37 Search Results for "Torunczyk, Szymon"


Document
The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration

Authors: Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A dominating set of a graph G = (V,E) is a set of vertices D ⊆ V whose closed neighborhood is V, i.e., N[D] = V. We view a dominating set as a collection of tokens placed on the vertices of D. In the token sliding variant of the Dominating Set Reconfiguration problem (TS-DSR), we seek to transform a source dominating set into a target dominating set in G by sliding tokens along edges, and while maintaining a dominating set all along the transformation. TS-DSR is known to be PSPACE-complete even restricted to graphs of pathwidth w, for some non-explicit constant w and to be XL-complete parameterized by the size k of the solution. The first contribution of this article consists in using a novel approach to provide the first explicit constant for which the TS-DSR problem is PSPACE-complete, a question that was left open in the literature. From a parameterized complexity perspective, the token jumping variant of DSR, i.e., where tokens can jump to arbitrary vertices, is known to be FPT when parameterized by the size of the dominating sets on nowhere dense classes of graphs. But, in contrast, no non-trivial result was known about TS-DSR. We prove that DSR is actually much harder in the sliding model since it is XL-complete when restricted to bounded pathwidth graphs and even when parameterized by k plus the feedback vertex set number of the graph. This gives, for the first time, a difference of behavior between the complexity under token sliding and token jumping for some problem on graphs of bounded treewidth. All our results are obtained using a brand new method, based on the hardness of the so-called Tape Reconfiguration problem, a problem we believe to be of independent interest. We complement these hardness results with a positive result showing that DSR (parameterized by k) in the sliding model is FPT on planar graphs, also answering an open problem from the literature.

Cite as

Nicolas Bousquet, Quentin Deschamps, Arnaud Mary, Amer E. Mouawad, and Théo Pierron. The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ESA.2025.29,
  author =	{Bousquet, Nicolas and Deschamps, Quentin and Mary, Arnaud and Mouawad, Amer E. and Pierron, Th\'{e}o},
  title =	{{The Tape Reconfiguration Problem and Its Consequences for Dominating Set Reconfiguration}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.29},
  URN =		{urn:nbn:de:0030-drops-244974},
  doi =		{10.4230/LIPIcs.ESA.2025.29},
  annote =	{Keywords: combinatorial reconfiguration, parameterized complexity, structural graph parameters, treewidth, dominating set}
}
Document
Near-Optimal Vertex Fault-Tolerant Labels for Steiner Connectivity

Authors: Koustav Bhanja and Asaf Petruschka

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present a compact labeling scheme for determining whether a designated set of terminals in a graph remains connected after any f (or less) vertex failures occur. An f-FT Steiner connectivity labeling scheme for an n-vertex graph G = (V,E) with terminal set U ⊆ V provides labels to the vertices of G, such that given only the labels of any subset F ⊆ V with |F| ≤ f, one can determine if U remains connected in G-F. The main complexity measure is the maximum label length. The special case U = V of global connectivity has been recently studied by Jiang, Parter, and Petruschka [Yonggang Jiang et al., 2025], who provided labels of n^{1-1/f} ⋅ poly(f,log n) bits. This is near-optimal (up to poly(f,log n) factors) by a lower bound of Long, Pettie and Saranurak [Yaowei Long et al., 2025]. Our scheme achieves labels of |U|^{1-1/f} ⋅ poly(f, log n) for general U ⊆ V, which is near-optimal for any given size |U| of the terminal set. To handle terminal sets, our approach differs from [Yonggang Jiang et al., 2025]. We use a well-structured Steiner tree for U produced by a decomposition theorem of Duan and Pettie [Ran Duan and Seth Pettie, 2020], and bypass the need for Nagamochi-Ibaraki sparsification [Hiroshi Nagamochi and Toshihide Ibaraki, 1992].

Cite as

Koustav Bhanja and Asaf Petruschka. Near-Optimal Vertex Fault-Tolerant Labels for Steiner Connectivity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 44:1-44:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhanja_et_al:LIPIcs.ESA.2025.44,
  author =	{Bhanja, Koustav and Petruschka, Asaf},
  title =	{{Near-Optimal Vertex Fault-Tolerant Labels for Steiner Connectivity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{44:1--44:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.44},
  URN =		{urn:nbn:de:0030-drops-245123},
  doi =		{10.4230/LIPIcs.ESA.2025.44},
  annote =	{Keywords: Fault Tolerance, Labeling Schemes, Steiner Connectivity}
}
Document
APPROX
A Polynomial-Time Approximation Algorithm for Complete Interval Minors

Authors: Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
As shown by Robertson and Seymour, deciding whether the complete graph K_t is a minor of an input graph G is a fixed parameter tractable problem when parameterized by t. From the approximation viewpoint, a substantial gap remains: there is no PTAS for finding the largest complete minor unless P = NP, whereas the best known result is a polytime O(√ n)-approximation algorithm by Alon, Lingas and Wahlén. We investigate the complexity of finding K_t as interval minor in ordered graphs (i.e. graphs with a linear order on the vertices, in which intervals are contracted to form minors). Our main result is a polytime f(t)-approximation algorithm, where f is triply exponential in t but independent of n. The algorithm is based on delayed decompositions and shows that ordered graphs without a K_t interval minor can be constructed via a bounded number of three operations: closure under substitutions, edge union, and concatenation of a stable set. As a byproduct, graphs avoiding K_t as an interval minor have bounded chromatic number.

Cite as

Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé. A Polynomial-Time Approximation Algorithm for Complete Interval Minors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bourneuf_et_al:LIPIcs.APPROX/RANDOM.2025.15,
  author =	{Bourneuf, Romain and Cocquet, Julien and Tang, Chaoliang and Thomass\'{e}, St\'{e}phan},
  title =	{{A Polynomial-Time Approximation Algorithm for Complete Interval Minors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  URN =		{urn:nbn:de:0030-drops-243814},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  annote =	{Keywords: Approximation algorithm, Ordered graphs, Interval minors, Delayed decompositions}
}
Document
Solving Partial Dominating Set and Related Problems Using Twin-Width

Authors: Jakub Balabán, Daniel Mock, and Peter Rossmanith

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Partial vertex cover and partial dominating set are two well-investigated optimization problems. While they are W[1]-hard on general graphs, they have been shown to be fixed-parameter tractable on many sparse graph classes, including nowhere-dense classes. In this paper, we demonstrate that these problems are also fixed-parameter tractable with respect to the twin-width of a graph. Indeed, we establish a more general result: every graph property that can be expressed by a logical formula of the form ϕ≡∃ x₁⋯ ∃ x_k ∑_{α ∈ I} #y ψ_α(x₁,…,x_k,y) ≥ t, where ψ_α is a quantifier-free formula for each α ∈ I, t is an arbitrary number, and #y is a counting quantifier, can be evaluated in time f(d,k)n, where n is the number of vertices and d is the width of a contraction sequence that is part of the input. In addition to the aforementioned problems, this includes also connected partial dominating set and independent partial dominating set.

Cite as

Jakub Balabán, Daniel Mock, and Peter Rossmanith. Solving Partial Dominating Set and Related Problems Using Twin-Width. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.MFCS.2025.13,
  author =	{Balab\'{a}n, Jakub and Mock, Daniel and Rossmanith, Peter},
  title =	{{Solving Partial Dominating Set and Related Problems Using Twin-Width}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.13},
  URN =		{urn:nbn:de:0030-drops-241203},
  doi =		{10.4230/LIPIcs.MFCS.2025.13},
  annote =	{Keywords: Partial Dominating Set, Partial Vertex Cover, meta-algorithm, counting logic, twin-width}
}
Document
Elimination Distance to Dominated Clusters

Authors: Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In the Dominated Cluster Deletion problem, we are given an undirected graph G and integers k and d and the question is to decide whether there exists a set of at most k vertices whose removal results in a graph in which each connected component has a dominating set of size at most d. In the Elimination Distance to Dominated Clusters problem, we are again given an undirected graph G and integers k and d and the question is to decide whether we can recursively delete vertices up to depth k such that each remaining connected component has a dominating set of size at most d. Bentert et al. [Bentert et al., MFCS 2024] recently provided an almost complete classification of the parameterized complexity of Dominated Cluster Deletion with respect to the parameters k, d, c, and Δ, where c and Δ are the degeneracy, and the maximum degree of the input graph, respectively. In particular, they provided a non-uniform algorithm with running time f(k,d)⋅ n^{𝒪(d)}. They left as an open problem whether the problem is fixed-parameter tractable with respect to the parameter k + d + c. We provide a uniform algorithm running in time f(k,d)⋅ n^{𝒪(d)} for both Dominated Cluster Deletion and Elimination Distance to Dominated Clusters. We furthermore show that both problems are FPT when parameterized by k+d+𝓁, where 𝓁 is the semi-ladder index of the input graph, a parameter that is upper bounded and may be much smaller than the degeneracy c, positively answering the open question of Bentert et al. We further complete the picture by providing an almost full classification for the parameterized complexity and kernelization complexity of Elimination Distance to Dominated Clusters. The one difficult base case that remains open is whether Treedepth (the case d = 0) is NP-hard on graphs of bounded maximum degree.

Cite as

Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. Elimination Distance to Dominated Clusters. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 90:1-90:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schirrmacher_et_al:LIPIcs.MFCS.2025.90,
  author =	{Schirrmacher, Nicole and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Elimination Distance to Dominated Clusters}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{90:1--90:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.90},
  URN =		{urn:nbn:de:0030-drops-241978},
  doi =		{10.4230/LIPIcs.MFCS.2025.90},
  annote =	{Keywords: Graph theory, Fixed-parameter algorithms, Dominated cluster, Elimination distance}
}
Document
Quantitative Language Automata

Authors: Thomas A. Henzinger, Pavol Kebis, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
A quantitative word automaton (QWA) defines a function from infinite words to values. For example, every infinite run of a limit-average QWA 𝒜 obtains a mean payoff, and every word w ∈ Σ^ω is assigned the maximal mean payoff obtained by nondeterministic runs of 𝒜 over w. We introduce quantitative language automata (QLAs) that define functions from language generators (i.e., implementations) to values, where a language generator can be nonprobabilistic, defining a set of infinite words, or probabilistic, defining a probability measure over infinite words. A QLA consists of a QWA and an aggregator function. For example, given a QWA 𝒜, the infimum aggregator maps each language L ⊆ Σ^ω to the greatest lower bound assigned by 𝒜 to any word in L. For boolean value sets, QWAs define boolean properties of traces, and QLAs define boolean properties of sets of traces, i.e., hyperproperties. For more general value sets, QLAs serve as a specification language for a generalization of hyperproperties, called quantitative hyperproperties. A nonprobabilistic (resp. probabilistic) quantitative hyperproperty assigns a value to each set (resp. distribution) G of traces, e.g., the minimal (resp. expected) average response time exhibited by the traces in G. We give several examples of quantitative hyperproperties and investigate three paradigmatic problems for QLAs: evaluation, nonemptiness, and universality. In the evaluation problem, given a QLA 𝔸 and an implementation G, we ask for the value that 𝔸 assigns to G. In the nonemptiness (resp. universality) problem, given a QLA 𝔸 and a value k, we ask whether 𝔸 assigns at least k to some (resp. every) language. We provide a comprehensive picture of decidability for these problems for QLAs with common aggregators as well as their restrictions to ω-regular languages and trace distributions generated by finite-state Markov chains.

Cite as

Thomas A. Henzinger, Pavol Kebis, Nicolas Mazzocchi, and N. Ege Saraç. Quantitative Language Automata. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 21:1-21:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2025.21,
  author =	{Henzinger, Thomas A. and Kebis, Pavol and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Quantitative Language Automata}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{21:1--21:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.21},
  URN =		{urn:nbn:de:0030-drops-239718},
  doi =		{10.4230/LIPIcs.CONCUR.2025.21},
  annote =	{Keywords: Quantitative hyperproperties, quantitative automata, automata-based verification}
}
Document
Track A: Algorithms, Complexity and Games
An Optimal 3-Fault-Tolerant Connectivity Oracle

Authors: Evangelos Kosinas

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We present an optimal oracle for answering connectivity queries in undirected graphs in the presence of at most three vertex failures. Specifically, we show that we can process a graph G in O(n+m) time, in order to build a data structure that occupies O(n) space, which can be used in order to answer queries of the form "given a set F of at most three vertices, and two vertices x and y not in F, are x and y connected in G⧵ F?" in constant time, where n and m denote the number of vertices and edges, respectively, of G. The idea is to rely on the DFS-based framework introduced by Kosinas [ESA'23], for handling connectivity queries in the presence of multiple vertex failures. Our technical contribution is to show how to appropriately extend the toolkit of the DFS-based parameters, in order to optimally handle up to three vertex failures. Our approach has the interesting property that it does not rely on a compact representation of vertex cuts, and has the potential to provide optimal solutions for more vertex failures. Furthermore, we show that the DFS-based framework can be easily extended in order to answer vertex-cut queries, and the number of connected components in the presence of multiple vertex failures. In the case of three vertex failures, we can answer such queries in O(log n) time.

Cite as

Evangelos Kosinas. An Optimal 3-Fault-Tolerant Connectivity Oracle. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 110:1-110:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kosinas:LIPIcs.ICALP.2025.110,
  author =	{Kosinas, Evangelos},
  title =	{{An Optimal 3-Fault-Tolerant Connectivity Oracle}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{110:1--110:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.110},
  URN =		{urn:nbn:de:0030-drops-234879},
  doi =		{10.4230/LIPIcs.ICALP.2025.110},
  annote =	{Keywords: Graphs, Connectivity, Fault-Tolerant, Oracles}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Separability Properties of Monadically Dependent Graph Classes

Authors: Édouard Bonnet, Samuel Braunfeld, Ioannis Eleftheriadis, Colin Geniet, Nikolas Mählmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
A graph class 𝒞 is monadically dependent if one cannot interpret all graphs in colored graphs from 𝒞 using a fixed first-order interpretation. We prove that monadically dependent classes can be exactly characterized by the following property, which we call flip-separability: for every r ∈ ℕ, ε > 0, and every graph G ∈ 𝒞 equipped with a weight function on vertices, one can apply a bounded (in terms of 𝒞,r,ε) number of flips (complementations of the adjacency relation on a subset of vertices) to G so that in the resulting graph, every radius-r ball contains at most an ε-fraction of the total weight. On the way to this result, we introduce a robust toolbox for working with various notions of local separations in monadically dependent classes.

Cite as

Édouard Bonnet, Samuel Braunfeld, Ioannis Eleftheriadis, Colin Geniet, Nikolas Mählmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Separability Properties of Monadically Dependent Graph Classes. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 147:1-147:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ICALP.2025.147,
  author =	{Bonnet, \'{E}douard and Braunfeld, Samuel and Eleftheriadis, Ioannis and Geniet, Colin and M\"{a}hlmann, Nikolas and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Separability Properties of Monadically Dependent Graph Classes}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{147:1--147:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.147},
  URN =		{urn:nbn:de:0030-drops-235246},
  doi =		{10.4230/LIPIcs.ICALP.2025.147},
  annote =	{Keywords: Structural graph theory, Monadic dependence}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO

Authors: Nikolas Mählmann

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The graph parameter shrub-depth is a dense analog of tree-depth. We characterize classes of bounded shrub-depth by forbidden induced subgraphs. The obstructions are well-controlled flips of large half-graphs and of disjoint unions of many long paths. Applying this characterization, we show that on every hereditary class of unbounded shrub-depth, MSO is more expressive than FO. This confirms a conjecture of [Gajarský and Hliněný; LMCS 2015] who proved that on classes of bounded shrub-depth FO and MSO have the same expressive power. Combined, the two results fully characterize the hereditary classes on which FO and MSO coincide, answering an open question by [Elberfeld, Grohe, and Tantau; LICS 2012]. Our work is inspired by the notion of stability from model theory. A graph class 𝒞 is MSO-stable, if no MSO-formula can define arbitrarily long linear orders in graphs from 𝒞. We show that a hereditary graph class is MSO-stable if and only if it has bounded shrub-depth. As a key ingredient, we prove that every hereditary class of unbounded shrub-depth FO-interprets the class of all paths. This improves upon a result of [Ossona de Mendez, Pilipczuk, and Siebertz; Eur. J. Comb. 2025] who showed the same statement for FO-transductions instead of FO-interpretations.

Cite as

Nikolas Mählmann. Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 167:1-167:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mahlmann:LIPIcs.ICALP.2025.167,
  author =	{M\"{a}hlmann, Nikolas},
  title =	{{Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{167:1--167:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.167},
  URN =		{urn:nbn:de:0030-drops-235444},
  doi =		{10.4230/LIPIcs.ICALP.2025.167},
  annote =	{Keywords: Shrub-Depth, Forbidden Induced Subgraphs, MSO, Stability Theory}
}
Document
Query Languages for Neural Networks

Authors: Martin Grohe, Christoph Standke, Juno Steegmans, and Jan Van den Bussche

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
We lay the foundations for a database-inspired approach to interpreting and understanding neural network models by querying them using declarative languages. Towards this end we study different query languages, based on first-order logic, that mainly differ in their access to the neural network model. First-order logic over the reals naturally yields a language which views the network as a black box; only the input-output function defined by the network can be queried. This is essentially the approach of constraint query languages. On the other hand, a white-box language can be obtained by viewing the network as a weighted graph, and extending first-order logic with summation over weight terms. The latter approach is essentially an abstraction of SQL . In general, the two approaches are incomparable in expressive power, as we will show. Under natural circumstances, however, the white-box approach can subsume the black-box approach; this is our main result. We prove the result concretely for linear constraint queries over real functions definable by feedforward neural networks with a fixed number of hidden layers and piecewise linear activation functions.

Cite as

Martin Grohe, Christoph Standke, Juno Steegmans, and Jan Van den Bussche. Query Languages for Neural Networks. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICDT.2025.9,
  author =	{Grohe, Martin and Standke, Christoph and Steegmans, Juno and Van den Bussche, Jan},
  title =	{{Query Languages for Neural Networks}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.9},
  URN =		{urn:nbn:de:0030-drops-229508},
  doi =		{10.4230/LIPIcs.ICDT.2025.9},
  annote =	{Keywords: Expressive power of query languages, Machine learning models, languages for interpretability, explainable AI}
}
Document
A Formal Language Perspective on Factorized Representations

Authors: Benny Kimelfeld, Wim Martens, and Matthias Niewerth

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Factorized representations (FRs) are a well-known tool to succinctly represent results of join queries and have been originally defined using the named database perspective. We define FRs in the unnamed database perspective and use them to establish several new connections. First, unnamed FRs can be exponentially more succinct than named FRs, but this difference can be alleviated by imposing a disjointness condition on columns. Conversely, named FRs can also be exponentially more succinct than unnamed FRs. Second, unnamed FRs are the same as (i.e., isomorphic to) context-free grammars for languages in which each word has the same length. This tight connection allows us to transfer a wide range of results on context-free grammars to database factorization; of which we offer a selection in the paper. Third, when we generalize unnamed FRs to arbitrary sets of tuples, they become a generalization of path multiset representations, a formalism that was recently introduced to succinctly represent sets of paths in the context of graph database query evaluation.

Cite as

Benny Kimelfeld, Wim Martens, and Matthias Niewerth. A Formal Language Perspective on Factorized Representations. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kimelfeld_et_al:LIPIcs.ICDT.2025.20,
  author =	{Kimelfeld, Benny and Martens, Wim and Niewerth, Matthias},
  title =	{{A Formal Language Perspective on Factorized Representations}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.20},
  URN =		{urn:nbn:de:0030-drops-229614},
  doi =		{10.4230/LIPIcs.ICDT.2025.20},
  annote =	{Keywords: Databases, relational databases, graph databases, factorized databases, regular path queries, compact representations}
}
Document
Invited Talk
Evaluating First-Order Formulas in Structured Graphs (Invited Talk)

Authors: Szymon Toruńczyk

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
A central problem in database theory concerns the complexity of the query evaluation problem, also called the model-checking problem in finite model theory: the problem of evaluating a given formula in a given structure. Here, I will focus on formulas of first-order logic, and the data complexity (or parameterized complexity) of their evaluation. Leveraging tools from structural graph theory, I will assume that the input structure is a graph which comes from a fixed class of well-structured graphs, such as the class of planar graphs, classes of bounded treewidth or clique-width, or much more general "tame" graph classes, such as the nowhere dense graph classes introduced by Ossona de Mendez and Nešetřil, or classes of bounded twin-width studied by Bonnet, Thomassé, and coauthors. I will survey the recent progress in this area, which connects tools from structural graph theory, from model theory - such as stability and dependence - and from statistical learning theory and computational geometry - such as VC-dimension and ε-nets.

Cite as

Szymon Toruńczyk. Evaluating First-Order Formulas in Structured Graphs (Invited Talk). In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{torunczyk:LIPIcs.ICDT.2025.3,
  author =	{Toru\'{n}czyk, Szymon},
  title =	{{Evaluating First-Order Formulas in Structured Graphs}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.3},
  URN =		{urn:nbn:de:0030-drops-229449},
  doi =		{10.4230/LIPIcs.ICDT.2025.3},
  annote =	{Keywords: Finite model theory, first-order model checking, graph parameters}
}
Document
Twin-Width One

Authors: Jungho Ahn, Hugo Jacob, Noleen Köhler, Christophe Paul, Amadeus Reinald, and Sebastian Wiederrecht

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We investigate the structure of graphs of twin-width at most 1, and obtain the following results: - Graphs of twin-width at most 1 are permutation graphs. In particular they have an intersection model and a linear structure. - There is always a 1-contraction sequence closely following a given permutation diagram. - Based on a recursive decomposition theorem, we obtain a simple algorithm running in linear time that produces a 1-contraction sequence of a graph, or guarantees that it has twin-width more than 1. - We characterise distance-hereditary graphs based on their twin-width and deduce a linear time algorithm to compute optimal sequences on this class of graphs.

Cite as

Jungho Ahn, Hugo Jacob, Noleen Köhler, Christophe Paul, Amadeus Reinald, and Sebastian Wiederrecht. Twin-Width One. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ahn_et_al:LIPIcs.STACS.2025.6,
  author =	{Ahn, Jungho and Jacob, Hugo and K\"{o}hler, Noleen and Paul, Christophe and Reinald, Amadeus and Wiederrecht, Sebastian},
  title =	{{Twin-Width One}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.6},
  URN =		{urn:nbn:de:0030-drops-228319},
  doi =		{10.4230/LIPIcs.STACS.2025.6},
  annote =	{Keywords: Twin-width, Hereditary graph classes, Intersection model}
}
Document
Adjacency Labeling Schemes for Small Classes

Authors: Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A graph class admits an implicit representation if, for every positive integer n, its n-vertex graphs have a O(log n)-bit (adjacency) labeling scheme, i.e., their vertices can be labeled by binary strings of length O(log n) such that the presence of an edge between any pair of vertices can be deduced solely from their labels. The famous Implicit Graph Conjecture posited that every hereditary (i.e., closed under taking induced subgraphs) factorial (i.e., containing 2^O(n log n) n-vertex graphs) class admits an implicit representation. The conjecture was recently refuted [Hatami and Hatami, FOCS '22], and does not even hold among monotone (i.e., closed under taking subgraphs) factorial classes [Bonnet et al., ICALP '24]. However, monotone small (i.e., containing at most n! cⁿ many n-vertex graphs for some constant c) classes do admit implicit representations. This motivates the Small Implicit Graph Conjecture: Every hereditary small class admits an O(log n)-bit labeling scheme. We provide evidence supporting the Small Implicit Graph Conjecture. First, we show that every small weakly sparse (i.e., excluding some fixed bipartite complete graph as a subgraph) class has an implicit representation. This is a consequence of the following fact of independent interest proved in the paper: Every weakly sparse small class has bounded expansion (hence, in particular, bounded degeneracy). Second, we show that every hereditary small class admits an O(log³ n)-bit labeling scheme, which provides a substantial improvement of the best-known polynomial upper bound of n^(1-ε) on the size of adjacency labeling schemes for such classes. This is a consequence of another fact of independent interest proved in the paper: Every small class has neighborhood complexity O(n log n).

Cite as

Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev. Adjacency Labeling Schemes for Small Classes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ITCS.2025.21,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Sylvester, John and Zamaraev, Viktor},
  title =	{{Adjacency Labeling Schemes for Small Classes}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-226493},
  doi =		{10.4230/LIPIcs.ITCS.2025.21},
  annote =	{Keywords: Adjacency labeling, degeneracy, weakly sparse classes, small classes, implicit graph conjecture}
}
Document
Extension Preservation on Dense Graph Classes

Authors: Ioannis Eleftheriadis

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Preservation theorems provide a direct correspondence between the syntactic structure of first-order sentences and the closure properties of their respective classes of models. A line of work has explored preservation theorems relativised to combinatorially tame classes of sparse structures [Atserias et al., JACM 2006; Atserias et al., SiCOMP 2008; Dawar, JCSS 2010; Dawar and Eleftheriadis, MFCS 2024]. In this article we initiate the study of preservation theorems for dense classes of graphs. In contrast to the sparse setting, we show that extension preservation fails on most natural dense classes of low complexity. Nonetheless, we isolate a technical condition which is sufficient for extension preservation to hold, providing a dense analogue to a result of [Atserias et al., SiCOMP 2008].

Cite as

Ioannis Eleftheriadis. Extension Preservation on Dense Graph Classes. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eleftheriadis:LIPIcs.CSL.2025.7,
  author =	{Eleftheriadis, Ioannis},
  title =	{{Extension Preservation on Dense Graph Classes}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.7},
  URN =		{urn:nbn:de:0030-drops-227640},
  doi =		{10.4230/LIPIcs.CSL.2025.7},
  annote =	{Keywords: Extension preservation, finite model theory, dense graphs, cliquewidth}
}
  • Refine by Type
  • 37 Document/PDF
  • 16 Document/HTML

  • Refine by Publication Year
  • 16 2025
  • 1 2024
  • 5 2023
  • 3 2022
  • 1 2019
  • Show More...

  • Refine by Author
  • 11 Torunczyk, Szymon
  • 9 Toruńczyk, Szymon
  • 7 Pilipczuk, Michał
  • 7 Siebertz, Sebastian
  • 4 Bojanczyk, Mikolaj
  • Show More...

  • Refine by Series/Journal
  • 37 LIPIcs

  • Refine by Classification
  • 16 Theory of computation → Finite Model Theory
  • 8 Mathematics of computing → Graph algorithms
  • 5 Mathematics of computing → Graph theory
  • 4 Theory of computation → Fixed parameter tractability
  • 3 Mathematics of computing → Combinatorics
  • Show More...

  • Refine by Keyword
  • 4 twin-width
  • 3 stability
  • 2 Monadic dependence
  • 2 NIP
  • 2 Stability Theory
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail