Search Results

Documents authored by Schiewe, Philine


Document
A Bi-Objective Optimization Model for Fare Structure Design in Public Transport

Authors: Philine Schiewe, Anita Schöbel, and Reena Urban

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
Fare planning in public transport is important from the view of passengers as well as of operators. In this paper, we propose a bi-objective model that maximizes the revenue as well as the number of attracted passengers. The potential demand per origin-destination pair is divided into demand groups that have their own willingness how much to pay for using public transport, i.e., a demand group is only attracted as public transport passengers if the fare does not exceed their willingness to pay. We study the bi-objective problem for flat and distance tariffs and develop specialized algorithms to compute the Pareto front in quasilinear or cubic time, respectively. Through computational experiments on structured data sets we evaluate the running time of the developed algorithms in practice and analyze the number of non-dominated points and their respective efficient solutions.

Cite as

Philine Schiewe, Anita Schöbel, and Reena Urban. A Bi-Objective Optimization Model for Fare Structure Design in Public Transport. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schiewe_et_al:OASIcs.ATMOS.2024.15,
  author =	{Schiewe, Philine and Sch\"{o}bel, Anita and Urban, Reena},
  title =	{{A Bi-Objective Optimization Model for Fare Structure Design in Public Transport}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{15:1--15:19},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.15},
  URN =		{urn:nbn:de:0030-drops-212034},
  doi =		{10.4230/OASIcs.ATMOS.2024.15},
  annote =	{Keywords: Public transport, fare structure design, modeling, bi-objective, algorithm}
}
Document
Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities

Authors: Tobias Harks, Sven Jäger, Michael Markl, and Philine Schiewe

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
Modelling passenger assignments in public transport networks is a fundamental task for city planners, especially when deliberating network infrastructure decisions. A key aspect of a realistic model for passenger assignments is to integrate selfish routing behaviour of passengers on the one hand, and the limited vehicle capacities on the other hand. We formulate a side-constrained user equilibrium model in a schedule-based time-expanded transit network, where passengers are modelled via a continuum of non-atomic agents that want to travel with a fixed start time from a user-specific origin to a destination. An agent’s route may comprise several rides along given lines, each using vehicles with hard loading capacities. We give a characterization of (side-constrained) user equilibria via a quasi-variational inequality and prove their existence by generalizing a well-known existence result of Bernstein and Smith (Transp. Sci., 1994). We further derive a polynomial time algorithm for single-commodity instances and an exact finite time algorithm for the multi-commodity case. Based on our quasi-variational characterization, we finally devise a fast heuristic computing user equilibria, which is tested on real-world instances based on data gained from the Hamburg S-Bahn system and the Swiss long-distance train network. It turns out that w.r.t. the total travel time, the computed user-equilibria are quite efficient compared to a system optimum, which neglects equilibrium constraints and only minimizes total travel time.

Cite as

Tobias Harks, Sven Jäger, Michael Markl, and Philine Schiewe. Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harks_et_al:OASIcs.ATMOS.2024.17,
  author =	{Harks, Tobias and J\"{a}ger, Sven and Markl, Michael and Schiewe, Philine},
  title =	{{Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{17:1--17:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.17},
  URN =		{urn:nbn:de:0030-drops-212054},
  doi =		{10.4230/OASIcs.ATMOS.2024.17},
  annote =	{Keywords: traffic assignment, side-constrained equilibrium, public transportation}
}
Document
Complete Volume
OASIcs, Volume 115, ATMOS 2023, Complete Volume

Authors: Daniele Frigioni and Philine Schiewe

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
OASIcs, Volume 115, ATMOS 2023, Complete Volume

Cite as

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 1-268, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{frigioni_et_al:OASIcs.ATMOS.2023,
  title =	{{OASIcs, Volume 115, ATMOS 2023, Complete Volume}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{1--268},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023},
  URN =		{urn:nbn:de:0030-drops-187604},
  doi =		{10.4230/OASIcs.ATMOS.2023},
  annote =	{Keywords: OASIcs, Volume 115, ATMOS 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Daniele Frigioni and Philine Schiewe

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 0:i-0:xii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{frigioni_et_al:OASIcs.ATMOS.2023.0,
  author =	{Frigioni, Daniele and Schiewe, Philine},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{0:i--0:xii},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.0},
  URN =		{urn:nbn:de:0030-drops-187619},
  doi =		{10.4230/OASIcs.ATMOS.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Using Light Spanning Graphs for Passenger Assignment in Public Transport

Authors: Irene Heinrich, Olli Herrala, Philine Schiewe, and Topias Terho

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
In a public transport network a passenger’s preferred route from a point x to another point y is usually the shortest path from x to y. However, it is simply impossible to provide all the shortest paths of a network via public transport. Hence, it is a natural question how a lighter sub-network should be designed in order to satisfy both the operator as well as the passengers. We provide a detailed analysis of the interplay of the following three quality measures of lighter public transport networks: - building cost: the sum of the costs of all edges remaining in the lighter network, - routing costs: the sum of all shortest paths costs weighted by the demands, - fairness: compared to the original network, for each two points the shortest path in the new network should cost at most a given multiple of the shortest path in the original network. We study the problem by generalizing the concepts of optimum communication spanning trees (Hu, 1974) and optimum requirement graphs (Wu, Chao, and Tang, 2002) to generalized optimum requirement graphs (GORGs), which are graphs achieving the social optimum amongst all subgraphs satisfying a given upper bound on the building cost. We prove that the corresponding decision problem is NP-complete, even on orb-webs, a variant of grids which serves as an important model of cities with a center. For the case that the given network is a parametric city (cf. Fielbaum et. al., 2017) with a heavy vertex we provide a polynomial-time algorithm solving the GORG-problem. Concerning the fairness-aspect, we prove that light spanners are a strong concept for public transport optimization. We underpin our theoretical considerations with integer programming-based experiments that allow us to compare the fairness-approach with the routing cost-approach as well as passenger assignment approaches from the literature.

Cite as

Irene Heinrich, Olli Herrala, Philine Schiewe, and Topias Terho. Using Light Spanning Graphs for Passenger Assignment in Public Transport. In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{heinrich_et_al:OASIcs.ATMOS.2023.2,
  author =	{Heinrich, Irene and Herrala, Olli and Schiewe, Philine and Terho, Topias},
  title =	{{Using Light Spanning Graphs for Passenger Assignment in Public Transport}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{2:1--2:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.2},
  URN =		{urn:nbn:de:0030-drops-187637},
  doi =		{10.4230/OASIcs.ATMOS.2023.2},
  annote =	{Keywords: passenger assignment, line planning, public transport, discrete optimization, complexity, algorithm design}
}
Document
Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

Authors: Irene Heinrich, Philine Schiewe, and Constantin Seebach

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
Line planning, i.e. choosing routes which are to be serviced by vehicles in order to satisfy network demands, is an important aspect of public transport planning. While there exist heuristic procedures for generating lines from scratch, most theoretical investigations consider the problem of choosing lines only from a predefined line pool. We consider the line planning problem when all simple paths can be used as lines and present an algorithm which is fixed-parameter tractable, i.e. it is efficient on instances with small parameter. As a parameter we consider the treewidth of the public transport network, along with its maximum degree as well as the maximum allowed frequency.

Cite as

Irene Heinrich, Philine Schiewe, and Constantin Seebach. Non-Pool-Based Line Planning on Graphs of Bounded Treewidth. In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{heinrich_et_al:OASIcs.ATMOS.2023.4,
  author =	{Heinrich, Irene and Schiewe, Philine and Seebach, Constantin},
  title =	{{Non-Pool-Based Line Planning on Graphs of Bounded Treewidth}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{4:1--4:19},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.4},
  URN =		{urn:nbn:de:0030-drops-187656},
  doi =		{10.4230/OASIcs.ATMOS.2023.4},
  annote =	{Keywords: line planning, public transport, treewidth, integer programming, fixed parameter tractability}
}
Document
Algorithms and Hardness for Non-Pool-Based Line Planning

Authors: Irene Heinrich, Philine Schiewe, and Constantin Seebach

Published in: OASIcs, Volume 106, 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)


Abstract
Line planning, i.e. choosing paths which are operated by one vehicle end-to-end, is an important aspect of public transport planning. While there exist heuristic procedures for generating lines from scratch, most theoretical observations consider the problem of choosing lines from a predefined line pool. In this paper, we consider the complexity of the line planning problem when all simple paths can be used as lines. Depending on the cost structure, we show that the problem can be NP-hard even for paths and stars, and that no polynomial time approximation of sub-linear performance is possible. Additionally, we identify polynomially solvable cases and present a pseudo-polynomial solution approach for trees.

Cite as

Irene Heinrich, Philine Schiewe, and Constantin Seebach. Algorithms and Hardness for Non-Pool-Based Line Planning. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), Volume 106, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{heinrich_et_al:OASIcs.ATMOS.2022.8,
  author =	{Heinrich, Irene and Schiewe, Philine and Seebach, Constantin},
  title =	{{Algorithms and Hardness for Non-Pool-Based Line Planning}},
  booktitle =	{22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)},
  pages =	{8:1--8:21},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-259-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{106},
  editor =	{D'Emidio, Mattia and Lindner, Niels},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2022.8},
  URN =		{urn:nbn:de:0030-drops-171124},
  doi =		{10.4230/OASIcs.ATMOS.2022.8},
  annote =	{Keywords: line planning, public transport, discrete optimization, complexity, algorithm design}
}
Document
The Edge Investment Problem: Upgrading Transit Line Segments with Multiple Investing Parties

Authors: Rowan Hoogervorst, Evelien van der Hurk, Philine Schiewe, Anita Schöbel, and Reena Urban

Published in: OASIcs, Volume 106, 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)


Abstract
Bus Rapid Transit (BRT) systems can provide a fast and reliable service to passengers at lower costs compared to tram, metro and train systems. Therefore, they can be of great value to attract more passengers to use public transport, which is vital in reaching the Paris Agreement Targets. However, the main advantage of BRT systems, namely their flexible implementation, also leads to the risk that the system is only implemented partially to save costs. This paper focuses therefore on the Edge Investment Problem: Which edges (segments) of a bus line should be upgraded to full-level BRT? Motivated by the construction of a new BRT line around Copenhagen, we consider a setting in which multiple parties are responsible for different segments of the line. Each party has a limited budget and can adjust its investments according to the benefits provided to its passengers. We suggest two ways to determine the number of newly attracted passengers, prove that the corresponding problems are NP-hard and identify special cases that can be solved in polynomial time. In addition, problem relaxations are presented that yield dual bounds. Moreover, we perform an extensive numerical comparison in which we evaluate the extent to which these two ways of modeling demand impact the computational performance and the choice of edges to be upgraded.

Cite as

Rowan Hoogervorst, Evelien van der Hurk, Philine Schiewe, Anita Schöbel, and Reena Urban. The Edge Investment Problem: Upgrading Transit Line Segments with Multiple Investing Parties. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), Volume 106, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{hoogervorst_et_al:OASIcs.ATMOS.2022.9,
  author =	{Hoogervorst, Rowan and van der Hurk, Evelien and Schiewe, Philine and Sch\"{o}bel, Anita and Urban, Reena},
  title =	{{The Edge Investment Problem: Upgrading Transit Line Segments with Multiple Investing Parties}},
  booktitle =	{22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)},
  pages =	{9:1--9:19},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-259-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{106},
  editor =	{D'Emidio, Mattia and Lindner, Niels},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2022.9},
  URN =		{urn:nbn:de:0030-drops-171137},
  doi =		{10.4230/OASIcs.ATMOS.2022.9},
  annote =	{Keywords: Network Design, Public Transport, Bus Rapid Transit, Modeling}
}
Document
Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data

Authors: Niels Lindner, Pedro Maristany de las Casas, and Philine Schiewe

Published in: OASIcs, Volume 96, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)


Abstract
We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport.

Cite as

Niels Lindner, Pedro Maristany de las Casas, and Philine Schiewe. Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data. In 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021). Open Access Series in Informatics (OASIcs), Volume 96, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lindner_et_al:OASIcs.ATMOS.2021.7,
  author =	{Lindner, Niels and Maristany de las Casas, Pedro and Schiewe, Philine},
  title =	{{Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data}},
  booktitle =	{21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)},
  pages =	{7:1--7:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-213-6},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{96},
  editor =	{M\"{u}ller-Hannemann, Matthias and Perea, Federico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2021.7},
  URN =		{urn:nbn:de:0030-drops-148767},
  doi =		{10.4230/OASIcs.ATMOS.2021.7},
  annote =	{Keywords: Preprocessing Shortest Path Problems, Interval Data, Graph Algorithms}
}
Document
A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling

Authors: Paul Bouman, Alexander Schiewe, and Philine Schiewe

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
When evaluating the operational costs of a public transport system, the most important factor is the number of vehicles needed for operation. In contrast to the canonical sequential approach of first fixing a timetable and then adding a vehicle schedule, we consider a sequential approach where a vehicle schedule is determined for a given line plan and only afterwards a timetable is fixed. We compare this new sequential approach to a model that integrates both steps. To represent various operational requirements, we consider multiple possibilities to restrict the vehicle circulations to be short, as this can provide operational benefits. The sequential approach can efficiently determine public transport plans with a low number of vehicles. This is evaluated theoretically and empirically demonstrated for two close-to real-world instances.

Cite as

Paul Bouman, Alexander Schiewe, and Philine Schiewe. A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bouman_et_al:OASIcs.ATMOS.2020.6,
  author =	{Bouman, Paul and Schiewe, Alexander and Schiewe, Philine},
  title =	{{A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{6:1--6:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.6},
  URN =		{urn:nbn:de:0030-drops-131422},
  doi =		{10.4230/OASIcs.ATMOS.2020.6},
  annote =	{Keywords: Vehicle Scheduling, Timetabling, Integrated Planning}
}
Document
Look-Ahead Approaches for Integrated Planning in Public Transportation

Authors: Julius Pätzold, Alexander Schiewe, Philine Schiewe, and Anita Schöbel

Published in: OASIcs, Volume 59, 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)


Abstract
In this paper we deal with three consecutive planning stages in public transportation: Line planning (including line pool generation), timetabling, and vehicle scheduling. These three steps are traditionally performed one after another in a sequential way often leading to high costs in the (last) vehicle scheduling stage. In this paper we propose three different ways to "look ahead", i.e., to include aspects of vehicle scheduling already earlier in the sequential process: an adapted line pool generation algorithm, a new cost structure for line planning, and a reordering of the sequential planning stages. We analyze these enhancements experimentally and show that they can be used to decrease the costs significantly.

Cite as

Julius Pätzold, Alexander Schiewe, Philine Schiewe, and Anita Schöbel. Look-Ahead Approaches for Integrated Planning in Public Transportation. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017). Open Access Series in Informatics (OASIcs), Volume 59, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{patzold_et_al:OASIcs.ATMOS.2017.17,
  author =	{P\"{a}tzold, Julius and Schiewe, Alexander and Schiewe, Philine and Sch\"{o}bel, Anita},
  title =	{{Look-Ahead Approaches for Integrated Planning in Public Transportation}},
  booktitle =	{17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)},
  pages =	{17:1--17:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-042-2},
  ISSN =	{2190-6807},
  year =	{2017},
  volume =	{59},
  editor =	{D'Angelo, Gianlorenzo and Dollevoet, Twan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2017.17},
  URN =		{urn:nbn:de:0030-drops-78944},
  doi =		{10.4230/OASIcs.ATMOS.2017.17},
  annote =	{Keywords: line pool generation, line planning, vehicle scheduling, integrated planning, public transport}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail