Graphs: A Review

Authors: Hong Wu, Zhe Wang, Kewen Wang, Pouya Ghiasnezhad Omran, and Jiangmeng Li

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Compared to black-box neural networks, logic rules express explicit knowledge, can provide human-understandable explanations for reasoning processes, and have found their wide application in knowledge graphs and other downstream tasks. As extracting rules manually from large knowledge graphs is labour-intensive and often infeasible, automated rule learning has recently attracted significant interest, and a number of approaches to rule learning for knowledge graphs have been proposed. This survey aims to provide a review of approaches and a classification of state-of-the-art systems for learning first-order logic rules over knowledge graphs. A comparative analysis of various approaches to rule learning is conducted based on rule language biases, underlying methods, and evaluation metrics. The approaches we consider include inductive logic programming (ILP)-based, statistical path generalisation, and neuro-symbolic methods. Moreover, we highlight important and promising application scenarios of rule learning, such as rule-based knowledge graph completion, fact checking, and applications in other research areas.

Cite as

Hong Wu, Zhe Wang, Kewen Wang, Pouya Ghiasnezhad Omran, and Jiangmeng Li. Rule Learning over Knowledge Graphs: A Review. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{wu_et_al:TGDK.1.1.7,
  author =	{Wu, Hong and Wang, Zhe and Wang, Kewen and Omran, Pouya Ghiasnezhad and Li, Jiangmeng},
  title =	{{Rule Learning over Knowledge Graphs: A Review}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{7:1--7:23},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.7},
  URN =		{urn:nbn:de:0030-drops-194813},
  doi =		{10.4230/TGDK.1.1.7},
  annote =	{Keywords: Rule learning, Knowledge graphs, Link prediction}
}
Document
Real-Time Verification for Distributed Cyber-Physical Systems

Authors: Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and Taylor T. Johnson

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Safety-critical distributed cyber-physical systems (CPSs) have been found in a wide range of applications. Notably, they have displayed a great deal of utility in intelligent transportation, where autonomous vehicles communicate and cooperate with each other via a high-speed communication network. Such systems require an ability to identify maneuvers in real-time that cause dangerous circumstances and ensure the implementation always meets safety-critical requirements. In this paper, we propose a real-time decentralized reachability approach for safety verification of a distributed multi-agent CPS with the underlying assumption that all agents are time-synchronized with a low degree of error. In the proposed approach, each agent periodically computes its local reachable set and exchanges this reachable set with the other agents with the goal of verifying the system safety. Our method, implemented in Java, takes advantages of the timing information and the reachable set information that are available in the exchanged messages to reason about the safety of the whole system in a decentralized manner. Any particular agent can also perform local safety verification tasks based on their local clocks by analyzing the messages it receives. We applied the proposed method to verify, in real-time, the safety properties of a group of quadcopters performing a distributed search mission.

Cite as

Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and Taylor T. Johnson. Real-Time Verification for Distributed Cyber-Physical Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 07:1-07:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{tran_et_al:LITES.8.2.7,
  author =	{Tran, Hoang-Dung and Nguyen, Luan Viet and Musau, Patrick and Xiang, Weiming and Johnson, Taylor T.},
  title =	{{Real-Time Verification for Distributed Cyber-Physical Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{07:1--07:19},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.7},
  URN =		{urn:nbn:de:0030-drops-192994},
  doi =		{10.4230/LITES.8.2.7},
  annote =	{Keywords: Verification, Reachability Analysis, Distributed Cyber-Physical Systems}
}
Document
Small Tile Sets That Compute While Solving Mazes

Authors: Matthew Cook, Tristan Stérin, and Damien Woods

Published in: LIPIcs, Volume 205, 27th International Conference on DNA Computing and Molecular Programming (DNA 27) (2021)


Abstract
We ask the question of how small a self-assembling set of tiles can be yet have interesting computational behaviour. We study this question in a model where supporting walls are provided as an input structure for tiles to grow along: we call it the Maze-Walking Tile Assembly Model. The model has a number of implementation prospects, one being DNA strands that attach to a DNA origami substrate. Intuitively, the model suggests a separation of signal routing and computation: the input structure (maze) supplies a routing diagram, and the programmer’s tile set provides the computational ability. We ask how simple the computational part can be. We give two tiny tile sets that are computationally universal in the Maze-Walking Tile Assembly Model. The first has four tiles and simulates Boolean circuits by directly implementing NAND, NXOR and NOT gates. Our second tile set has 6 tiles and is called the Collatz tile set as it produces patterns found in binary/ternary representations of iterations of the Collatz function. Using computer search we find that the Collatz tile set is expressive enough to encode Boolean circuits using blocks of these patterns. These two tile sets give two different methods to find simple universal tile sets, and provide motivation for using pre-assembled maze structures as circuit wiring diagrams in molecular self-assembly based computing.

Cite as

Matthew Cook, Tristan Stérin, and Damien Woods. Small Tile Sets That Compute While Solving Mazes. In 27th International Conference on DNA Computing and Molecular Programming (DNA 27). Leibniz International Proceedings in Informatics (LIPIcs), Volume 205, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cook_et_al:LIPIcs.DNA.27.8,
  author =	{Cook, Matthew and St\'{e}rin, Tristan and Woods, Damien},
  title =	{{Small Tile Sets That Compute While Solving Mazes}},
  booktitle =	{27th International Conference on DNA Computing and Molecular Programming (DNA 27)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-205-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{205},
  editor =	{Lakin, Matthew R. and \v{S}ulc, Petr},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.27.8},
  URN =		{urn:nbn:de:0030-drops-146758},
  doi =		{10.4230/LIPIcs.DNA.27.8},
  annote =	{Keywords: model of computation, self-assembly, small universal tile set, Boolean circuits, maze-solving}
}
Document
Turning Machines

Authors: Irina Kostitsyna, Cai Wood, and Damien Woods

Published in: LIPIcs, Volume 174, 26th International Conference on DNA Computing and Molecular Programming (DNA 26) (2020)


Abstract
Molecular robotics is challenging, so it seems best to keep it simple. We consider an abstract molecular robotics model based on simple folding instructions that execute asynchronously. Turning Machines are a simple 1D to 2D folding model, also easily generalisable to 2D to 3D folding. A Turning Machine starts out as a line of connected monomers in the discrete plane, each with an associated turning number. A monomer turns relative to its neighbours, executing a unit-distance translation that drags other monomers along with it, and through collective motion the initial set of monomers eventually folds into a programmed shape. We fully characterise the ability of Turning Machines to execute line rotations, and to do so efficiently: computing an almost-full line rotation of 5π/3 radians is possible, yet a full 2π rotation is impossible. We show that such line-rotations represent a fundamental primitive in the model, by using them to efficiently and asynchronously fold arbitrarily large zig-zag-rastered squares and y-monotone shapes.

Cite as

Irina Kostitsyna, Cai Wood, and Damien Woods. Turning Machines. In 26th International Conference on DNA Computing and Molecular Programming (DNA 26). Leibniz International Proceedings in Informatics (LIPIcs), Volume 174, pp. 11:1-11:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kostitsyna_et_al:LIPIcs.DNA.2020.11,
  author =	{Kostitsyna, Irina and Wood, Cai and Woods, Damien},
  title =	{{Turning Machines}},
  booktitle =	{26th International Conference on DNA Computing and Molecular Programming (DNA 26)},
  pages =	{11:1--11:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-163-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{174},
  editor =	{Geary, Cody and Patitz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.2020.11},
  URN =		{urn:nbn:de:0030-drops-129649},
  doi =		{10.4230/LIPIcs.DNA.2020.11},
  annote =	{Keywords: model of computation, molecular robotics, self-assembly, nubot, reconfiguration}
}
Document
Approximating Solution Structure

Authors: Iris van Rooij, Matthew Hamilton, Moritz Müller, and Todd Wareham

Published in: Dagstuhl Seminar Proceedings, Volume 7281, Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs (2007)


Abstract
hen it is hard to compute an optimal solution $y in optsol(x)$ to an instance $x$ of a problem, one may be willing to settle for an efficient algorithm $A$ that computes an approximate solution $A(x)$. The most popular type of approximation algorithm in Computer Science (and indeed many other applications) computes solutions whose value is within some multiplicative factor of the optimal solution value, {em e.g.}, $max(frac{val(A(x))}{optval(x)}, frac{optval(x)}{val(A(x))}) leq h(|x|)$ for some function $h()$. However, an algorithm might also produce a solution whose structure is ``close'' to the structure of an optimal solution relative to a specified solution-distance function $d$, {em i.e.}, $d(A(x), y) leq h(|x|)$ for some $y in optsol(x)$. Such structure-approximation algorithms have applications within Cognitive Science and other areas. Though there is an extensive literature dating back over 30 years on value-approximation, there is to our knowledge no work on general techniques for assessing the structure-(in)approximability of a given problem. In this talk, we describe a framework for investigating the polynomial-time and fixed-parameter structure-(in)approximability of combinatorial optimization problems relative to metric solution-distance functions, {em e.g.}, Hamming distance. We motivate this framework by (1) describing a particular application within Cognitive Science and (2) showing that value-approximability does not necessarily imply structure-approximability (and vice versa). This framework includes definitions of several types of structure approximation algorithms analogous to those studied in value-approximation, as well as structure-approximation problem classes and a structure-approximability-preserving reducibility. We describe a set of techniques for proving the degree of structure-(in)approximability of a given problem, and summarize all known results derived using these techniques. We also list 11 open questions summarizing particularly promising directions for future research within this framework. vspace*{0.15in} oindent (co-presented with Todd Wareham) vspace*{0.15in} jointwork{Hamilton, Matthew; M"{u}ller, Moritz; van Rooij, Iris; Wareham, Todd}

Cite as

Iris van Rooij, Matthew Hamilton, Moritz Müller, and Todd Wareham. Approximating Solution Structure. In Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs. Dagstuhl Seminar Proceedings, Volume 7281, pp. 1-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{vanrooij_et_al:DagSemProc.07281.3,
  author =	{van Rooij, Iris and Hamilton, Matthew and M\"{u}ller, Moritz and Wareham, Todd},
  title =	{{Approximating Solution Structure}},
  booktitle =	{Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs},
  pages =	{1--24},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7281},
  editor =	{Erik Demaine and Gregory Z. Gutin and Daniel Marx and Ulrike Stege},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07281.3},
  URN =		{urn:nbn:de:0030-drops-12345},
  doi =		{10.4230/DagSemProc.07281.3},
  annote =	{Keywords: Approximation Algorithms, Solution Structure}
}
  • Refine by Type
  • 12 Document/PDF
  • 7 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 2 2024
  • 2 2023
  • 1 2022
  • 1 2021
  • Show More...

  • Refine by Author
  • 4 Woods, Damien
  • 2 Hose, Katja
  • 2 Scherp, Ansgar
  • 1 Beohar, Harsh
  • 1 Bonifati, Angela
  • Show More...

  • Refine by Series/Journal
  • 7 LIPIcs
  • 1 LITES
  • 3 TGDK
  • 1 DagSemProc

  • Refine by Classification
  • 3 Theory of computation → Models of computation
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Applied computing → Chemistry
  • Show More...

  • Refine by Keyword
  • 2 model of computation
  • 2 self-assembly
  • 1 #P-hardness
  • 1 Approximation Algorithms
  • 1 Boolean circuits
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail