32 Search Results for "Robinson, Thomas"


Document
Climate Change: What is Computing’s Responsibility? (Dagstuhl Perspectives Workshop 25122)

Authors: Bran Knowles, Vicki L. Hanson, Christoph Becker, Mike Berners-Lee, Andrew A. Chien, Benoit Combemale, Vlad Coroamă, Koen De Bosschere, Yi Ding, Adrian Friday, Boris Gamazaychikov, Lynda Hardman, Simon Hinterholzer, Mattias Höjer, Lynn Kaack, Lenneke Kuijer, Anne-Laure Ligozat, Jan Tobias Muehlberg, Yunmook Nah, Thomas Olsson, Anne-Cécile Orgerie, Daniel Pargman, Birgit Penzenstadler, Tom Romanoff, Emma Strubell, Colin Venters, and Junhua Zhao

Published in: Dagstuhl Manifestos, Volume 11, Issue 1 (2025)


Abstract
This Manifesto was produced from the Perspectives Workshop 25122 entitled "Climate Change: What is Computing’s Responsibility?" held March 16-19, 2025 at Schloss Dagstuhl, Germany. The Workshop provided a forum for world-leading computer scientists and expert consultants on environmental policy and sustainable transition to engage in a critical and urgent conversation about computing’s responsibilities in addressing climate change - or more aptly, climate crisis. The resulting Manifesto outlines commitments and directions for future action which, if adopted as a basis for more responsible computing practices, will help ensure that these technologies do not threaten the long-term habitability of the planet. We preface our Manifesto with a recognition that humanity is on a path that is not in agreement with international global warming targets and explore how computing technologies are currently hastening the overshoot of these boundaries. We critically assess the vaunted potential for harnessing computing technologies for the mitigation of global warming, agreeing that, under current circumstances, computing is contributing to negative environmental impacts in other sectors. Computing primarily improves efficiency and reduces costs which leads to more consumption and more negative environmental impact. Relying solely on efficiency gains in computing has thus far proven to be insufficient to curb global greenhouse gas emissions. Therefore, computing’s purpose within a strategy for tackling climate change must be reimagined. Our recommendations cover changes that need to be urgently made to the design priorities of computing technologies, but also speak to the more systemic shift in mindset, with sustainability and human rights providing a necessary moral foundation for developing the kinds of computing technologies most needed by society. We also stress the importance of digital policy that accounts for both the direct material impacts of computing and the detrimental indirect impacts arising from computing-enabled efficiencies, and the role of computing professionals in informing policy making.

Cite as

Bran Knowles, Vicki L. Hanson, Christoph Becker, Mike Berners-Lee, Andrew A. Chien, Benoit Combemale, Vlad Coroamă, Koen De Bosschere, Yi Ding, Adrian Friday, Boris Gamazaychikov, Lynda Hardman, Simon Hinterholzer, Mattias Höjer, Lynn Kaack, Lenneke Kuijer, Anne-Laure Ligozat, Jan Tobias Muehlberg, Yunmook Nah, Thomas Olsson, Anne-Cécile Orgerie, Daniel Pargman, Birgit Penzenstadler, Tom Romanoff, Emma Strubell, Colin Venters, and Junhua Zhao. Climate Change: What is Computing’s Responsibility? (Dagstuhl Perspectives Workshop 25122). In Dagstuhl Manifestos, Volume 11, Issue 1, pp. 1-18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{knowles_et_al:DagMan.11.1.1,
  author =	{Knowles, Bran and Hanson, Vicki L. and Becker, Christoph and Berners-Lee, Mike and Chien, Andrew A. and Combemale, Benoit and Coroam\u{a}, Vlad and De Bosschere, Koen and Ding, Yi and Friday, Adrian and Gamazaychikov, Boris and Hardman, Lynda and Hinterholzer, Simon and H\"{o}jer, Mattias and Kaack, Lynn and Kuijer, Lenneke and Ligozat, Anne-Laure and Muehlberg, Jan Tobias and Nah, Yunmook and Olsson, Thomas and Orgerie, Anne-C\'{e}cile and Pargman, Daniel and Penzenstadler, Birgit and Romanoff, Tom and Strubell, Emma and Venters, Colin and Zhao, Junhua},
  title =	{{Climate Change: What is Computing’s Responsibility? (Dagstuhl Perspectives Workshop 25122)}},
  pages =	{1--18},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2025},
  volume =	{11},
  number =	{1},
  editor =	{Knowles, Bran and Hanson, Vicki L. and Becker, Christoph and Berners-Lee, Mike and Chien, Andrew A. and Combemale, Benoit and Coroam\u{a}, Vlad and De Bosschere, Koen and Ding, Yi and Friday, Adrian and Gamazaychikov, Boris and Hardman, Lynda and Hinterholzer, Simon and H\"{o}jer, Mattias and Kaack, Lynn and Kuijer, Lenneke and Ligozat, Anne-Laure and Muehlberg, Jan Tobias and Nah, Yunmook and Olsson, Thomas and Orgerie, Anne-C\'{e}cile and Pargman, Daniel and Penzenstadler, Birgit and Romanoff, Tom and Strubell, Emma and Venters, Colin and Zhao, Junhua},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.11.1.1},
  URN =		{urn:nbn:de:0030-drops-250724},
  doi =		{10.4230/DagMan.11.1.1},
  annote =	{Keywords: sustainability, climate change, efficiency, supply chain management, climate modelling}
}
Document
Research
GraphRAG on Technical Documents - Impact of Knowledge Graph Schema

Authors: Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
Retrieval Augmented Generation (RAG) is seeing rapid adoption in industry to enable employees to query information captured in proprietary data for their organisation. In this work, we test the impact of domain-relevant knowledge graph schemas on the results of Microsoft’s GraphRAG pipeline. Our approach aims to address the poor quality of GraphRAG responses on technical reports rich in domain-specific terms. The use case involves technical reports about geology, chemistry and mineral processing published by the Minerals Research Institute of Western Australia (MRIWA). Four schemas are considered: a simple five-class minerals domain expert-developed schema, an expanded minerals domain schema, the Microsoft GraphRAG auto-generated schema, and a schema-less GraphRAG. These are compared to a conventional baseline RAG. Performance is evaluated using a scoring approach that accounts for the mix of correct, incorrect, additional, and missing content in RAG responses. The results show that the simple five-class minerals domain schema extracts approximately 10% more entities from the MRIWA reports than the other schema options. Additionally, both the five-class and the expanded eight-class minerals domain schemas produce the most factually correct answers and the fewest hallucinations. We attribute this to the minerals-specific schemas extracting more relevant, domain-specific information during the Indexing stage. As a result, the Query stage’s context window includes more high-value content. This contributes to the observed improvement in answer quality compared to the other pipelines. In contrast, pipelines with fewer domain-related entities in the KG retrieve less valuable information, leaving more room for irrelevant content in the context window. Baseline RAG responses were typically shorter, less complete, and contained more hallucinations compared to our GraphRAG pipelines. We provide a complete set of resources at https://github.com/nlp-tlp/GraphRAG-on-Minerals-Domain/tree/main. These resources include links to the MRIWA reports, a set of questions (from simple to challenging) along with domain-expert curated answers, schemas, and evaluations of the pipelines.

Cite as

Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke. GraphRAG on Technical Documents - Impact of Knowledge Graph Schema. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{scaffidi_et_al:TGDK.3.2.3,
  author =	{Scaffidi, Henri and Hodkiewicz, Melinda and Woods, Caitlin and Roocke, Nicole},
  title =	{{GraphRAG on Technical Documents - Impact of Knowledge Graph Schema}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:24},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.3},
  URN =		{urn:nbn:de:0030-drops-248131},
  doi =		{10.4230/TGDK.3.2.3},
  annote =	{Keywords: RAG, minerals, local search, global search, entity extraction, competency questions}
}
Document
Improved Parallel Derandomization via Finite Automata with Applications

Authors: Jeff Giliberti and David G. Harris

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A central approach to algorithmic derandomization is the construction of small-support probability distributions that "fool” randomized algorithms, often enabling efficient parallel (NC) implementations. An abstraction of this idea is fooling polynomial-space statistical tests computed via finite automata [Sivakumar STOC'02]; this encompasses a wide range of properties including k-wise independence and sums of random variables. We present new parallel algorithms to fool finite-state automata, with significantly reduced processor complexity. Briefly, our approach is to iteratively sparsify distributions using a work-efficient lattice rounding routine and maintain accuracy by tracking an aggregate weighted error that is determined by the Lipschitz value of the statistical tests being fooled. We illustrate with improved applications to the Gale-Berlekamp Switching Game and to approximate MAX-CUT via SDP rounding. These involve further several optimizations, such as the truncation of the state space of the automata and FFT-based convolutions to compute transition probabilities efficiently.

Cite as

Jeff Giliberti and David G. Harris. Improved Parallel Derandomization via Finite Automata with Applications. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 70:1-70:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{giliberti_et_al:LIPIcs.ESA.2025.70,
  author =	{Giliberti, Jeff and Harris, David G.},
  title =	{{Improved Parallel Derandomization via Finite Automata with Applications}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{70:1--70:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.70},
  URN =		{urn:nbn:de:0030-drops-245381},
  doi =		{10.4230/LIPIcs.ESA.2025.70},
  annote =	{Keywords: Parallel Algorithms, Derandomization, MAX-CUT, Gale-Berlekamp Switching Game}
}
Document
A Formal Proof of Complexity Bounds on Diophantine Equations

Authors: Jonas Bayer and Marco David

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We present a universal construction of Diophantine equations with bounded complexity in Isabelle/HOL. This is a formalization of our own work in number theory [Jonas Bayer et al., 2025]. Hilbert’s Tenth Problem was answered negatively by Yuri Matiyasevich, who showed that there is no general algorithm to decide whether an arbitrary Diophantine equation has a solution. However, the problem remains open when generalized to the field of rational numbers, or contrarily, when restricted to Diophantine equations with bounded complexity, characterized by the number of variables ν and the degree δ. If every Diophantine set can be represented within the bounds (ν, δ), we say that this pair is universal, and it follows that the corresponding class of equations is undecidable. In a separate mathematics article, we have determined the first non-trivial universal pair for the case of integer unknowns. In this paper, we contribute a formal verification of this new result. In doing so, we markedly extend the Isabelle AFP entry on multivariate polynomials [Christian Sternagel et al., 2010], formalize parts of a number theory textbook [Melvyn B. Nathanson, 1996], and develop classical theory on Diophantine equations [Yuri Matiyasevich and Julia Robinson, 1975] in Isabelle. In addition, our work includes metaprogramming infrastructure designed to efficiently handle complex definitions of multivariate polynomials. Our mathematical draft has been formalized while the mathematical research was ongoing, and benefited largely from the help of the theorem prover. We reflect on how the close collaboration between mathematician and computer is an uncommon but promising modus operandi.

Cite as

Jonas Bayer and Marco David. A Formal Proof of Complexity Bounds on Diophantine Equations. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bayer_et_al:LIPIcs.ITP.2025.3,
  author =	{Bayer, Jonas and David, Marco},
  title =	{{A Formal Proof of Complexity Bounds on Diophantine Equations}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{3:1--3:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.3},
  URN =		{urn:nbn:de:0030-drops-246023},
  doi =		{10.4230/LIPIcs.ITP.2025.3},
  annote =	{Keywords: Diophantine Equations, Hilbert’s Tenth Problem, Isabelle/HOL}
}
Document
An Isabelle/HOL Formalization of Semi-Thue and Conditional Semi-Thue Systems

Authors: Dohan Kim

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We present a formalized framework for semi-Thue and conditional semi-Thue systems for studying monoids and their word problem using the Isabelle/HOL proof assistant. We provide a formalized decision procedure for the word problem of monoids if they are finitely presented by complete semi-Thue systems. In particular, we present a new formalized method for checking confluence using (conditional) critical pairs for certain conditional semi-Thue systems. We propose and formalize an inference system for generating conditional equational theories and Thue congruences using conditional semi-Thue systems. Then we provide a new formalized decision procedure for the word problem of monoids which have finite complete (reductive) conditional presentations.

Cite as

Dohan Kim. An Isabelle/HOL Formalization of Semi-Thue and Conditional Semi-Thue Systems. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kim:LIPIcs.ITP.2025.10,
  author =	{Kim, Dohan},
  title =	{{An Isabelle/HOL Formalization of Semi-Thue and Conditional Semi-Thue Systems}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.10},
  URN =		{urn:nbn:de:0030-drops-246081},
  doi =		{10.4230/LIPIcs.ITP.2025.10},
  annote =	{Keywords: semi-Thue systems, conditional semi-Thue systems, conditional string rewriting, monoids, word problem}
}
Document
Digital Health for Space: Towards Prevention, Training, Empowerment, and Autonomy

Authors: Mario A. Cypko, Ulrich Straube, Russell J. Andrews, and Oliver Amft

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Future long-duration and deep-space missions will rely on digital health technologies to ensure the health and safety of the crew, as well as to enable the required mission autonomy. This position paper redefines the current paradigms of digital health by emphasizing prevention, self-management, and individual empowerment for health as central challenges for both space and terrestrial medicine. We focus on future mission scenarios and highlight the potential of co-evolving digital health and related technologies, particularly sensing, artificial intelligence (AI), and human-computer interaction (HCI), across the continuum of space medicine: from astronaut selection and training to prevention, diagnostics, therapy, rehabilitation, and long-term care. Future digital health technologies can respond to pressing needs arising from limited medical infrastructure, rising care costs, and increasing demands on healthcare systems in space and on Earth. To structure research and development needs, we introduce a framework with four autonomy levels based on mission distance and communication latency (Earth orbit, Lunar Gateway and Moon vicinity, Mars, and deep space) that illustrate how mission context constrains medical support and dictates system requirements. Using the Lunar Orbital Platform-Gateway as a near-future reference, we discuss how growing communication delays demand greater onboard autonomy and new telemedical strategies. Within the proposed framework, we integrate solutions built around AI-supported decision making, multimodal monitoring, and adaptive HCI, which should be co-designed through human-centered methods to form a cohesive health management ecosystem. The framework opens up synergies for proactive and trustworthy health support under isolation and limited ground contact. The paper consolidates current technological readiness and strategic challenges, offering guidance for space health research and policy, with clear translational benefits for terrestrial care delivery.

Cite as

Mario A. Cypko, Ulrich Straube, Russell J. Andrews, and Oliver Amft. Digital Health for Space: Towards Prevention, Training, Empowerment, and Autonomy. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 33:1-33:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cypko_et_al:OASIcs.SpaceCHI.2025.33,
  author =	{Cypko, Mario A. and Straube, Ulrich and Andrews, Russell J. and Amft, Oliver},
  title =	{{Digital Health for Space: Towards Prevention, Training, Empowerment, and Autonomy}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{33:1--33:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.33},
  URN =		{urn:nbn:de:0030-drops-240236},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.33},
  annote =	{Keywords: Digital Health in Space, AI-based Decision Support, Wearable Health Monitoring, Human-Computer Interaction (HCI), Autonomous Medical Systems}
}
Document
On the Effectiveness of Interpreter-Guided Compiler Testing

Authors: Federico Lochbaum and Guillermo Polito

Published in: OASIcs, Volume 134, Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)


Abstract
Guaranteeing that a compiler behaves correctly is a complex task often approached through test generation and fuzzing. Compiler test generation must not only ensure that a compiler generates code that does not break, but also that it implements the programming language semantics. Recently, interpreter-guided test generation has been proposed to test JIT compilers: Concolic-execution on the interpreter yields test cases for the language semantics which are then validated between differential testing of the interpreter and compiler. In previous work, this solution has been shown to find interpreter/compiler differences. However, little has been said about the effectiveness and the solution limits. In this paper we study the behavior of this technique, to shed light on future improvements and research. We experiment with this technique on the JIT compiler for the Pharo programming language, on two different backends: ARMv7 and x86. We explore how effective the solution is in terms of compiler coverage and its limitations, and we discuss how future research can overcome them. Moreover, we investigate how this technique combined with random constraint mutations increases backend compiler coverage.

Cite as

Federico Lochbaum and Guillermo Polito. On the Effectiveness of Interpreter-Guided Compiler Testing. In Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025). Open Access Series in Informatics (OASIcs), Volume 134, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lochbaum_et_al:OASIcs.Programming.2025.20,
  author =	{Lochbaum, Federico and Polito, Guillermo},
  title =	{{On the Effectiveness of Interpreter-Guided Compiler Testing}},
  booktitle =	{Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)},
  pages =	{20:1--20:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-382-9},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{134},
  editor =	{Edwards, Jonathan and Perera, Roly and Petricek, Tomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Programming.2025.20},
  URN =		{urn:nbn:de:0030-drops-243040},
  doi =		{10.4230/OASIcs.Programming.2025.20},
  annote =	{Keywords: Virtual Machines, Concolic Testing, JIT compilers, interpreters, Differential Testing, Constraint Mutations, Compiler Coverage}
}
Document
Efficient Quantum Pseudorandomness from Hamiltonian Phase States

Authors: John Bostanci, Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Quantum pseudorandomness has found applications in many areas of quantum information, ranging from entanglement theory, to models of scrambling phenomena in chaotic quantum systems, and, more recently, in the foundations of quantum cryptography. Kretschmer (TQC '21) showed that both pseudorandom states and pseudorandom unitaries exist even in a world without classical one-way functions. To this day, however, all known constructions require classical cryptographic building blocks which are themselves synonymous with the existence of one-way functions, and which are also challenging to implement on realistic quantum hardware. In this work, we seek to make progress on both of these fronts simultaneously - by decoupling quantum pseudorandomness from classical cryptography altogether. We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem, which is the task of decoding output states of a random instantaneous quantum polynomial-time (IQP) circuit. Hamiltonian phase states can be generated very efficiently using only Hadamard gates, single-qubit Z rotations and CNOT circuits. We show that the hardness of our problem reduces to a worst-case version of the problem, and we provide evidence that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions. We also show information-theoretic hardness when only few copies of HPS are available by proving an approximate t-design property of our ensemble. Finally, we show that our HPS assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives, ranging from pseudorandom states, to quantum pseudoentanglement, to pseudorandom unitaries, and even primitives such as public-key encryption with quantum keys.

Cite as

John Bostanci, Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba. Efficient Quantum Pseudorandomness from Hamiltonian Phase States. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bostanci_et_al:LIPIcs.TQC.2025.9,
  author =	{Bostanci, John and Haferkamp, Jonas and Hangleiter, Dominik and Poremba, Alexander},
  title =	{{Efficient Quantum Pseudorandomness from Hamiltonian Phase States}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.9},
  URN =		{urn:nbn:de:0030-drops-240586},
  doi =		{10.4230/LIPIcs.TQC.2025.9},
  annote =	{Keywords: Quantum pseudorandomness, quantum phase states, quantum cryptography}
}
Document
Which Graph Motif Parameters Count?

Authors: Markus Bläser, Radu Curticapean, Julian Dörfler, and Christian Ikenmeyer

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
For a fixed graph H, the function #Ind(H → ⋆) maps graphs G to the count of induced H-copies in G; this function obviously "counts something" in that it has a combinatorial interpretation. Linear combinations of such functions are called graph motif parameters and have recently received significant attention in counting complexity after a seminal paper by Curticapean, Dell and Marx (STOC'17). We show that, among linear combinations of functions #Ind(H → ⋆) involving only graphs H without isolated vertices, precisely those with positive integer coefficients maintain a combinatorial interpretation. It is important to note that graph motif parameters can be nonnegative for all inputs G, even when some coefficients are negative. Formally, we show that evaluating any graph motif parameter with a negative coefficient is impossible in an oracle variant of #P, where an implicit graph is accessed by oracle queries. Our proof follows the classification of the relativizing closure properties of #P by Hertrampf, Vollmer, and Wagner (SCT'95) and the framework developed by Ikenmeyer and Pak (STOC'22), but our application of the required Ramsey theorem turns out to be more subtle, as graphs do not have the required Ramsey property. Our techniques generalize from graphs to relational structures, including colored graphs. Vastly generalizing this, we introduce motif parameters over categories that count occurrences of sub-objects in the category. We then prove a general dichotomy theorem that characterizes which such parameters have a combinatorial interpretation. Using known results in Ramsey theory for categories, we obtain a dichotomy for motif parameters of finite vector spaces as well as parameter sets.

Cite as

Markus Bläser, Radu Curticapean, Julian Dörfler, and Christian Ikenmeyer. Which Graph Motif Parameters Count?. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{blaser_et_al:LIPIcs.MFCS.2025.23,
  author =	{Bl\"{a}ser, Markus and Curticapean, Radu and D\"{o}rfler, Julian and Ikenmeyer, Christian},
  title =	{{Which Graph Motif Parameters Count?}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.23},
  URN =		{urn:nbn:de:0030-drops-241307},
  doi =		{10.4230/LIPIcs.MFCS.2025.23},
  annote =	{Keywords: Graph motif parameters, Combinatorics, Combinatorial Interpretability}
}
Document
BWT Indexes for Optimal Joins in Graph Databases

Authors: Diego Arroyuelo and Gonzalo Navarro

Published in: OASIcs, Volume 131, The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday (2025)


Abstract
Graph databases represent data as a labeled directed graph, where the labels refer to properties that connect the entities represented by their source and target vertices. Queries feature, most prominently, sets of edges where source, target, and/or label can be variables; each instantiation of the variables where all the edges occur in the graph is a solution to the query. Worst-case-optimal algorithms to solve those queries have been devised, but they pose significant space requirements. This overhead has hindered the adoption of worst-case-optimal algorithms in real systems. We show that a representation of the graph based on the extended BWT (eBWT), where each edge is seen as an independent string of length 3 (source, label, target) supports worst-case-optimal algorithms while using almost no extra space on top of the raw data. We then show how the idea is generalized to the relational model, where the strings can be longer than 3 and several eBWTs are needed to obtain worst-case optimality. The aim to minimize the amount of space in that case leads to consider novel eBWT variants, where columns other than the last can be chosen. Finally, we show how the same graph representation can be used to solve other typical queries, like finding graph paths that match regular expressions.

Cite as

Diego Arroyuelo and Gonzalo Navarro. BWT Indexes for Optimal Joins in Graph Databases. In The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 131, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{arroyuelo_et_al:OASIcs.Manzini.14,
  author =	{Arroyuelo, Diego and Navarro, Gonzalo},
  title =	{{BWT Indexes for Optimal Joins in Graph Databases}},
  booktitle =	{The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday},
  pages =	{14:1--14:19},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-390-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{131},
  editor =	{Ferragina, Paolo and Gagie, Travis and Navarro, Gonzalo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Manzini.14},
  URN =		{urn:nbn:de:0030-drops-239222},
  doi =		{10.4230/OASIcs.Manzini.14},
  annote =	{Keywords: Graph databases, Ring index, extended BWT, compact data structures}
}
Document
Symbolic Conflict Analysis in Pseudo-Boolean Optimization

Authors: Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Rui Zhao

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
In the the last two decades, a lot of effort has been devoted to the development of satisfiability-checking tools for a variety of SAT-related problems. However, most of these tools lack optimization capabilities. That is, instead of finding any solution, one is sometimes interested in a solution that is best according to some criterion. Pseudo-Boolean solvers can be used to deal with optimization by successively solving a series of problems that contain an additional pseudo-Boolean constraint expressing that a better solution is required. A key point for the success of this simple approach is that lemmas that are learned for one problem can be reused for subsequent ones. In this paper we go one step further and show how, by using a simple symbolic conflict analysis procedure, not only can lemmas be reused between problems but also strengthened, thus further pruning the search space traversal. In addition, we show how this technique automatically allows one to infer upper bounds in maximization problems, thus giving an estimation of how far the solver is from finding an optimal solution. Experimental results with our PB solver reveal that (i) this technique is indeed effective in practice, providing important speedups in problems where several solutions are found and (ii) on problems with very few solutions, where the impact of our technique is limited, its overhead is negligible.

Cite as

Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Rui Zhao. Symbolic Conflict Analysis in Pseudo-Boolean Optimization. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nieuwenhuis_et_al:LIPIcs.SAT.2025.23,
  author =	{Nieuwenhuis, Robert and Oliveras, Albert and Rodr{\'\i}guez-Carbonell, Enric and Zhao, Rui},
  title =	{{Symbolic Conflict Analysis in Pseudo-Boolean Optimization}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.23},
  URN =		{urn:nbn:de:0030-drops-237579},
  doi =		{10.4230/LIPIcs.SAT.2025.23},
  annote =	{Keywords: SAT, Pseudo-Boolean Optimization, Conflict Analysis}
}
Document
From Prediction to Precision: Leveraging LLMs for Equitable and Data-Driven Writing Placement in Developmental Education

Authors: Miguel Da Corte and Jorge Baptista

Published in: OASIcs, Volume 135, 14th Symposium on Languages, Applications and Technologies (SLATE 2025)


Abstract
Accurate text classification and placement remain challenges in U.S. higher education, with traditional automated systems like Accuplacer functioning as "black-box" models with limited assessment transparency. This study evaluates Large Language Models (LLMs) as complementary placement tools by comparing their classification performance against a human-rated gold standard and Accuplacer. A 450-essay corpus was classified using Claude, Gemini, GPT-3.5-turbo, and GPT-4o across four prompting strategies: Zero-shot, Few-shot, Enhanced, and Enhanced+ (definitions with examples). Two classification approaches were tested: (i) a 1-step, 3 class classification task, distinguishing DevEd Level 1, DevEd Level 2, and College-level texts in one single run; and (ii) a 2-step classification task, first separating College vs. Non-College texts before further classifying Non-College texts into DevEd sublevels. The results show that structured prompt refinement improves the precision of LLMs' classification, with Claude Enhanced + achieving 62.22% precision (1 step) and Gemini Enhanced + reaching 69.33% (2 step), both surpassing Accuplacer (58.22%). Gemini and Claude also demonstrated strong correlation with human ratings, with Claude achieving the highest Pearson scores (ρ = 0.75; 1-step, ρ = 0.73; 2-step) vs. Accuplacer (ρ = 0.67). While LLMs show promise for DevEd placement, their precision remains a work in progress, highlighting the need for further refinement and safeguards to ensure ethical and equitable placement.

Cite as

Miguel Da Corte and Jorge Baptista. From Prediction to Precision: Leveraging LLMs for Equitable and Data-Driven Writing Placement in Developmental Education. In 14th Symposium on Languages, Applications and Technologies (SLATE 2025). Open Access Series in Informatics (OASIcs), Volume 135, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dacorte_et_al:OASIcs.SLATE.2025.1,
  author =	{Da Corte, Miguel and Baptista, Jorge},
  title =	{{From Prediction to Precision: Leveraging LLMs for Equitable and Data-Driven Writing Placement in Developmental Education}},
  booktitle =	{14th Symposium on Languages, Applications and Technologies (SLATE 2025)},
  pages =	{1:1--1:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-387-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{135},
  editor =	{Baptista, Jorge and Barateiro, Jos\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2025.1},
  URN =		{urn:nbn:de:0030-drops-236817},
  doi =		{10.4230/OASIcs.SLATE.2025.1},
  annote =	{Keywords: Large Language Models (LLMs), Developmental Education (DevEd), writing assessment, text classification, English writing proficiency}
}
Document
Interpolation as Cut-Introduction: On the Computational Content of Craig-Lyndon Interpolation

Authors: Alexis Saurin

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Analyzing Maehara’s method for proving Craig’s interpolation theorem, we extract a "proof relevant" interpolation theorem for first-order LL in the sense that if π is a cut-free sequent proof of A⊢ B, we can find a formula C in the common vocabulary of A and B and proofs π₁,π₂ of A⊢ C and C⊢ B respectively such that π₁ composed with π₂ cut-reduces to π. As a direct corollary, we get similar proof relevant interpolation results for LJ and LK using linear translations. This refined interpolation is then rephrased in terms of a cut-introduction process synthetizing the interpolant. Finally, we analyze the computational content of interpolation by proving an interpolation result for Curien and Herbelin’s Duality of Computation.

Cite as

Alexis Saurin. Interpolation as Cut-Introduction: On the Computational Content of Craig-Lyndon Interpolation. In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 32:1-32:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{saurin:LIPIcs.FSCD.2025.32,
  author =	{Saurin, Alexis},
  title =	{{Interpolation as Cut-Introduction: On the Computational Content of Craig-Lyndon Interpolation}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{32:1--32:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.32},
  URN =		{urn:nbn:de:0030-drops-236478},
  doi =		{10.4230/LIPIcs.FSCD.2025.32},
  annote =	{Keywords: Classical Logic, Interpolation, Cut Elimination, Linear Logic, Sequent calculus, System L}
}
Document
What Does It Take to Certify a Conversion Checker?

Authors: Meven Lennon-Bertrand

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
We report on a detailed exploration of the properties of conversion (definitional equality) in dependent type theory, with the goal of certifying decision procedures for it. While in that context the property of normalisation has attracted the most light, we instead emphasize the importance of injectivity properties, showing that they alone are both crucial and sufficient to certify most desirable properties of conversion checkers. We also explore the certification of a fully untyped conversion checker, with respect to a typed specification, and show that the story is mostly unchanged, although the exact injectivity properties needed are subtly different.

Cite as

Meven Lennon-Bertrand. What Does It Take to Certify a Conversion Checker?. In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 27:1-27:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lennonbertrand:LIPIcs.FSCD.2025.27,
  author =	{Lennon-Bertrand, Meven},
  title =	{{What Does It Take to Certify a Conversion Checker?}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{27:1--27:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.27},
  URN =		{urn:nbn:de:0030-drops-236428},
  doi =		{10.4230/LIPIcs.FSCD.2025.27},
  annote =	{Keywords: Dependent types, Bidirectional typing, Certified software}
}
Document
Track A: Algorithms, Complexity and Games
Shared Randomness Helps with Local Distributed Problems

Authors: Alkida Balliu, Mohsen Ghaffari, Fabian Kuhn, Augusto Modanese, Dennis Olivetti, Mikaël Rabie, Jukka Suomela, and Jara Uitto

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
By prior work, we have many wonderful results related to distributed graph algorithms for problems that can be defined with local constraints; the formal framework used in prior work is locally checkable labeling problems (LCLs), introduced by Naor and Stockmeyer in the 1990s. It is known, for example, that if we have a deterministic algorithm that solves an LCL in o(log n) rounds, we can speed it up to O(log^* n) rounds, and if we have a randomized algorithm that solves an LCL in O(log^* n) rounds, we can derandomize it for free. It is also known that randomness helps with some LCL problems: there are LCL problems with randomized complexity Θ(log log n) and deterministic complexity Θ(log n). However, so far there have not been any LCL problems in which the use of shared randomness has been necessary; in all prior algorithms it has been enough that the nodes have access to their own private sources of randomness. Could it be the case that shared randomness never helps with LCLs? Could we have a general technique that takes any distributed graph algorithm for any LCL that uses shared randomness, and turns it into an equally fast algorithm where private randomness is enough? In this work we show that the answer is no. We present an LCL problem Π such that the round complexity of Π is Ω(√n) in the usual randomized LOCAL model (with private randomness), but if the nodes have access to a source of shared randomness, then the complexity drops to O(log n). As corollaries, we also resolve several other open questions related to the landscape of distributed computing in the context of LCL problems. In particular, problem Π demonstrates that distributed quantum algorithms for LCL problems strictly benefit from a shared quantum state. Problem Π also gives a separation between finitely dependent distributions and non-signaling distributions.

Cite as

Alkida Balliu, Mohsen Ghaffari, Fabian Kuhn, Augusto Modanese, Dennis Olivetti, Mikaël Rabie, Jukka Suomela, and Jara Uitto. Shared Randomness Helps with Local Distributed Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.ICALP.2025.16,
  author =	{Balliu, Alkida and Ghaffari, Mohsen and Kuhn, Fabian and Modanese, Augusto and Olivetti, Dennis and Rabie, Mika\"{e}l and Suomela, Jukka and Uitto, Jara},
  title =	{{Shared Randomness Helps with Local Distributed Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.16},
  URN =		{urn:nbn:de:0030-drops-233931},
  doi =		{10.4230/LIPIcs.ICALP.2025.16},
  annote =	{Keywords: Distributed computing, locally checkable labelings, shared randomness}
}
  • Refine by Type
  • 32 Document/PDF
  • 27 Document/HTML

  • Refine by Publication Year
  • 26 2025
  • 1 2024
  • 2 2023
  • 1 2022
  • 2 2019

  • Refine by Author
  • 3 Dinitz, Michael
  • 2 Chen, Jiaoyan
  • 2 Chlamtáč, Eden
  • 2 Robinson, Thomas
  • 1 Alipour, Sharareh
  • Show More...

  • Refine by Series/Journal
  • 22 LIPIcs
  • 4 OASIcs
  • 1 LITES
  • 4 TGDK
  • 1 DagMan

  • Refine by Classification
  • 3 Theory of computation → Distributed algorithms
  • 2 Applied computing → Life and medical sciences
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Theory of computation
  • 2 Theory of computation → Cryptographic primitives
  • Show More...

  • Refine by Keyword
  • 3 Approximation Algorithms
  • 2 Interpolation
  • 1 (1,2)-TSP
  • 1 AI-based Decision Support
  • 1 Approximations
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail