21 Search Results for "Müller, Rudolf"


Document
Research
Distances Between Formal Concept Analysis Structures

Authors: Alexandre Bazin and Giacomo Kahn

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In this paper, we study the notion of distance between the most important structures of formal concept analysis: formal contexts, concept lattices, and implication bases. We first define three families of Minkowski-like distances between these three structures. We then present experiments showing that the correlations of these distances are low and depend on the distance between formal contexts.

Cite as

Alexandre Bazin and Giacomo Kahn. Distances Between Formal Concept Analysis Structures. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 2:1-2:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{bazin_et_al:TGDK.3.2.2,
  author =	{Bazin, Alexandre and Kahn, Giacomo},
  title =	{{Distances Between Formal Concept Analysis Structures}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:18},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.2},
  URN =		{urn:nbn:de:0030-drops-248126},
  doi =		{10.4230/TGDK.3.2.2},
  annote =	{Keywords: Formal Concept Analysis, Implication Base, Concept Lattice, Pattern Mining, Ordinal Data Science}
}
Document
Edge Clique Partition and Cover Beyond Independence

Authors: Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Covering and partitioning the edges of a graph into cliques are classical problems at the intersection of combinatorial optimization and graph theory, having been studied through a range of algorithmic and complexity-theoretic lenses. Despite the well-known fixed-parameter tractability of these problems when parameterized by the total number of cliques, such a parameterization often fails to be meaningful for sparse graphs. In many real-world instances, on the other hand, the minimum number of cliques in an edge cover or partition can be very close to the size of a maximum independent set α(G). Motivated by this observation, we investigate above-α parameterizations of the edge clique cover and partition problems. Concretely, we introduce and study Edge Clique Cover Above Independent Set (ECC/α) and Edge Clique Partition Above Independent Set (ECP/α), where the goal is to cover or partition all edges of a graph using at most α(G) + k cliques, and k is the parameter. Our main results reveal a distinct complexity landscape for the two variants. We show that ECP/α is fixed-parameter tractable, whereas ECC/α is NP-complete for all k ≥ 2, yet can be solved in polynomial time for k ∈ {0,1}. These findings highlight intriguing differences between the two problems when viewed through the lens of parameterization above a natural lower bound. Finally, we demonstrate that ECC/α becomes fixed-parameter tractable when parameterized by k + ω(G), where ω(G) is the size of a maximum clique of the graph G. This result is particularly relevant for sparse graphs, in which ω is typically small. For H-minor free graphs, we design a subexponential algorithm of running time f(H)^√k ⋅ n^𝒪(1).

Cite as

Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Edge Clique Partition and Cover Beyond Independence. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2025.43,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Sagunov, Danil and Simonov, Kirill},
  title =	{{Edge Clique Partition and Cover Beyond Independence}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.43},
  URN =		{urn:nbn:de:0030-drops-245113},
  doi =		{10.4230/LIPIcs.ESA.2025.43},
  annote =	{Keywords: edge clique partition, edge clique cover, independence number, parameterized complexity, above guarantee}
}
Document
The Maximum Clique Problem in a Disk Graph Made Easy

Authors: J. Mark Keil and Debajyoti Mondal

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
A disk graph is an intersection graph of disks in ℝ². Determining the computational complexity of finding a maximum clique in a disk graph is a long-standing open problem. In 1990, Clark, Colbourn, and Johnson gave a polynomial-time algorithm for computing a maximum clique in a unit disk graph. However, finding a maximum clique when disks are of arbitrary size is widely believed to be a challenging open problem. In this paper, we provide a new perspective to examine adjacencies in a disk graph that helps obtain the following results. - We design an 𝒪^*(n^{2k})-time algorithm, where 𝒪^* hides a polynomial factor, to find a maximum clique in a n-vertex disk graph with k different sizes of radii. This is polynomial for every fixed k, and thus settles the open question for the case when k = 2. - Given a set of n unit disks, we show how to compute a maximum clique inside each possible axis-aligned rectangle determined by the disk centers in O(n⁵log n)-time. This is at least a factor of n^{4/3} faster than applying the fastest known algorithm for finding a maximum clique in a unit disk graph for each rectangle independently. - We give an 𝒪^*(n^{2rk})-time algorithm to find a maximum clique in a n-vertex ball graph with k different sizes of radii where the ball centers lie on r parallel planes. This is polynomial for every fixed k and r, and thus contrasts the previously known NP-hardness result for finding a maximum clique in an arbitrary ball graph. - We design an 𝒪^*(n^{2k})-time algorithm to find a maximum clique in the intersection graph of a set S of n L-visible convex polygons, where k is the number of distinct shapes in S. This contrasts the known hardness result on finding a maximum clique in the intersection graph of unit disks and axis-aligned rectangles.

Cite as

J. Mark Keil and Debajyoti Mondal. The Maximum Clique Problem in a Disk Graph Made Easy. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 63:1-63:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{keil_et_al:LIPIcs.SoCG.2025.63,
  author =	{Keil, J. Mark and Mondal, Debajyoti},
  title =	{{The Maximum Clique Problem in a Disk Graph Made Easy}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{63:1--63:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.63},
  URN =		{urn:nbn:de:0030-drops-232155},
  doi =		{10.4230/LIPIcs.SoCG.2025.63},
  annote =	{Keywords: Geometric Intersection Graphs, Disk Graphs, Ball Graphs, Maximum Clique}
}
Document
Polynomials, Divided Differences, and Codes

Authors: S. Venkitesh

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Multiplicity codes (Kopparty et al., J. ACM 2014) are multivariate polynomial codes where the codewords are described by evaluations of polynomials (with a degree bound) and their derivatives up to some order (the multiplicity parameter), on a suitably chosen affine set of points. While efficient decoding algorithms were known in some special cases of point sets, by a reduction to univariate multiplicity codes, a general algorithm for list decoding up to the distance of the code when the point set is an arbitrary finite grid, was obtained only recently (Bhandari et al., IEEE TIT 2023). This required the characteristic of the field to be zero or larger than the degree bound, which is somewhat necessary since list decoding up to distance with small output list size is not possible when the characteristic is significantly smaller than the degree. In this work, we present an alternative construction based on divided differences of polynomials, that conceptually resembles the classical multiplicity codes but has good list decodability "insensitive to the field characteristic". We obtain a simple algorithm that list decodes this code up to distance for arbitrary finite grids over all finite fields. Our construction can also be interpreted as a folded Reed-Muller code, which may be of independent interest.

Cite as

S. Venkitesh. Polynomials, Divided Differences, and Codes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 93:1-93:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{venkitesh:LIPIcs.ITCS.2025.93,
  author =	{Venkitesh, S.},
  title =	{{Polynomials, Divided Differences, and Codes}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{93:1--93:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.93},
  URN =		{urn:nbn:de:0030-drops-227216},
  doi =		{10.4230/LIPIcs.ITCS.2025.93},
  annote =	{Keywords: Error-correcting code, polynomial code, Reed-Solomon code, Reed-Muller code, folded Reed-Solomon code, folded Reed-Muller code, multiplicity code, divided difference, q-derivative, polynomial method, list decoding, list decoding capacity, linear algebraic list decoding}
}
Document
New Direct Sum Tests

Authors: Alek Westover, Edward Yu, and Kai Zhe Zheng

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A function f:[n]^{d} → 𝔽₂ is a direct sum if there are functions L_i:[n] → 𝔽₂ such that f(x) = ∑_i L_i(x_i). In this work we give multiple results related to the property testing of direct sums. Our first result concerns a test proposed by Dinur and Golubev in [Dinur and Golubev, 2019]. We call their test the Diamond test and show that it is indeed a direct sum tester. More specifically, we show that if a function f is ε-far from being a direct sum function, then the Diamond test rejects f with probability at least Ω_{n,ε}(1). Even in the case of n = 2, the Diamond test is, to the best of our knowledge, novel and yields a new tester for the classic property of affinity. Apart from the Diamond test, we also analyze a broad family of direct sum tests, which at a high level, run an arbitrary affinity test on the restriction of f to a random hypercube inside of [n]^d. This family of tests includes the direct sum test analyzed in [Dinur and Golubev, 2019], but does not include the Diamond test. As an application of our result, we obtain a direct sum test which works in the online adversary model of [Iden Kalemaj et al., 2022]. Finally, we also discuss a Fourier analytic interpretation of the diamond tester in the n = 2 case, as well as prove local correction results for direct sum as conjectured by [Dinur and Golubev, 2019].

Cite as

Alek Westover, Edward Yu, and Kai Zhe Zheng. New Direct Sum Tests. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 94:1-94:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{westover_et_al:LIPIcs.ITCS.2025.94,
  author =	{Westover, Alek and Yu, Edward and Zheng, Kai Zhe},
  title =	{{New Direct Sum Tests}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{94:1--94:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.94},
  URN =		{urn:nbn:de:0030-drops-227229},
  doi =		{10.4230/LIPIcs.ITCS.2025.94},
  annote =	{Keywords: Linearity testing, Direct sum, Grids}
}
Document
Academic Track
A View on Vulnerabilites: The Security Challenges of XAI (Academic Track)

Authors: Elisabeth Pachl, Fabian Langer, Thora Markert, and Jeanette Miriam Lorenz

Published in: OASIcs, Volume 126, Symposium on Scaling AI Assessments (SAIA 2024)


Abstract
Modern deep learning methods have long been considered as black-boxes due to their opaque decision-making processes. Explainable Artificial Intelligence (XAI), however, has turned the tables: it provides insight into how these models work, promoting transparency that is crucial for accountability. Yet, recent developments in adversarial machine learning have highlighted vulnerabilities in XAI methods, raising concerns about security, reliability and trustworthiness, particularly in sensitive areas like healthcare and autonomous systems. Awareness of the potential risks associated with XAI is needed as its adoption increases, driven in part by the need to enhance compliance to regulations. This survey provides a holistic perspective on the security and safety landscape surrounding XAI, categorizing research on adversarial attacks against XAI and the misuse of explainability to enhance attacks on AI systems, such as evasion and privacy breaches. Our contribution includes identifying current insecurities in XAI and outlining future research directions in adversarial XAI. This work serves as an accessible foundation and outlook to recognize potential research gaps and define future directions. It identifies data modalities, such as time-series or graph data, and XAI methods that have not been extensively investigated for vulnerabilities in current research.

Cite as

Elisabeth Pachl, Fabian Langer, Thora Markert, and Jeanette Miriam Lorenz. A View on Vulnerabilites: The Security Challenges of XAI (Academic Track). In Symposium on Scaling AI Assessments (SAIA 2024). Open Access Series in Informatics (OASIcs), Volume 126, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pachl_et_al:OASIcs.SAIA.2024.12,
  author =	{Pachl, Elisabeth and Langer, Fabian and Markert, Thora and Lorenz, Jeanette Miriam},
  title =	{{A View on Vulnerabilites: The Security Challenges of XAI}},
  booktitle =	{Symposium on Scaling AI Assessments (SAIA 2024)},
  pages =	{12:1--12:23},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-357-7},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{126},
  editor =	{G\"{o}rge, Rebekka and Haedecke, Elena and Poretschkin, Maximilian and Schmitz, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SAIA.2024.12},
  URN =		{urn:nbn:de:0030-drops-227523},
  doi =		{10.4230/OASIcs.SAIA.2024.12},
  annote =	{Keywords: Explainability, XAI, Transparency, Adversarial Machine Learning, Security, Vulnerabilities}
}
Document
Position
Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors: Bradley P. Allen and Filip Ilievski

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Cite as

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.2.1.5,
  author =	{Allen, Bradley P. and Ilievski, Filip},
  title =	{{Standardizing Knowledge Engineering Practices with a Reference Architecture}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:23},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.5},
  URN =		{urn:nbn:de:0030-drops-198623},
  doi =		{10.4230/TGDK.2.1.5},
  annote =	{Keywords: knowledge engineering, knowledge graphs, quality attributes, software architectures, sociotechnical systems}
}
Document
Vision
Towards Ordinal Data Science

Authors: Gerd Stumme, Dominik Dürrschnabel, and Tom Hanika

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Order is one of the main instruments to measure the relationship between objects in (empirical) data. However, compared to methods that use numerical properties of objects, the amount of ordinal methods developed is rather small. One reason for this is the limited availability of computational resources in the last century that would have been required for ordinal computations. Another reason - particularly important for this line of research - is that order-based methods are often seen as too mathematically rigorous for applying them to real-world data. In this paper, we will therefore discuss different means for measuring and ‘calculating’ with ordinal structures - a specific class of directed graphs - and show how to infer knowledge from them. Our aim is to establish Ordinal Data Science as a fundamentally new research agenda. Besides cross-fertilization with other cornerstone machine learning and knowledge representation methods, a broad range of disciplines will benefit from this endeavor, including, psychology, sociology, economics, web science, knowledge engineering, scientometrics.

Cite as

Gerd Stumme, Dominik Dürrschnabel, and Tom Hanika. Towards Ordinal Data Science. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 6:1-6:39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{stumme_et_al:TGDK.1.1.6,
  author =	{Stumme, Gerd and D\"{u}rrschnabel, Dominik and Hanika, Tom},
  title =	{{Towards Ordinal Data Science}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{6:1--6:39},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.6},
  URN =		{urn:nbn:de:0030-drops-194801},
  doi =		{10.4230/TGDK.1.1.6},
  annote =	{Keywords: Order relation, data science, relational theory of measurement, metric learning, general algebra, lattices, factorization, approximations and heuristics, factor analysis, visualization, browsing, explainability}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{04:1--04:34},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  URN =		{urn:nbn:de:0030-drops-192965},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
Programming Language Constructs Supporting Fault Tolerance

Authors: Christina Houben and Sebastian Houben

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
In order to render software viable for highly safety-critical applications, we describe how to incorporate fault tolerance mechanisms into the real-time programming language PEARL. Therefore, we present, classify, evaluate and illustrate known fault tolerance methods for software. We link them together with the requirements of the international standard IEC 61508-3 for functional safety. We contribute PEARL-2020 programming language constructs for fault tolerance methods that need to be implemented by operating systems, and code-snippets as well as libraries for those independent from runtime systems.

Cite as

Christina Houben and Sebastian Houben. Programming Language Constructs Supporting Fault Tolerance. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 01:1-01:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{houben_et_al:LITES-v003-i001-a001,
  author =	{Houben, Christina and Houben, Sebastian},
  title =	{{Programming Language Constructs Supporting Fault Tolerance}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{01:1--01:20},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a001},
  URN =		{urn:nbn:de:0030-drops-192560},
  doi =		{10.4230/LITES-v003-i001-a001},
  annote =	{Keywords: Fault tolerance, Functional safety, PEARL, Embedded systems, Software engineering}
}
Document
Optimal Mechanisms for Scheduling

Authors: Birgit Heydenreich, Debasis Mishra, Rudolf Müller, and Marc Uetz

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
We study the design of optimal mechanisms in a setting where a service provider needs to schedule a set of non-preemptive jobs, one job at a time. Jobs need to be compensated for waiting, and waiting cost is private information. In this setting, an optimal mechanism is one that induces jobs to report truthfully their waiting cost, while minimizing the total expected compensation cost of the service provider. Here, truthful refers to Bayes-Nash implementability, and assumes that private information is independently drawn from known distributions. We derive closed formulae for the optimal mechanism, and show that it is a modification of Smith’s ratio rule. We also show that it can be implemented in dominant strategies. Our analysis relies on a graph-theoretic interpretation of the incentive compatibility constraints. It parallels the analysis known for auctions with single parameter agents, yet it exhibits some subtle differences. We also consider the multi-dimensional case where also the service times of jobs are private information. We show that for this problem the optimal mechanism generally does not satisfy an independence condition known as IIA, and thus known approaches are doomed to fail.

Cite as

Birgit Heydenreich, Debasis Mishra, Rudolf Müller, and Marc Uetz. Optimal Mechanisms for Scheduling. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{heydenreich_et_al:DagSemProc.10071.7,
  author =	{Heydenreich, Birgit and Mishra, Debasis and M\"{u}ller, Rudolf and Uetz, Marc},
  title =	{{Optimal Mechanisms for Scheduling}},
  booktitle =	{Scheduling},
  pages =	{1--22},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.7},
  URN =		{urn:nbn:de:0030-drops-25401},
  doi =		{10.4230/DagSemProc.10071.7},
  annote =	{Keywords: Optimal Mechanism Design, Scheduling, Job Agents, Smith's Rule}
}
Document
07271 Abstracts Collection – Computational Social Systems and the Internet

Authors: Peter Cramton, Rudolf Müller, Eva Tardos, and Moshe Tennenholtz

Published in: Dagstuhl Seminar Proceedings, Volume 7271, Computational Social Systems and the Internet (2007)


Abstract
From 01.07. to 06.07.2007, the Dagstuhl Seminar 07271 ``Computational Social Systems and the Internet'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available.

Cite as

Peter Cramton, Rudolf Müller, Eva Tardos, and Moshe Tennenholtz. 07271 Abstracts Collection – Computational Social Systems and the Internet. In Computational Social Systems and the Internet. Dagstuhl Seminar Proceedings, Volume 7271, pp. 1-25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{cramton_et_al:DagSemProc.07271.1,
  author =	{Cramton, Peter and M\"{u}ller, Rudolf and Tardos, Eva and Tennenholtz, Moshe},
  title =	{{07271 Abstracts Collection – Computational Social Systems and the Internet }},
  booktitle =	{Computational Social Systems and the Internet},
  pages =	{1--25},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7271},
  editor =	{Peter Cramton and Rudolf M\"{u}ller and Eva Tardos and Moshe Tennenholtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07271.1},
  URN =		{urn:nbn:de:0030-drops-11666},
  doi =		{10.4230/DagSemProc.07271.1},
  annote =	{Keywords: Mechanism Design, Combinatorial Auctions, Social Choice Theory, Behavioral Economics, Computational Game Theory, Social Networks}
}
Document
07271 Summary – Computational Social Systems and the Internet

Authors: Peter Cramton, Rudolf Müller, Eva Tardos, and Moshe Tennenholtz

Published in: Dagstuhl Seminar Proceedings, Volume 7271, Computational Social Systems and the Internet (2007)


Abstract
The seminar "Computational Social Systems and the Internet" facilitated a very fruitful interaction between economists and computer scientists, which intensified the understanding of the other disciplines' tool sets. The seminar helped to pave the way to a unified theory of social systems on the Internet that takes into account both the economic and the computational issues---and their deep interaction.

Cite as

Peter Cramton, Rudolf Müller, Eva Tardos, and Moshe Tennenholtz. 07271 Summary – Computational Social Systems and the Internet. In Computational Social Systems and the Internet. Dagstuhl Seminar Proceedings, Volume 7271, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{cramton_et_al:DagSemProc.07271.2,
  author =	{Cramton, Peter and M\"{u}ller, Rudolf and Tardos, Eva and Tennenholtz, Moshe},
  title =	{{07271 Summary – Computational Social Systems and the Internet }},
  booktitle =	{Computational Social Systems and the Internet},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7271},
  editor =	{Peter Cramton and Rudolf M\"{u}ller and Eva Tardos and Moshe Tennenholtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07271.2},
  URN =		{urn:nbn:de:0030-drops-11642},
  doi =		{10.4230/DagSemProc.07271.2},
  annote =	{Keywords: Mechanism Design, Combinatorial Auctions, Social Choice Theory, Behavioral Economics, Computational Game Theory, Social Networks}
}
Document
Inefficiency of equilibria in query auctions with continuous valuations

Authors: Elena Grigorieva, P. Jean-Jacques Herings, Rudolf Müller, and Dries Vermeulen

Published in: Dagstuhl Seminar Proceedings, Volume 7271, Computational Social Systems and the Internet (2007)


Abstract
We show that, when bidders have continuous valuations, any ex post equilibrium in an ex post individually rational query auction can only be ex post efficient when the running time of the auction is infinite for almost all realizations of valuations of the bidders. In contrast we show that, when we allow for inefficient allocations with arbitrarily small probability, there is a query auction (to be more specific, a bisection auction) that attains this level of approximate efficiency in equilibrium, while additionally the running time of the auction in equilibrium is finite for all realizations of valuations.

Cite as

Elena Grigorieva, P. Jean-Jacques Herings, Rudolf Müller, and Dries Vermeulen. Inefficiency of equilibria in query auctions with continuous valuations. In Computational Social Systems and the Internet. Dagstuhl Seminar Proceedings, Volume 7271, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{grigorieva_et_al:DagSemProc.07271.7,
  author =	{Grigorieva, Elena and Herings, P. Jean-Jacques and M\"{u}ller, Rudolf and Vermeulen, Dries},
  title =	{{Inefficiency of equilibria in query auctions with continuous valuations}},
  booktitle =	{Computational Social Systems and the Internet},
  pages =	{1--9},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7271},
  editor =	{Peter Cramton and Rudolf M\"{u}ller and Eva Tardos and Moshe Tennenholtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07271.7},
  URN =		{urn:nbn:de:0030-drops-11616},
  doi =		{10.4230/DagSemProc.07271.7},
  annote =	{Keywords: Query auctions, ex post equilibrium, efficiency}
}
Document
On Revenue Equivalence in Truthful Mechanisms

Authors: Birgit Heydenreich, Rudolf Müller, Marc Uetz, and Rakesh Vohra

Published in: Dagstuhl Seminar Proceedings, Volume 7271, Computational Social Systems and the Internet (2007)


Abstract
The property of an allocation rule to be implementable in dominant strategies by a unique payment scheme is called revenue equivalence. In this paper we give a characterization of revenue equivalence based on a graph theoretic interpretation of the incentive compatibility constraints. The characterization holds for any (possibly infinite) outcome space and many of the known results about revenue equivalence are immediate consequences.

Cite as

Birgit Heydenreich, Rudolf Müller, Marc Uetz, and Rakesh Vohra. On Revenue Equivalence in Truthful Mechanisms. In Computational Social Systems and the Internet. Dagstuhl Seminar Proceedings, Volume 7271, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{heydenreich_et_al:DagSemProc.07271.11,
  author =	{Heydenreich, Birgit and M\"{u}ller, Rudolf and Uetz, Marc and Vohra, Rakesh},
  title =	{{On Revenue Equivalence in Truthful Mechanisms}},
  booktitle =	{Computational Social Systems and the Internet},
  pages =	{1--4},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7271},
  editor =	{Peter Cramton and Rudolf M\"{u}ller and Eva Tardos and Moshe Tennenholtz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07271.11},
  URN =		{urn:nbn:de:0030-drops-11581},
  doi =		{10.4230/DagSemProc.07271.11},
  annote =	{Keywords: Mechanism Design, Revenue Equivalence, Graph Theory}
}
  • Refine by Type
  • 21 Document/PDF
  • 7 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2024
  • 1 2023
  • 1 2022
  • 1 2016
  • Show More...

  • Refine by Author
  • 11 Müller, Rudolf
  • 3 Heydenreich, Birgit
  • 3 Lehmann, Daniel
  • 3 Sandholm, Tuomas
  • 3 Uetz, Marc
  • Show More...

  • Refine by Series/Journal
  • 4 LIPIcs
  • 1 OASIcs
  • 2 LITES
  • 3 TGDK
  • 1 DagSemRep
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Computing methodologies → Boolean algebra algorithms
  • 1 Computing methodologies → Distributed programming languages
  • 1 Computing methodologies → Inductive logic learning
  • 1 Computing methodologies → Knowledge representation and reasoning
  • Show More...

  • Refine by Keyword
  • 3 Mechanism Design
  • 2 Algorithms
  • 2 Behavioral Economics
  • 2 Combinatorial Auctions
  • 2 Computational Game Theory
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail