19 Search Results for "Hoefer, Martin"


Document
Beating Competitive Ratio 4 for Graphic Matroid Secretary

Authors: Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
One of the classic problems in online decision-making is the secretary problem, where the goal is to hire the best secretary out of n rankable applicants or, in a natural extension, to maximize the probability of selecting the largest number from a sequence arriving in random order. Many works have considered generalizations of this problem where one can accept multiple values subject to a combinatorial constraint. The seminal work of Babaioff, Immorlica, Kempe, and Kleinberg (SODA'07, JACM'18) proposed the matroid secretary conjecture, suggesting that there exists an O(1)-competitive algorithm for the matroid constraint, and many works since have attempted to obtain algorithms for both general matroids and specific classes of matroids. The ultimate goal of these results is to obtain an e-competitive algorithm, and the strong matroid secretary conjecture states that this is possible for general matroids. One of the most important classes of matroids is the graphic matroid, where a set of edges in a graph is deemed independent if it contains no cycle. Given the rich combinatorial structure of graphs, obtaining algorithms for these matroids is often seen as a good first step towards solving the problem for general matroids. For matroid secretary, Babaioff et al. (SODA'07, JACM'18) first studied graphic matroid case and obtained a 16-competitive algorithm. Subsequent works have improved the competitive ratio, most recently to 4 by Soto, Turkieltaub, and Verdugo (SODA'18). In this paper, we break the 4-competitive barrier for the problem, obtaining a new algorithm with a competitive ratio of 3.95. For the special case of simple graphs (i.e., graphs that do not contain parallel edges) we further improve this to 3.77. Intuitively, solving the problem for simple graphs is easier as they do not contain cycles of length two. A natural question that arises is whether we can obtain a ratio arbitrarily close to e by assuming the graph has a large enough girth. We answer this question affirmatively, proving that one can obtain a competitive ratio arbitrarily close to e even for constant values of girth, providing further evidence for the strong matroid secretary conjecture. We further show that this bound is tight: for any constant g, one cannot obtain a competitive ratio better than e even if we assume that the input graph has girth at least g. To our knowledge, such a bound was not previously known even for simple graphs.

Cite as

Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski. Beating Competitive Ratio 4 for Graphic Matroid Secretary. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 52:1-52:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ESA.2025.52,
  author =	{Banihashem, Kiarash and Hajiaghayi, MohammadTaghi and Kowalski, Dariusz R. and Krysta, Piotr and Mittal, Danny and Olkowski, Jan},
  title =	{{Beating Competitive Ratio 4 for Graphic Matroid Secretary}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{52:1--52:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.52},
  URN =		{urn:nbn:de:0030-drops-245205},
  doi =		{10.4230/LIPIcs.ESA.2025.52},
  annote =	{Keywords: online algorithms, graphic matroids, secretary problem}
}
Document
Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Authors: Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The current landscape of balanced graph partitioning is divided into high-quality but expensive multilevel algorithms and cheaper approaches with linear running time, such as single-level algorithms and streaming algorithms. We demonstrate how to achieve the best of both worlds with a linear time multilevel algorithm. Multilevel algorithms construct a hierarchy of increasingly smaller graphs by repeatedly contracting clusters of nodes. Our approach preserves their distinct advantage, allowing refinement of the partition over multiple levels with increasing detail. At the same time, we use edge sparsification to guarantee geometric size reduction between the levels and thus linear running time. We provide a proof of the linear running time as well as additional insights into the behavior of multilevel algorithms, showing that graphs with low modularity are most likely to trigger worst-case running time. We evaluate multiple approaches for edge sparsification and integrate our algorithm into the state-of-the-art multilevel partitioner KaMinPar, maintaining its excellent parallel scalability. As demonstrated in detailed experiments, this results in a 1.49× average speedup (up to 4× for some instances) with only 1% loss in solution quality. Moreover, our algorithm clearly outperforms state-of-the-art single-level and streaming approaches.

Cite as

Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier. Linear-Time Multilevel Graph Partitioning via Edge Sparsification. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 32:1-32:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2025.32,
  author =	{Gottesb\"{u}ren, Lars and Maas, Nikolai and Rosch, Dominik and Sanders, Peter and Seemaier, Daniel},
  title =	{{Linear-Time Multilevel Graph Partitioning via Edge Sparsification}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{32:1--32:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.32},
  URN =		{urn:nbn:de:0030-drops-245007},
  doi =		{10.4230/LIPIcs.ESA.2025.32},
  annote =	{Keywords: Graph Partitioning, Graph Algorithms, Linear Time Algorithms, Graph Sparsification}
}
Document
On the Performance of Mildly Greedy Players in k-Coloring Games

Authors: Vittorio Bilò, Andrea D'Ascenzo, Mattia D'Emidio, and Giuseppe F. Italiano

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the performance of mildly greedy players in k-coloring games, a relevant subclass of anti-coordination games. A mildly greedy player is a selfish agent who is willing to deviate from a certain strategy profile only if her payoff improves by a factor of more than ε, for some given ε ≥ 0. In presence of mildly greedy players, stability is captured by the concept of (1+ε)-approximate Nash equilibrium. In this paper, we first show that, for any k-coloring game, the (1+ε)-approximate price of anarchy, i.e., the price of anarchy of (1+ε)-approximate pure Nash equilibria, is at least (k-1)/((k-1)ε +k), and that this bound is tight for any ε ≥ 0. Then, we evaluate the approximation ratio of the solutions achieved after a (1 + ϵ)-approximate one-round walk starting from any initial strategy profile, where a (1 + ϵ)-approximate one-round walk is a sequence of (1 + ε)-approximate best-responses, one for each player. We provide a lower bound of min{(k-2)/k, (k-1)/((k-1)ε+k)} on this ratio, for any ε ≥ 0 and k ≥ 5; for the cases of k = 3 and k = 4, we give finer bounds depending on ε. Our work generalizes the results known for cut games, the special case of k-coloring games restricted to k = 2.

Cite as

Vittorio Bilò, Andrea D'Ascenzo, Mattia D'Emidio, and Giuseppe F. Italiano. On the Performance of Mildly Greedy Players in k-Coloring Games. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.MFCS.2025.21,
  author =	{Bil\`{o}, Vittorio and D'Ascenzo, Andrea and D'Emidio, Mattia and Italiano, Giuseppe F.},
  title =	{{On the Performance of Mildly Greedy Players in k-Coloring Games}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{21:1--21:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-241287},
  doi =		{10.4230/LIPIcs.MFCS.2025.21},
  annote =	{Keywords: Coloring games, (Approximate) Nash Equilibria, Price of Anarchy}
}
Document
Dynamic Debt Swapping in Financial Networks

Authors: Henri Froese, Martin Hoefer, and Lisa Wilhelmi

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
A debt swap is an elementary edge swap in a directed, weighted graph, where two edges with the same weight swap their targets. Debt swaps are a natural and appealing operation in financial networks, in which nodes are banks and edges represent debt contracts. They can improve the clearing payments and the stability of these networks. However, their algorithmic properties are not well-understood. We analyze the computational complexity of debt swapping. Our main interest lies in semi-positive swaps, in which no creditor strictly suffers and at least one strictly profits. These swaps lead to a Pareto-improvement in the entire network. We consider network optimization via sequences of v-improving debt swaps from which a given bank v strictly profits. For ranking-based clearing, we show that every sequence of semi-positive v-improving swaps has polynomial length. In contrast, for arbitrary v-improving swaps, the problem of reaching a network configuration that allows no further swaps is PLS-complete. We identify cases in which short sequences of semi-positive swaps exist even without the v-improving property.

Cite as

Henri Froese, Martin Hoefer, and Lisa Wilhelmi. Dynamic Debt Swapping in Financial Networks. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{froese_et_al:LIPIcs.SAND.2025.2,
  author =	{Froese, Henri and Hoefer, Martin and Wilhelmi, Lisa},
  title =	{{Dynamic Debt Swapping in Financial Networks}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{2:1--2:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.2},
  URN =		{urn:nbn:de:0030-drops-230550},
  doi =		{10.4230/LIPIcs.SAND.2025.2},
  annote =	{Keywords: Debt Swap, Financial Networks, Local Search}
}
Document
Designing Exploration Contracts

Authors: Martin Hoefer, Conrad Schecker, and Kevin Schewior

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We study a natural application of contract design in the context of sequential exploration problems. In our principal-agent setting, a search task is delegated to an agent. The agent performs a sequential exploration of n boxes, suffers the exploration cost for each inspected box, and selects the content (called the prize) of one inspected box as outcome. Agent and principal obtain an individual value based on the selected prize. To influence the search, the principal a-priori designs a contract with a non-negative payment to the agent for each potential prize. The goal of the principal is to maximize her expected reward, i.e., value minus payment. Interestingly, this natural contract scenario shares close relations with the Pandora’s Box problem. We show how to compute optimal contracts for the principal in several scenarios. A popular and important subclass is that of linear contracts, and we show how to compute optimal linear contracts in polynomial time. For general contracts, we obtain optimal contracts under the standard assumption that the agent suffers cost but obtains value only from the transfers by the principal. More generally, for general contracts with non-zero agent values for outcomes we show how to compute an optimal contract in two cases: (1) when each box has only one prize with non-zero value for principal and agent, (2) for i.i.d. boxes with a single prize with positive value for the principal.

Cite as

Martin Hoefer, Conrad Schecker, and Kevin Schewior. Designing Exploration Contracts. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 50:1-50:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hoefer_et_al:LIPIcs.STACS.2025.50,
  author =	{Hoefer, Martin and Schecker, Conrad and Schewior, Kevin},
  title =	{{Designing Exploration Contracts}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{50:1--50:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.50},
  URN =		{urn:nbn:de:0030-drops-228755},
  doi =		{10.4230/LIPIcs.STACS.2025.50},
  annote =	{Keywords: Exploration, Contract Design, Pandora’s Box Problem}
}
Document
Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

Authors: Juho Hirvonen and Sara Ranjbaran

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
Stable matching is a fundamental problem studied both in economics and computer science. The task is to find a matching between two sides of agents that have preferences over who they want to be matched with. A matching is stable if no pair of agents prefer each other over their current matches. The deferred acceptance algorithm of Gale and Shapley solves this problem in polynomial time. Further, it is a mechanism: the proposing side in the algorithm is always incentivised to report their preferences truthfully. The deferred acceptance algorithm has a natural interpretation as a distributed algorithm (and thus a distributed mechanism). However, the algorithm is slow in the worst case and it is known that the stable matching problem cannot be solved efficiently in the distributed setting. In this work we study a natural special case of the stable matching problem where all agents on one of the two sides share common preferences. We show that in this case the deferred acceptance algorithm does yield a fast and truthful distributed mechanism for finding a stable matching. We show how algorithms for sampling random colorings can be used to break ties fairly and extend the results to fractional stable matching.

Cite as

Juho Hirvonen and Sara Ranjbaran. Fast, Fair and Truthful Distributed Stable Matching for Common Preferences. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hirvonen_et_al:LIPIcs.OPODIS.2024.30,
  author =	{Hirvonen, Juho and Ranjbaran, Sara},
  title =	{{Fast, Fair and Truthful Distributed Stable Matching for Common Preferences}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{30:1--30:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.30},
  URN =		{urn:nbn:de:0030-drops-225666},
  doi =		{10.4230/LIPIcs.OPODIS.2024.30},
  annote =	{Keywords: stable matching, deferred acceptance, local algorithm, mechanism design}
}
Document
Optimizing Throughput and Makespan of Queuing Systems by Information Design

Authors: Svenja M. Griesbach, Max Klimm, Philipp Warode, and Theresa Ziemke

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the optimal provision of information for two natural performance measures of queuing systems: throughput and makespan. A set of parallel links (queues) is equipped with deterministic capacities and stochastic offsets where the latter depend on a realized state, and the number of states is assumed to be constant. A continuum of flow particles (agents) arrives at the system at a constant rate. A system operator knows the realization of the state and may (partially) reveal this information via a public signaling scheme to the flow particles. Upon arrival, the flow particles observe the signal issued by the system operator, form an updated belief about the realized state, and decide on which link they use. Inflow into a link exceeding the link’s capacity builds up in a queue that increases the cost (total travel time) on the link. Dynamic inflow rates are in a Bayesian dynamic equilibrium when the expected cost along all links with positive inflow is equal at every point in time and not larger than the expected cost of any unused link. For a given time horizon T, the throughput induced by a signaling scheme is the total volume of flow that leaves the links in the interval [0,T]. The public signaling scheme maximizing the throughput may involve irrational numbers. We provide an additive polynomial time approximation scheme (PTAS) that approximates the optimal throughput by an arbitrary additive constant ε > 0. The algorithm solves a Lagrangian dual of the signaling problem with the Ellipsoid method whose separation oracle is implemented by a cell decomposition technique. We also provide a multiplicative fully polynomial time approximation scheme (FPTAS) that does not rely on strong duality and, thus, allows to compute the optimal signals. It uses a different cell decomposition technique together with a piecewise convex under-estimator of the optimal value function. Finally, we consider the makespan of a Bayesian dynamic equilibrium which is defined as the last point in time when a total given value of flow leaves the system. Using a variational inequality argument, we show that full information revelation is a public signaling scheme that minimizes the makespan.

Cite as

Svenja M. Griesbach, Max Klimm, Philipp Warode, and Theresa Ziemke. Optimizing Throughput and Makespan of Queuing Systems by Information Design. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 62:1-62:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{griesbach_et_al:LIPIcs.ESA.2024.62,
  author =	{Griesbach, Svenja M. and Klimm, Max and Warode, Philipp and Ziemke, Theresa},
  title =	{{Optimizing Throughput and Makespan of Queuing Systems by Information Design}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.62},
  URN =		{urn:nbn:de:0030-drops-211336},
  doi =		{10.4230/LIPIcs.ESA.2024.62},
  annote =	{Keywords: Information Design, Dynamic Flows, Public Signals, Convex Envelope}
}
Document
Track A: Algorithms, Complexity and Games
Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games

Authors: Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand, and Giovanna Varricchio

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A decade ago, Gerhard Woeginger posed an open problem that became well-known as "Woeginger’s Hiking Problem": Consider a group of n people that want to go hiking; everyone expresses preferences over the size of their hiking group in the form of an interval between 1 and n. Is it possible to efficiently assign the n people to a set of hiking subgroups so that every person approves the size of their assigned subgroup? The problem is also known as efficiently deciding if an instance of an anonymous Hedonic Game with interval approval preferences admits a wonderful partition. We resolve the open problem in the affirmative by presenting an O(n⁵) time algorithm for Woeginger’s Hiking Problem. Our solution is based on employing a dynamic programming approach for a specific rectangle stabbing problem from computational geometry. Moreover, we propose natural, more demanding extensions of the problem, e.g., maximizing the number of satisfied participants and variants with single-peaked preferences, and show that they are also efficiently solvable. Last but not least, we employ our solution to efficiently compute a partition that maximizes the egalitarian welfare for anonymous single-peaked Hedonic Games.

Cite as

Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand, and Giovanna Varricchio. Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 48:1-48:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{constantinescu_et_al:LIPIcs.ICALP.2024.48,
  author =	{Constantinescu, Andrei and Lenzner, Pascal and Reiffenh\"{a}user, Rebecca and Schmand, Daniel and Varricchio, Giovanna},
  title =	{{Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{48:1--48:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.48},
  URN =		{urn:nbn:de:0030-drops-201910},
  doi =		{10.4230/LIPIcs.ICALP.2024.48},
  annote =	{Keywords: Algorithmic Game Theory, Dynamic Programming, Anonymous Hedonic Games, Single-Peaked Preferences, Social Optimum, Wonderful Partitions}
}
Document
Algorithms for Claims Trading

Authors: Martin Hoefer, Carmine Ventre, and Lisa Wilhelmi

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The recent banking crisis has again emphasized the importance of understanding and mitigating systemic risk in financial networks. In this paper, we study a market-driven approach to rescue a bank in distress based on the idea of claims trading, a notion defined in Chapter 11 of the U.S. Bankruptcy Code. We formalize the idea in the context of the seminal model of financial networks by Eisenberg and Noe [Eisenberg and Noe, 2001]. For two given banks v and w, we consider the operation that w takes over some claims of v and in return gives liquidity to v (or creditors of v) to ultimately rescue v (or mitigate contagion effects). We study the structural properties and computational complexity of decision and optimization problems for several variants of claims trading. When trading incoming edges of v (i.e., claims for which v is the creditor), we show that there is no trade in which both banks v and w strictly improve their assets. We therefore consider creditor-positive trades, in which v profits strictly and w remains indifferent. For a given set C of incoming edges of v, we provide an efficient algorithm to compute payments by w that result in a creditor-positive trade and maximal assets of v. When the set C must also be chosen, the problem becomes weakly NP-hard. Our main result here is a bicriteria FPTAS to compute an approximate trade, which allows for slightly increased payments by w. The approximate trade results in nearly the optimal amount of assets of v in any exact trade. Our results extend to the case in which banks use general monotone payment functions to settle their debt and the emerging clearing state can be computed efficiently. In contrast, for trading outgoing edges of v (i.e., claims for which v is the debtor), the goal is to maximize the increase in assets for the creditors of v. Notably, for these results the characteristics of the payment functions of the banks are essential. For payments ranking creditors one by one, we show NP-hardness of approximation within a factor polynomial in the network size, in both problem variants when the set of claims C is part of the input or not. Instead, for payments proportional to the value of each debt, our results indicate more favorable conditions.

Cite as

Martin Hoefer, Carmine Ventre, and Lisa Wilhelmi. Algorithms for Claims Trading. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hoefer_et_al:LIPIcs.STACS.2024.42,
  author =	{Hoefer, Martin and Ventre, Carmine and Wilhelmi, Lisa},
  title =	{{Algorithms for Claims Trading}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.42},
  URN =		{urn:nbn:de:0030-drops-197523},
  doi =		{10.4230/LIPIcs.STACS.2024.42},
  annote =	{Keywords: Financial Networks, Claims Trade, Systemic Risk}
}
Document
Threshold Testing and Semi-Online Prophet Inequalities

Authors: Martin Hoefer and Kevin Schewior

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study threshold testing, an elementary probing model with the goal to choose a large value out of n i.i.d. random variables. An algorithm can test each variable X_i once for some threshold t_i, and the test returns binary feedback whether X_i ≥ t_i or not. Thresholds can be chosen adaptively or non-adaptively by the algorithm. Given the results for the tests of each variable, we then select the variable with highest conditional expectation. We compare the expected value obtained by the testing algorithm with expected maximum of the variables. Threshold testing is a semi-online variant of the gambler’s problem and prophet inequalities. Indeed, the optimal performance of non-adaptive algorithms for threshold testing is governed by the standard i.i.d. prophet inequality of approximately 0.745 + o(1) as n → ∞. We show how adaptive algorithms can significantly improve upon this ratio. Our adaptive testing strategy guarantees a competitive ratio of at least 0.869 - o(1). Moreover, we show that there are distributions that admit only a constant ratio c < 1, even when n → ∞. Finally, when each box can be tested multiple times (with n tests in total), we design an algorithm that achieves a ratio of 1 - o(1).

Cite as

Martin Hoefer and Kevin Schewior. Threshold Testing and Semi-Online Prophet Inequalities. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 62:1-62:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hoefer_et_al:LIPIcs.ESA.2023.62,
  author =	{Hoefer, Martin and Schewior, Kevin},
  title =	{{Threshold Testing and Semi-Online Prophet Inequalities}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{62:1--62:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.62},
  URN =		{urn:nbn:de:0030-drops-187159},
  doi =		{10.4230/LIPIcs.ESA.2023.62},
  annote =	{Keywords: Prophet Inequalities, Testing, Stochastic Probing}
}
Document
Computational Social Dynamics (Dagstuhl Seminar 22452)

Authors: Martin Hoefer, Sigal Oren, Roger Wattenhofer, and Giovanna Varricchio

Published in: Dagstuhl Reports, Volume 12, Issue 11 (2023)


Abstract
This report documents the program and outcomes of Dagstuhl Seminar 22452 "Computational Social Dynamics". The seminar addressed social and dynamic problems in the field of algorithmic game theory, and their implications in numerous applications, such as fair division, financial networks, or behavioral game theory. We summarize organizational aspects of the seminar, the talk abstracts, and the problems that were discussed in the open problem sessions.

Cite as

Martin Hoefer, Sigal Oren, Roger Wattenhofer, and Giovanna Varricchio. Computational Social Dynamics (Dagstuhl Seminar 22452). In Dagstuhl Reports, Volume 12, Issue 11, pp. 28-44, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{hoefer_et_al:DagRep.12.11.28,
  author =	{Hoefer, Martin and Oren, Sigal and Wattenhofer, Roger and Varricchio, Giovanna},
  title =	{{Computational Social Dynamics (Dagstuhl Seminar 22452)}},
  pages =	{28--44},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{11},
  editor =	{Hoefer, Martin and Oren, Sigal and Wattenhofer, Roger and Varricchio, Giovanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.11.28},
  URN =		{urn:nbn:de:0030-drops-178346},
  doi =		{10.4230/DagRep.12.11.28},
  annote =	{Keywords: algorithmic game theory, behavioral economics, fair division, financial networks, social networks}
}
Document
Algorithmic Persuasion with Evidence

Authors: Martin Hoefer, Pasin Manurangsi, and Alexandros Psomas

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We consider a game of persuasion with evidence between a sender and a receiver. The sender has private information. By presenting evidence on the information, the sender wishes to persuade the receiver to take a single action (e.g., hire a job candidate, or convict a defendant). The sender’s utility depends solely on whether or not the receiver takes the action. The receiver’s utility depends on both the action as well as the sender’s private information. We study three natural variations. First, we consider sequential equilibria of the game without commitment power. Second, we consider a persuasion variant, where the sender commits to a signaling scheme and then the receiver, after seeing the evidence, takes the action or not. Third, we study a delegation variant, where the receiver first commits to taking the action if being presented certain evidence, and then the sender presents evidence to maximize the probability the action is taken. We study these variants through the computational lens, and give hardness results, optimal approximation algorithms, as well as polynomial-time algorithms for special cases. Among our results is an approximation algorithm that rounds a semidefinite program that might be of independent interest, since, to the best of our knowledge, it is the first such approximation algorithm for a natural problem in algorithmic economics.

Cite as

Martin Hoefer, Pasin Manurangsi, and Alexandros Psomas. Algorithmic Persuasion with Evidence. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hoefer_et_al:LIPIcs.ITCS.2021.3,
  author =	{Hoefer, Martin and Manurangsi, Pasin and Psomas, Alexandros},
  title =	{{Algorithmic Persuasion with Evidence}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.3},
  URN =		{urn:nbn:de:0030-drops-135420},
  doi =		{10.4230/LIPIcs.ITCS.2021.3},
  annote =	{Keywords: Bayesian Persuasion, Semidefinite Programming, Approximation Algorithms}
}
Document
Strategic Payments in Financial Networks

Authors: Nils Bertschinger, Martin Hoefer, and Daniel Schmand

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
In their seminal work on systemic risk in financial markets, Eisenberg and Noe [Larry Eisenberg and Thomas Noe, 2001] proposed and studied a model with n firms embedded into a network of debt relations. We analyze this model from a game-theoretic point of view. Every firm is a rational agent in a directed graph that has an incentive to allocate payments in order to clear as much of its debt as possible. Each edge is weighted and describes a liability between the firms. We consider several variants of the game that differ in the permissible payment strategies. We study the existence and computational complexity of pure Nash and strong equilibria, and we provide bounds on the (strong) prices of anarchy and stability for a natural notion of social welfare. Our results highlight the power of financial regulation - if payments of insolvent firms can be centrally assigned, a socially optimal strong equilibrium can be found in polynomial time. In contrast, worst-case strong equilibria can be a factor of Ω(n) away from optimal, and, in general, computing a best response is an NP-hard problem. For less permissible sets of strategies, we show that pure equilibria might not exist, and deciding their existence as well as computing them if they exist constitute NP-hard problems.

Cite as

Nils Bertschinger, Martin Hoefer, and Daniel Schmand. Strategic Payments in Financial Networks. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bertschinger_et_al:LIPIcs.ITCS.2020.46,
  author =	{Bertschinger, Nils and Hoefer, Martin and Schmand, Daniel},
  title =	{{Strategic Payments in Financial Networks}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.46},
  URN =		{urn:nbn:de:0030-drops-117316},
  doi =		{10.4230/LIPIcs.ITCS.2020.46},
  annote =	{Keywords: Nash Equilibrium, Financial Network, Systemic Risk, Price of Anarchy, Equilibrium Computation}
}
Document
Packing Returning Secretaries

Authors: Martin Hoefer and Lisa Wilhelmi

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We study online secretary problems with returns in combinatorial packing domains with n candidates that arrive sequentially over time in random order. The goal is to accept a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be combined with arbitrary approximation algorithms for the packing domain, even when the total value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm with competitive ratio at least 0.5721 - o(1) for growing n, and an algorithm with ratio at least 0.5459 for all n >= 1. We extend all algorithms and ratios to k >= 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed (returned into the pool). We mainly focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Theta(n log n) is always sufficient. For matroids, we show that the expected number can be reduced to O(r log (n/r)), where r <=n/2 is the minimum of the ranks of matroid and dual matroid. For bipartite matching, we show a bound of O(r log n), where r is the size of the optimum matching. For general packing, we show a lower bound of Omega(n log log n), even when the size of the optimum is r = Theta(log n).

Cite as

Martin Hoefer and Lisa Wilhelmi. Packing Returning Secretaries. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 65:1-65:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{hoefer_et_al:LIPIcs.ISAAC.2018.65,
  author =	{Hoefer, Martin and Wilhelmi, Lisa},
  title =	{{Packing Returning Secretaries}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{65:1--65:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.65},
  URN =		{urn:nbn:de:0030-drops-100133},
  doi =		{10.4230/LIPIcs.ISAAC.2018.65},
  annote =	{Keywords: Secretary Problem, Coupon Collector Problem, Matroids}
}
Document
On Fair Division for Indivisible Items

Authors: Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn

Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)


Abstract
We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes as it receives more items of the same good. The utility of a bundle of items for an agent is the sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does not value additional items. We give a polynomial time approximation algorithm that maximizes Nash social welfare up to a factor of e^{1/{e}} ~~ 1.445. The computed allocation is Pareto-optimal and approximates envy-freeness up to one item up to a factor of 2 + epsilon.

Cite as

Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. On Fair Division for Indivisible Items. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chaudhury_et_al:LIPIcs.FSTTCS.2018.25,
  author =	{Chaudhury, Bhaskar Ray and Cheung, Yun Kuen and Garg, Jugal and Garg, Naveen and Hoefer, Martin and Mehlhorn, Kurt},
  title =	{{On Fair Division for Indivisible Items}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Ganguly, Sumit and Pandya, Paritosh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.25},
  URN =		{urn:nbn:de:0030-drops-99242},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.25},
  annote =	{Keywords: Fair Division, Indivisible Goods, Envy-Free}
}
  • Refine by Type
  • 19 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 3 2024
  • 2 2023
  • 1 2021
  • 1 2020
  • Show More...

  • Refine by Author
  • 13 Hoefer, Martin
  • 3 Wilhelmi, Lisa
  • 2 Garg, Jugal
  • 2 Krysta, Piotr
  • 2 Mehlhorn, Kurt
  • Show More...

  • Refine by Series/Journal
  • 18 LIPIcs
  • 1 DagRep

  • Refine by Classification
  • 4 Theory of computation → Algorithmic game theory and mechanism design
  • 3 Theory of computation → Approximation algorithms analysis
  • 3 Theory of computation → Online algorithms
  • 3 Theory of computation → Theory and algorithms for application domains
  • 2 Networks → Network algorithms
  • Show More...

  • Refine by Keyword
  • 2 Approximation Algorithms
  • 2 Equilibrium Computation
  • 2 Financial Networks
  • 2 Matroids
  • 2 Price of Anarchy
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail