9 Search Results for "Sikdar, Somnath"


Document
Graph Modification of Bounded Size to Minor-Closed Classes as Fast as Vertex Deletion

Authors: Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A replacement action is a function ℒ that maps each graph H to a collection of graphs of size at most |V(H)|. Given a graph class ℋ, we consider a general family of graph modification problems, called ℒ-Replacement to ℋ, where the input is a graph G and the question is whether it is possible to replace some induced subgraph H₁ of G on at most k vertices by a graph H₂ in ℒ(H₁) so that the resulting graph belongs to ℋ. ℒ-Replacement to ℋ can simulate many graph modification problems including vertex deletion, edge deletion/addition/edition/contraction, vertex identification, subgraph complementation, independent set deletion, (induced) matching deletion/contraction, etc. We present two algorithms. The first one solves ℒ-Replacement to ℋ in time 2^poly(k) ⋅ |V(G)|² for every minor-closed graph class ℋ, where poly is a polynomial whose degree depends on ℋ, under a mild technical condition on ℒ. This generalizes the results of Morelle, Sau, Stamoulis, and Thilikos [ICALP 2020, ICALP 2023] for the particular case of Vertex Deletion to ℋ within the same running time. Our second algorithm is an improvement of the first one when ℋ is the class of graphs embeddable in a surface of Euler genus at most g and runs in time 2^𝒪(k⁹) ⋅ |V(G)|², where the 𝒪(⋅) notation depends on g. To the best of our knowledge, these are the first parameterized algorithms with a reasonable parametric dependence for such a general family of graph modification problems to minor-closed classes.

Cite as

Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Graph Modification of Bounded Size to Minor-Closed Classes as Fast as Vertex Deletion. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{morelle_et_al:LIPIcs.ESA.2025.7,
  author =	{Morelle, Laure and Sau, Ignasi and Thilikos, Dimitrios M.},
  title =	{{Graph Modification of Bounded Size to Minor-Closed Classes as Fast as Vertex Deletion}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.7},
  URN =		{urn:nbn:de:0030-drops-244751},
  doi =		{10.4230/LIPIcs.ESA.2025.7},
  annote =	{Keywords: Graph modification problems, Parameterized complexity, Graph minors, Flat Wall theorem, Irrelevant vertex technique, Algorithmic meta-theorem, Parametric dependence, Dynamic programming}
}
Document
The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration

Authors: Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A dominating set of a graph G = (V,E) is a set of vertices D ⊆ V whose closed neighborhood is V, i.e., N[D] = V. We view a dominating set as a collection of tokens placed on the vertices of D. In the token sliding variant of the Dominating Set Reconfiguration problem (TS-DSR), we seek to transform a source dominating set into a target dominating set in G by sliding tokens along edges, and while maintaining a dominating set all along the transformation. TS-DSR is known to be PSPACE-complete even restricted to graphs of pathwidth w, for some non-explicit constant w and to be XL-complete parameterized by the size k of the solution. The first contribution of this article consists in using a novel approach to provide the first explicit constant for which the TS-DSR problem is PSPACE-complete, a question that was left open in the literature. From a parameterized complexity perspective, the token jumping variant of DSR, i.e., where tokens can jump to arbitrary vertices, is known to be FPT when parameterized by the size of the dominating sets on nowhere dense classes of graphs. But, in contrast, no non-trivial result was known about TS-DSR. We prove that DSR is actually much harder in the sliding model since it is XL-complete when restricted to bounded pathwidth graphs and even when parameterized by k plus the feedback vertex set number of the graph. This gives, for the first time, a difference of behavior between the complexity under token sliding and token jumping for some problem on graphs of bounded treewidth. All our results are obtained using a brand new method, based on the hardness of the so-called Tape Reconfiguration problem, a problem we believe to be of independent interest. We complement these hardness results with a positive result showing that DSR (parameterized by k) in the sliding model is FPT on planar graphs, also answering an open problem from the literature.

Cite as

Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron. The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ESA.2025.29,
  author =	{Bousquet, Nicolas and Deschamps, Quentin and Mary, Arnaud and Mouawad, Amer E. and Pierron, Th\'{e}o},
  title =	{{The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.29},
  URN =		{urn:nbn:de:0030-drops-244974},
  doi =		{10.4230/LIPIcs.ESA.2025.29},
  annote =	{Keywords: combinatorial reconfiguration, parameterized complexity, structural graph parameters, treewidth, dominating set}
}
Document
Routing Few Robots in a Crowded Network

Authors: Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, Dominik Leko, and M. S. Ramanujan

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
In Graph Coordinated Motion Planning, we are given a graph G some of whose vertices are occupied by robots, and we are asked to route k marked robots to their destinations while avoiding collisions and without exceeding a given budget 𝓁 on the number of robot moves. We continue the recent investigation of the problem [ICALP 2024], focusing on the parameter k that captures the task of routing a small number of robots in a possibly crowded graph. We prove that the problem is W[1]-hard parameterized by 𝓁 even for k = 1, but fixed-parameter tractable parameterized by k plus the treedepth of G. We complement the latter algorithm with an NP-hardness reduction which shows that both parameters are necessary to achieve tractability.

Cite as

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, Dominik Leko, and M. S. Ramanujan. Routing Few Robots in a Crowded Network. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{deligkas_et_al:LIPIcs.WADS.2025.20,
  author =	{Deligkas, Argyrios and Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Leko, Dominik and Ramanujan, M. S.},
  title =	{{Routing Few Robots in a Crowded Network}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.20},
  URN =		{urn:nbn:de:0030-drops-242516},
  doi =		{10.4230/LIPIcs.WADS.2025.20},
  annote =	{Keywords: graph coordinated motion planning, parameterized complexity, treedepth}
}
Document
Solving Partial Dominating Set and Related Problems Using Twin-Width

Authors: Jakub Balabán, Daniel Mock, and Peter Rossmanith

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Partial vertex cover and partial dominating set are two well-investigated optimization problems. While they are W[1]-hard on general graphs, they have been shown to be fixed-parameter tractable on many sparse graph classes, including nowhere-dense classes. In this paper, we demonstrate that these problems are also fixed-parameter tractable with respect to the twin-width of a graph. Indeed, we establish a more general result: every graph property that can be expressed by a logical formula of the form ϕ≡∃ x₁⋯ ∃ x_k ∑_{α ∈ I} #y ψ_α(x₁,…,x_k,y) ≥ t, where ψ_α is a quantifier-free formula for each α ∈ I, t is an arbitrary number, and #y is a counting quantifier, can be evaluated in time f(d,k)n, where n is the number of vertices and d is the width of a contraction sequence that is part of the input. In addition to the aforementioned problems, this includes also connected partial dominating set and independent partial dominating set.

Cite as

Jakub Balabán, Daniel Mock, and Peter Rossmanith. Solving Partial Dominating Set and Related Problems Using Twin-Width. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.MFCS.2025.13,
  author =	{Balab\'{a}n, Jakub and Mock, Daniel and Rossmanith, Peter},
  title =	{{Solving Partial Dominating Set and Related Problems Using Twin-Width}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.13},
  URN =		{urn:nbn:de:0030-drops-241203},
  doi =		{10.4230/LIPIcs.MFCS.2025.13},
  annote =	{Keywords: Partial Dominating Set, Partial Vertex Cover, meta-algorithm, counting logic, twin-width}
}
Document
Enumeration of Minimal Hitting Sets Parameterized by Treewidth

Authors: Batya Kenig and Dan Shlomo Mizrahi

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Enumerating the minimal hitting sets of a hypergraph is a problem which arises in many data management applications that include constraint mining, discovering unique column combinations, and enumerating database repairs. Previously, Eiter et al. [Thomas Eiter et al., 2003] showed that the minimal hitting sets of an n-vertex hypergraph, with treewidth w, can be enumerated with delay O^*(n^w) (ignoring polynomial factors), with space requirements that scale with the output size. We improve this to fixed-parameter-linear delay, following an FPT preprocessing phase. The memory consumption of our algorithm is exponential with respect to the treewidth of the hypergraph.

Cite as

Batya Kenig and Dan Shlomo Mizrahi. Enumeration of Minimal Hitting Sets Parameterized by Treewidth. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kenig_et_al:LIPIcs.ICDT.2025.8,
  author =	{Kenig, Batya and Mizrahi, Dan Shlomo},
  title =	{{Enumeration of Minimal Hitting Sets Parameterized by Treewidth}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.8},
  URN =		{urn:nbn:de:0030-drops-229498},
  doi =		{10.4230/LIPIcs.ICDT.2025.8},
  annote =	{Keywords: Enumeration, Hitting sets}
}
Document
Residue Domination in Bounded-Treewidth Graphs

Authors: Jakob Greilhuber, Philipp Schepper, and Philip Wellnitz

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
For the vertex selection problem (σ,ρ)-DomSet one is given two fixed sets σ and ρ of integers and the task is to decide whether we can select vertices of the input graph such that, for every selected vertex, the number of selected neighbors is in σ and, for every unselected vertex, the number of selected neighbors is in ρ [Telle, Nord. J. Comp. 1994]. This framework covers many fundamental graph problems such as Independent Set and Dominating Set. We significantly extend the recent result by Focke et al. [SODA 2023] to investigate the case when σ and ρ are two (potentially different) residue classes modulo m ≥ 2. We study the problem parameterized by treewidth and present an algorithm that solves in time m^tw ⋅ n^O(1) the decision, minimization and maximization version of the problem. This significantly improves upon the known algorithms where for the case m ≥ 3 not even an explicit running time is known. We complement our algorithm by providing matching lower bounds which state that there is no (m-ε)^pw ⋅ n^O(1)-time algorithm parameterized by pathwidth pw, unless SETH fails. For m = 2, we extend these bounds to the minimization version as the decision version is efficiently solvable.

Cite as

Jakob Greilhuber, Philipp Schepper, and Philip Wellnitz. Residue Domination in Bounded-Treewidth Graphs. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 41:1-41:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{greilhuber_et_al:LIPIcs.STACS.2025.41,
  author =	{Greilhuber, Jakob and Schepper, Philipp and Wellnitz, Philip},
  title =	{{Residue Domination in Bounded-Treewidth Graphs}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{41:1--41:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.41},
  URN =		{urn:nbn:de:0030-drops-228675},
  doi =		{10.4230/LIPIcs.STACS.2025.41},
  annote =	{Keywords: Parameterized Complexity, Treewidth, Generalized Dominating Set, Strong Exponential Time Hypothesis}
}
Document
Kernelization and Sparseness: the Case of Dominating Set

Authors: Pål Grønås Drange, Markus Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar

Published in: LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)


Abstract
We prove that for every positive integer r and for every graph class G of bounded expansion, the r-DOMINATING SET problem admits a linear kernel on graphs from G. Moreover, in the more general case when G is only assumed to be nowhere dense, we give an almost linear kernel on G for the classic DOMINATING SET problem, i.e., for the case r=1. These results generalize a line of previous research on finding linear kernels for DOMINATING SET and r-DOMINATING SET (Alber et al., JACM 2004, Bodlaender et al., FOCS 2009, Fomin et al., SODA 2010, Fomin et al., SODA 2012, Fomin et al., STACS 2013). However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related CONNECTED DOMINATING SET problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on H-topological-minor-free graphs (Fomin et al., STACS 2013). Also, we prove that for any somewhere dense class G, there is some r for which r-DOMINATING SET is W[2]-hard on G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of r-DOMINATING SET on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.

Cite as

Pål Grønås Drange, Markus Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and Sparseness: the Case of Dominating Set. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{drange_et_al:LIPIcs.STACS.2016.31,
  author =	{Drange, P\r{a}l Gr{\o}n\r{a}s and Dregi, Markus and Fomin, Fedor V. and Kreutzer, Stephan and Lokshtanov, Daniel and Pilipczuk, Marcin and Pilipczuk, Michal and Reidl, Felix and S\'{a}nchez Villaamil, Fernando and Saurabh, Saket and Siebertz, Sebastian and Sikdar, Somnath},
  title =	{{Kernelization and Sparseness: the Case of Dominating Set}},
  booktitle =	{33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
  pages =	{31:1--31:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-001-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{47},
  editor =	{Ollinger, Nicolas and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.31},
  URN =		{urn:nbn:de:0030-drops-57327},
  doi =		{10.4230/LIPIcs.STACS.2016.31},
  annote =	{Keywords: kernelization, dominating set, bounded expansion, nowhere dense}
}
Document
Fast Biclustering by Dual Parameterization

Authors: Pål Grønås Drange, Felix Reidl, Fernando Sánchez Villaamil, and Somnath Sikdar

Published in: LIPIcs, Volume 43, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)


Abstract
We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time O(2^{3*sqrt(pk)} + n + m) for p-Starforest Editing and O(2^{O(p * sqrt(k) * log(pk))} + n + m) for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for a fixed number of clusters, since p is then considered a constant. Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.

Cite as

Pål Grønås Drange, Felix Reidl, Fernando Sánchez Villaamil, and Somnath Sikdar. Fast Biclustering by Dual Parameterization. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 402-413, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{drange_et_al:LIPIcs.IPEC.2015.402,
  author =	{Drange, P\r{a}l Gr{\o}n\r{a}s and Reidl, Felix and S\'{a}nchez Villaamil, Fernando and Sikdar, Somnath},
  title =	{{Fast Biclustering by Dual Parameterization}},
  booktitle =	{10th International Symposium on Parameterized and Exact Computation (IPEC 2015)},
  pages =	{402--413},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-92-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{43},
  editor =	{Husfeldt, Thore and Kanj, Iyad},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.402},
  URN =		{urn:nbn:de:0030-drops-56004},
  doi =		{10.4230/LIPIcs.IPEC.2015.402},
  annote =	{Keywords: graph editing, subexponential algorithms, parameterized complexity}
}
Document
Lower Bounds on the Complexity of MSO_1 Model-Checking

Authors: Robert Ganian, Petr Hlineny, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and Somnath Sikdar

Published in: LIPIcs, Volume 14, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)


Abstract
One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (MSO2) is decidable in linear time on any class of graphs of bounded tree-width. In the parlance of parameterized complexity, this means that MSO2 model-checking is fixed-parameter tractable with respect to the tree-width as parameter. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound---that MSO2 model-checking is not even in XP wrt the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari, (1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening a recent result, we show that no subdigraph-monotone measure can be algorithmically useful, unless it is within a poly-logarithmic factor of (undirected) tree-width.

Cite as

Robert Ganian, Petr Hlineny, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and Somnath Sikdar. Lower Bounds on the Complexity of MSO_1 Model-Checking. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 326-337, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.STACS.2012.326,
  author =	{Ganian, Robert and Hlineny, Petr and Langer, Alexander and Obdr\v{z}\'{a}lek, Jan and Rossmanith, Peter and Sikdar, Somnath},
  title =	{{Lower Bounds on the Complexity of MSO\underline1 Model-Checking}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{326--337},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{D\"{u}rr, Christoph and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.326},
  URN =		{urn:nbn:de:0030-drops-34185},
  doi =		{10.4230/LIPIcs.STACS.2012.326},
  annote =	{Keywords: Monadic Second-Order Logic, Treewidth, Lower Bounds, Exponential Time Hypothesis, Parameterized Complexity}
}
  • Refine by Type
  • 9 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2016
  • 1 2015
  • 1 2012

  • Refine by Author
  • 3 Sikdar, Somnath
  • 2 Drange, Pål Grønås
  • 2 Ganian, Robert
  • 2 Reidl, Felix
  • 2 Rossmanith, Peter
  • Show More...

  • Refine by Series/Journal
  • 9 LIPIcs

  • Refine by Classification
  • 5 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Enumeration
  • 1 Theory of computation → Finite Model Theory

  • Refine by Keyword
  • 3 parameterized complexity
  • 2 Parameterized Complexity
  • 2 Treewidth
  • 2 dominating set
  • 1 Algorithmic meta-theorem
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail