12 Search Results for "Toueg, Sam"


Document
Fault Detection and Identification by Autonomous Mobile Robots

Authors: Stefano Clemente and Caterina Feletti

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
The Look-Compute-Move model (LCM) is adopted to study swarms of mobile robots that have to solve a given problem. Robots are generally assumed to be autonomous, indistinguishable, anonymous, homogeneous and to move on the Euclidean plane. Different LCM sub-models have been theorized to study different settings and their computational power. Notably, the literature has focused on four base models (i.e., OBLOT, FSTA, FCOM, LUMI) that differ in memory and communication capabilities, and in different synchronization modes (e.g., fully synchronous FSYNCH, semi-synchronous SSYNCH). In this paper, we consider fault-prone models where robots can suffer from crash faults: each robot may irremediably stop working after an unpredictable time. We study the general Fault Detection (FD) problem which is solved by a swarm if it correctly detects whether a faulty robot exists in the swarm. The Fault Identification (FI) problem additionally requires identifying which robots are faulty. We consider 12 LCM sub-models (OBLOT, FSTA, FCOM, LUMI, combined with FSYNCH, SSYNCH, and the round-robin RROBIN) and we study the (im)possibility of designing reliable procedures to solve FD or FI. In particular, we propose three distributed algorithms so that a swarm can collectively solve FD under the models LUMI^FSYNCH, FCOM^FSYNCH, and LUMI^RROBIN.

Cite as

Stefano Clemente and Caterina Feletti. Fault Detection and Identification by Autonomous Mobile Robots. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.SAND.2025.10,
  author =	{Clemente, Stefano and Feletti, Caterina},
  title =	{{Fault Detection and Identification by Autonomous Mobile Robots}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.10},
  URN =		{urn:nbn:de:0030-drops-230639},
  doi =		{10.4230/LIPIcs.SAND.2025.10},
  annote =	{Keywords: Autonomous mobile robots, Faulty robots, Look-Compute-Move, Fault detection, Fault identification, Round-robin}
}
Document
Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

Authors: Pierre Fraigniaud, Minh Hang Nguyen, and Ami Paz

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Consensus is arguably the most studied problem in distributed computing as a whole, and particularly in the distributed message-passing setting. In this latter framework, research on consensus has considered various hypotheses regarding the failure types, the memory constraints, the algorithmic performances (e.g., early stopping and obliviousness), etc. Surprisingly, almost all of this work assumes that messages are passed in a complete network, i.e., each process has a direct link to every other process. A noticeable exception is the recent work of Castañeda et al. (Inf. Comput. 2023) who designed a generic oblivious algorithm for consensus running in radius(G,t) rounds in every graph G, when up to t nodes can crash by irrevocably stopping, where t is smaller than the node-connectivity κ of G. Here, radius(G,t) denotes a graph parameter called the radius of G whenever up to t nodes can crash. For t = 0, this parameter coincides with radius(G), the standard radius of a graph, and, for G = K_n, the running time radius(K_n,t) = t+1 of the algorithm exactly matches the known round-complexity of consensus in the clique K_n. Our main result is a proof that radius(G,t) rounds are necessary for oblivious algorithms solving consensus in G when up to t nodes can crash, thus validating a conjecture of Castañeda et al., and demonstrating that their consensus algorithm is optimal for any graph G. We also extend the result of Castañeda et al. to two different settings: First, to the case where the number t of failures is not necessarily smaller than the connectivity κ of the considered graph; Second, to the k-set agreement problem for which agreement is not restricted to be on a single value as in consensus, but on up to k different values.

Cite as

Pierre Fraigniaud, Minh Hang Nguyen, and Ami Paz. Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 34:1-34:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fraigniaud_et_al:LIPIcs.STACS.2025.34,
  author =	{Fraigniaud, Pierre and Nguyen, Minh Hang and Paz, Ami},
  title =	{{Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{34:1--34:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.34},
  URN =		{urn:nbn:de:0030-drops-228606},
  doi =		{10.4230/LIPIcs.STACS.2025.34},
  annote =	{Keywords: Consensus, set-agreement, fault tolerance, crash failures}
}
Document
AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

Authors: Timothé Albouy, Antonio Fernández Anta, Chryssis Georgiou, Mathieu Gestin, Nicolas Nicolaou, and Junlang Wang

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
In this work, we introduce a modular framework for specifying distributed systems that we call AMECOS. Specifically, our framework departs from the traditional use of sequential specification, which presents limitations both on the specification expressiveness and implementation efficiency of inherently concurrent objects, as documented by Castañeda, Rajsbaum and Raynal in CACM 2023. Our framework focuses on the interactions between the various system components, specified as concurrent objects. Interactions are described with sequences of object events. This provides a modular way of specifying distributed systems and separates legality (object semantics) from other issues, such as consistency. We demonstrate the usability of our framework by (i) specifying various well-known concurrent objects, such as registers, shared memory, message-passing, reliable broadcast, and consensus, (ii) providing hierarchies of ordering semantics (namely, consistency hierarchy, memory hierarchy, and reliable broadcast hierarchy), and (iii) presenting a novel axiomatic proof of the impossibility of the well-known Consensus problem.

Cite as

Timothé Albouy, Antonio Fernández Anta, Chryssis Georgiou, Mathieu Gestin, Nicolas Nicolaou, and Junlang Wang. AMECOS: A Modular Event-Based Framework for Concurrent Object Specification. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 4:1-4:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{albouy_et_al:LIPIcs.OPODIS.2024.4,
  author =	{Albouy, Timoth\'{e} and Fern\'{a}ndez Anta, Antonio and Georgiou, Chryssis and Gestin, Mathieu and Nicolaou, Nicolas and Wang, Junlang},
  title =	{{AMECOS: A Modular Event-Based Framework for Concurrent Object Specification}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{4:1--4:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.4},
  URN =		{urn:nbn:de:0030-drops-225409},
  doi =		{10.4230/LIPIcs.OPODIS.2024.4},
  annote =	{Keywords: Concurrency, Object specification, Consistency conditions, Consensus impossibility}
}
Document
Near-Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary

Authors: Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael Schiller, François Taïani, and Vassilis Zikas

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
We address the problem of Reliable Broadcast in asynchronous message-passing systems with n nodes, of which up to t are malicious (faulty), in addition to a message adversary that can drop some of the messages sent by correct (non-faulty) nodes. We present a Message-Adversary-Tolerant Byzantine Reliable Broadcast (MBRB) algorithm that communicates O(|m|+nκ) bits per node, where |m| represents the length of the application message and κ = Ω(log n) is a security parameter. This communication complexity is optimal up to the parameter κ. This significantly improves upon the state-of-the-art MBRB solution (Albouy, Frey, Raynal, and Taïani, TCS 2023), which incurs communication of O(n|m|+n²κ) bits per node. Our solution sends at most 4n² messages overall, which is asymptotically optimal. Reduced communication is achieved by employing coding techniques that replace the need for all nodes to (re-)broadcast the entire application message m. Instead, nodes forward authenticated fragments of the encoding of m using an erasure-correcting code. Under the cryptographic assumptions of threshold signatures and vector commitments, and assuming n > 3t+2d, where the adversary drops at most d messages per broadcast, our algorithm allows at least 𝓁 = n - t - (1 + ε)d (for any arbitrarily low ε > 0) correct nodes to reconstruct m, despite missing fragments caused by the malicious nodes and the message adversary.

Cite as

Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael Schiller, François Taïani, and Vassilis Zikas. Near-Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 14:1-14:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{albouy_et_al:LIPIcs.OPODIS.2024.14,
  author =	{Albouy, Timoth\'{e} and Frey, Davide and Gelles, Ran and Hazay, Carmit and Raynal, Michel and Schiller, Elad Michael and Ta\"{i}ani, Fran\c{c}ois and Zikas, Vassilis},
  title =	{{Near-Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{14:1--14:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.14},
  URN =		{urn:nbn:de:0030-drops-225503},
  doi =		{10.4230/LIPIcs.OPODIS.2024.14},
  annote =	{Keywords: Asynchronous message-passing, Byzantine fault-tolerance, Message adversary, Reliable broadcast, Erasure-correction codes, \{Threshold\} signatures, \{Vector commitments\}}
}
Document
No Symmetric Broadcast Abstraction Characterizes k-Set-Agreement in Message-Passing Systems

Authors: Sylvain Gay, Achour Mostéfaoui, and Matthieu Perrin

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
This paper explores the relationship between broadcast abstractions and the k-set agreement (k-SA) problem in crash-prone asynchronous distributed systems. It specifically investigates whether any broadcast abstraction is computationally equivalent to k-SA in message-passing systems. A key contribution of the paper is the delineation of the realm of "meaningful" broadcast abstractions, through the introduction of two new symmetry properties: compositionality and content-neutrality, inspired by the principle of network neutrality. Such preciseness in definition is essential for this paper’s scope, as our aim is not to characterize the computing power of a specific broadcast abstraction, but rather to explore the domain of broadcast abstractions as a whole, in search of a broadcast abstraction with certain characteristics. The paper’s main contribution is the proof that no broadcast abstraction, which is both content-neutral and compositional, is computationally equivalent to k-set agreement when 1 < k < n, in the crash-prone asynchronous message-passing model. To the best of our knowledge, this result represents the first instance of showing that a coordination problem cannot be expressed by an equivalent broadcast abstraction. It does not establish the absence of an implementation, but rather the absence of a specification that possesses certain properties.

Cite as

Sylvain Gay, Achour Mostéfaoui, and Matthieu Perrin. No Symmetric Broadcast Abstraction Characterizes k-Set-Agreement in Message-Passing Systems. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 21:1-21:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gay_et_al:LIPIcs.OPODIS.2024.21,
  author =	{Gay, Sylvain and Most\'{e}faoui, Achour and Perrin, Matthieu},
  title =	{{No Symmetric Broadcast Abstraction Characterizes k-Set-Agreement in Message-Passing Systems}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{21:1--21:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.21},
  URN =		{urn:nbn:de:0030-drops-225573},
  doi =		{10.4230/LIPIcs.OPODIS.2024.21},
  annote =	{Keywords: Agreement problem, Asynchronous system, Broadcast abstraction, Communication abstraction, Compositionality, Message-passing system, Network neutrality, Process crash, k-Set agreement, Wait-free model, Total order broadcast}
}
Document
Dynamic Probabilistic Reliable Broadcast

Authors: João Paulo Bezerra, Veronika Anikina, Petr Kuznetsov, Liron Schiff, and Stefan Schmid

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
Byzantine reliable broadcast is a fundamental primitive in distributed systems that allows a set of processes to agree on a message broadcast by a dedicated process, even when some of them are malicious (Byzantine). It guarantees that no two correct processes deliver different messages, and if a message is delivered by a correct process, every correct process eventually delivers one. Byzantine reliable broadcast protocols are known to scale poorly, as they require Ω(n²) message exchanges, where n is the number of system members. The quadratic cost can be explained by the inherent need for every process to relay a message to every other process. In this paper, we explore ways to overcome this limitation by casting the problem to the probabilistic setting. We propose a solution in which every broadcast message is validated by a small set of witnesses, which allows us to maintain low latency and small communication complexity. In order to tolerate the slow adaptive adversary, we dynamically select the witnesses through a novel stream-local hash function: given a stream of inputs, it generates a stream of output hashed values that adapts to small deviations of the inputs. Our performance analysis shows that the proposed solution exhibits significant scalability gains over state-of-the-art protocols.

Cite as

João Paulo Bezerra, Veronika Anikina, Petr Kuznetsov, Liron Schiff, and Stefan Schmid. Dynamic Probabilistic Reliable Broadcast. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 31:1-31:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bezerra_et_al:LIPIcs.OPODIS.2024.31,
  author =	{Bezerra, Jo\~{a}o Paulo and Anikina, Veronika and Kuznetsov, Petr and Schiff, Liron and Schmid, Stefan},
  title =	{{Dynamic Probabilistic Reliable Broadcast}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{31:1--31:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.31},
  URN =		{urn:nbn:de:0030-drops-225679},
  doi =		{10.4230/LIPIcs.OPODIS.2024.31},
  annote =	{Keywords: Reliable broadcast, probabilistic algorithms, witness sets, stream-local hashing, cryptocurrencies, accountability}
}
Document
On Implementing SWMR Registers from SWSR Registers in Systems with Byzantine Failures

Authors: Xing Hu and Sam Toueg

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
The implementation of registers from (potentially) weaker registers is a classical problem in the theory of distributed computing. Since Lamport’s pioneering work [Leslie Lamport, 1986], this problem has been extensively studied in the context of asynchronous processes with crash failures. In this paper, we investigate this problem in the context of Byzantine process failures, with and without process signatures. In particular, we first show a strong impossibility result, namely, that there is no wait-free linearizable implementation of a 1-writer n-reader register from atomic 1-writer (n-1)-reader registers. In fact, this impossibility result holds even if all the processes except the writer are given atomic 1-writer n-reader registers, and even if we assume that the writer can only crash and at most one reader is subject to Byzantine failures. In light of this impossibility result, we give two register implementations. The first one implements a 1-writer n-reader register from atomic 1-writer 1-reader registers. This implementation is linearizable (under any combination of Byzantine process failures), but it is wait-free only under the assumption that the writer is correct or no reader is Byzantine - thus matching the impossibility result. The second implementation assumes process signatures; it is wait-free and linearizable under any number and combination of Byzantine process failures.

Cite as

Xing Hu and Sam Toueg. On Implementing SWMR Registers from SWSR Registers in Systems with Byzantine Failures. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.DISC.2022.36,
  author =	{Hu, Xing and Toueg, Sam},
  title =	{{On Implementing SWMR Registers from SWSR Registers in Systems with Byzantine Failures}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{36:1--36:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.36},
  URN =		{urn:nbn:de:0030-drops-172272},
  doi =		{10.4230/LIPIcs.DISC.2022.36},
  annote =	{Keywords: distributed computing, concurrency, linearizability, shared registers}
}
Document
Optimal Resilience in Systems That Mix Shared Memory and Message Passing

Authors: Hagit Attiya, Sweta Kumari, and Noa Schiller

Published in: LIPIcs, Volume 184, 24th International Conference on Principles of Distributed Systems (OPODIS 2020)


Abstract
We investigate the minimal number of failures that can partition a system where processes communicate both through shared memory and by message passing. We prove that this number precisely captures the resilience that can be achieved by algorithms that implement a variety of shared objects, like registers and atomic snapshots, and solve common tasks, like randomized consensus, approximate agreement and renaming. This has implications for the m&m-model of [Aguilera et al., 2018] and for the hybrid, cluster-based model of [Damien Imbs and Michel Raynal, 2013; Michel Raynal and Jiannong Cao, 2019].

Cite as

Hagit Attiya, Sweta Kumari, and Noa Schiller. Optimal Resilience in Systems That Mix Shared Memory and Message Passing. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{attiya_et_al:LIPIcs.OPODIS.2020.16,
  author =	{Attiya, Hagit and Kumari, Sweta and Schiller, Noa},
  title =	{{Optimal Resilience in Systems That Mix Shared Memory and Message Passing}},
  booktitle =	{24th International Conference on Principles of Distributed Systems (OPODIS 2020)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-176-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{184},
  editor =	{Bramas, Quentin and Oshman, Rotem and Romano, Paolo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.16},
  URN =		{urn:nbn:de:0030-drops-135019},
  doi =		{10.4230/LIPIcs.OPODIS.2020.16},
  annote =	{Keywords: fault resilience, m\&m model, cluster-based model, randomized consensus, approximate agreement, renaming, register implementations, atomic snapshots}
}
Document
On Deterministic Linearizable Set Agreement Objects

Authors: Felipe de Azevedo Piovezan, Vassos Hadzilacos, and Sam Toueg

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
A recent work showed that, for all n and k, there is a linearizable (n,k)-set agreement object O_L that is equivalent to the (n,k)-set agreement task [David Yu Cheng Chan et al., 2017]: given O_L, it is possible to solve the (n,k)-set agreement task, and given any algorithm that solves the (n,k)-set agreement task (and registers), it is possible to implement O_L. This linearizable object O_L, however, is not deterministic. It turns out that there is also a deterministic (n,k)-set agreement object O_D that is equivalent to the (n,k)-set agreement task, but this deterministic object O_D is not linearizable. This raises the question whether there exists a deterministic and linearizable (n,k)-set agreement object that is equivalent to the (n,k)-set agreement task. Here we show that in general the answer is no: specifically, we prove that for all n ≥ 4, every deterministic linearizable (n,2)-set agreement object is strictly stronger than the (n,2)-set agreement task. We prove this by showing that, for all n ≥ 4, every deterministic and linearizable (n,2)-set agreement object (together with registers) can be used to solve 2-consensus, whereas it is known that the (n,2)-set agreement task cannot do so. For a natural subset of (n,2)-set agreement objects, we prove that this result holds even for n = 3.

Cite as

Felipe de Azevedo Piovezan, Vassos Hadzilacos, and Sam Toueg. On Deterministic Linearizable Set Agreement Objects. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{deazevedopiovezan_et_al:LIPIcs.OPODIS.2019.16,
  author =	{de Azevedo Piovezan, Felipe and Hadzilacos, Vassos and Toueg, Sam},
  title =	{{On Deterministic Linearizable Set Agreement Objects}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{16:1--16:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.16},
  URN =		{urn:nbn:de:0030-drops-118026},
  doi =		{10.4230/LIPIcs.OPODIS.2019.16},
  annote =	{Keywords: Asynchronous shared-memory systems, consensus, set agreement, deterministic objects}
}
Document
Optimal Register Construction in M&M Systems

Authors: Vassos Hadzilacos, Xing Hu, and Sam Toueg

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
Motivated by recent distributed systems technology, Aguilera et al. introduced a hybrid model of distributed computing, called message-and-memory model or m&m model for short [Marcos K. Aguilera et al., 2018]. In this model, processes can communicate by message passing and also by accessing some shared memory. We consider the basic problem of implementing an atomic single-writer multi-reader (SWMR) register shared by all the processes in m&m systems. Specifically, we give an algorithm that implements such a register in m&m systems and show that it is optimal in the number of process crashes that it can tolerate. This generalizes the well-known implementation of an atomic SWMR register in a pure message-passing system [Attiya et al., 1995].

Cite as

Vassos Hadzilacos, Xing Hu, and Sam Toueg. Optimal Register Construction in M&M Systems. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hadzilacos_et_al:LIPIcs.OPODIS.2019.28,
  author =	{Hadzilacos, Vassos and Hu, Xing and Toueg, Sam},
  title =	{{Optimal Register Construction in M\&M Systems}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.28},
  URN =		{urn:nbn:de:0030-drops-118148},
  doi =		{10.4230/LIPIcs.OPODIS.2019.28},
  annote =	{Keywords: asynchronous distributed system, shared memory, message passing}
}
Document
On the Number of Objects with Distinct Power and the Linearizability of Set Agreement Objects

Authors: David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg

Published in: LIPIcs, Volume 91, 31st International Symposium on Distributed Computing (DISC 2017)


Abstract
We first prove that there are uncountably many objects with distinct computational powers. More precisely, we show that there is an uncountable set of objects such that for any two of them, at least one cannot be implemented from the other (and registers) in a wait-free manner. We then strengthen this result by showing that there are uncountably many linearizable objects with distinct computational powers. To do so, we prove that for all positive integers n and k, there is a linearizable object that is computationally equivalent to the k-set agreement task among n processes. To the best of our knowledge, these are the first linearizable objects proven to be computationally equivalent to set agreement tasks.

Cite as

David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg. On the Number of Objects with Distinct Power and the Linearizability of Set Agreement Objects. In 31st International Symposium on Distributed Computing (DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 91, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.DISC.2017.12,
  author =	{Chan, David Yu Cheng and Hadzilacos, Vassos and Toueg, Sam},
  title =	{{On the Number of Objects with Distinct Power and the Linearizability of Set Agreement Objects}},
  booktitle =	{31st International Symposium on Distributed Computing (DISC 2017)},
  pages =	{12:1--12:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-053-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{91},
  editor =	{Richa, Andr\'{e}a},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2017.12},
  URN =		{urn:nbn:de:0030-drops-79973},
  doi =		{10.4230/LIPIcs.DISC.2017.12},
  annote =	{Keywords: Set Agreement, Asynchronous System, Shared Memory}
}
Document
Bounded Disagreement

Authors: David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg

Published in: LIPIcs, Volume 70, 20th International Conference on Principles of Distributed Systems (OPODIS 2016)


Abstract
A well-known generalization of the consensus problem, namely, set agreement (SA), limits the number of distinct decision values that processes decide. In some settings, it may be more important to limit the number of "disagreers". Thus, we introduce another natural generalization of the consensus problem, namely, bounded disagreement (BD), which limits the number of processes that decide differently from the plurality. More precisely, in a system with n processes, the (n, l)-BD task has the following requirement: there is a value v such that at most l processes (the disagreers) decide a value other than v. Despite their apparent similarities, the results described below show that bounded disagreement, consensus, and set agreement are in fact fundamentally different problems. We investigate the relationship between bounded disagreement, consensus, and set agreement. In particular, we determine the consensus number for every instance of the BD task. We also determine values of n, l, m, and k such that the (n, l)-BD task can solve the (m, k)-SA task (where m processes can decide at most k distinct values). Using our results and a previously known impossibility result for set agreement, we prove that for all n >= 2, there is a BD task (and a corresponding BD object) that has consensus number n but can not be solved using n-consensus and registers. Prior to our paper, the only objects known to have this unusual characteristic for n >= 2 (which shows that the consensus number of an object is not sufficient to fully capture its power) were artificial objects crafted solely for the purpose of exhibiting this behaviour.

Cite as

David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg. Bounded Disagreement. In 20th International Conference on Principles of Distributed Systems (OPODIS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 70, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{yuchengchan_et_al:LIPIcs.OPODIS.2016.5,
  author =	{Yu Cheng Chan, David and Hadzilacos, Vassos and Toueg, Sam},
  title =	{{Bounded Disagreement}},
  booktitle =	{20th International Conference on Principles of Distributed Systems (OPODIS 2016)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-031-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{70},
  editor =	{Fatourou, Panagiota and Jim\'{e}nez, Ernesto and Pedone, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2016.5},
  URN =		{urn:nbn:de:0030-drops-70742},
  doi =		{10.4230/LIPIcs.OPODIS.2016.5},
  annote =	{Keywords: Consensus, Set Agreement, Asynchronous System, Distributed Algorithms, Shared Memory}
}
  • Refine by Type
  • 12 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2022
  • 1 2021
  • 2 2020
  • 2 2017

  • Refine by Author
  • 5 Toueg, Sam
  • 4 Hadzilacos, Vassos
  • 2 Albouy, Timothé
  • 2 Hu, Xing
  • 1 Anikina, Veronika
  • Show More...

  • Refine by Series/Journal
  • 12 LIPIcs

  • Refine by Classification
  • 6 Theory of computation → Distributed algorithms
  • 5 Theory of computation → Distributed computing models
  • 2 Theory of computation → Concurrency
  • 2 Theory of computation → Parallel computing models
  • 1 Computer systems organization → Dependable and fault-tolerant systems and networks
  • Show More...

  • Refine by Keyword
  • 2 Asynchronous System
  • 2 Consensus
  • 2 Reliable broadcast
  • 2 Set Agreement
  • 2 Shared Memory
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail