Search Results

Documents authored by Wulms, Jules J. H. M.


Found 2 Possible Name Variants:

Wulms, Jules J. H. M.

Document
Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

Authors: Bart M. P. Jansen and Jules J. H. M. Wulms

Published in: LIPIcs, Volume 63, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)


Abstract
Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864-1894] recently introduced a framework based on dynamic programming to make applications of the protrusion replacement technique constructive and to obtain explicit upper bounds on the involved constants. They show that for several graph problems, for every boundary size t one can find an explicit set R_t of representatives. Any subgraph H with a boundary of size t can be replaced with a representative H' in R_t such that the effect of this replacement on the optimum can be deduced from H and H' alone. Their upper bounds on the size of the graphs in R_t grow triple-exponentially with t. In this paper we complement their results by lower bounds on the sizes of representatives, in terms of the boundary size t. For example, we show that each set of planar representatives R_t for the Independent Set problem contains a graph with Omega(2^t / sqrt{4t}) vertices. This lower bound even holds for sets that only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide a lower bound on the number of equivalence classes of the canonical equivalence relation for Independent Set on t-boundaried graphs. We also find an elegant characterization of the number of equivalence classes in general graphs, in terms of the number of monotone functions of a certain kind. Our results show that the number of equivalence classes is at most 2^{2^t}, improving on earlier bounds of the form (t+1)^{2^t}.

Cite as

Bart M. P. Jansen and Jules J. H. M. Wulms. Lower Bounds for Protrusion Replacement by Counting Equivalence Classes. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.IPEC.2016.17,
  author =	{Jansen, Bart M. P. and Wulms, Jules J. H. M.},
  title =	{{Lower Bounds for Protrusion Replacement by Counting Equivalence Classes}},
  booktitle =	{11th International Symposium on Parameterized and Exact Computation (IPEC 2016)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-023-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{63},
  editor =	{Guo, Jiong and Hermelin, Danny},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.17},
  URN =		{urn:nbn:de:0030-drops-69275},
  doi =		{10.4230/LIPIcs.IPEC.2016.17},
  annote =	{Keywords: protrusions, boundaried graphs, independent set, equivalence classes, finite integer index}
}

Wulms, Jules

Document
The Complexity of Geodesic Spanners Using Steiner Points

Authors: Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, and Jules Wulms

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
A geometric t-spanner 𝒢 on a set S of n point sites in a metric space P is a subgraph of the complete graph on S such that for every pair of sites p,q the distance in 𝒢 is a most t times the distance d(p,q) in P. We call a connection between two sites a link. In some settings, such as when P is a simple polygon with m vertices and a link is a shortest path in P, links can consist of Θ (m) segments and thus have non-constant complexity. The spanner complexity is a measure of how compact a spanner is, which is equal to the sum of the complexities of all links in the spanner. In this paper, we study what happens if we are allowed to introduce k Steiner points to reduce the spanner complexity. We study such Steiner spanners in simple polygons, polygonal domains, and edge-weighted trees. Surprisingly, we show that Steiner points have only limited utility. For a spanner that uses k Steiner points, we provide an Ω(nm/k) lower bound on the worst-case complexity of any (3-ε)-spanner, and an Ω(mn^{1/(t+1)}/k^{1/(t+1)}) lower bound on the worst-case complexity of any (t-ε)-spanner, for any constant ε ∈ (0,1) and integer constant t ≥ 2. These lower bounds hold in all settings. Additionally, we show NP-hardness for the problem of deciding whether a set of sites in a polygonal domain admits a 3-spanner with a given maximum complexity using k Steiner points. On the positive side, for trees we show how to build a 2t-spanner that uses k Steiner points of complexity O(mn^{1/t}/k^{1/t} + n log (n/k)), for any integer t ≥ 1. We generalize this result to forests, and apply it to obtain a 2√2t-spanner in a simple polygon with total complexity O(mn^{1/t}(log k)^{1+1/t}/k^{1/t} + nlog² n). When a link in the spanner can be any path between two sites, we show how to improve the spanning ratio in a simple polygon to (2k+ε), for any constant ε ∈ (0,2k), and how to build a 6t-spanner in a polygonal domain with the same complexity.

Cite as

Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, and Jules Wulms. The Complexity of Geodesic Spanners Using Steiner Points. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2024.25,
  author =	{de Berg, Sarita and Ophelders, Tim and Parada, Irene and Staals, Frank and Wulms, Jules},
  title =	{{The Complexity of Geodesic Spanners Using Steiner Points}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.25},
  URN =		{urn:nbn:de:0030-drops-221527},
  doi =		{10.4230/LIPIcs.ISAAC.2024.25},
  annote =	{Keywords: spanner, simple polygon, polygonal domain, geodesic distance, complexity}
}
Document
Boundary Labeling in a Circular Orbit

Authors: Annika Bonerath, Martin Nöllenburg, Soeren Terziadis, Markus Wallinger, and Jules Wulms

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Boundary labeling is a well-known method for displaying short textual labels for a set of point features in a figure alongside the boundary of that figure. Labels and their corresponding points are connected via crossing-free leaders. We propose orbital boundary labeling as a new variant of the problem, in which (i) the figure is enclosed by a circular contour and (ii) the labels are placed as disjoint circular arcs in an annulus-shaped orbit around the contour. The algorithmic objective is to compute an orbital boundary labeling with the minimum total leader length. We identify several parameters that define the corresponding problem space: two leader types (straight or orbital-radial), label size and order, presence of candidate label positions, and constraints on where a leader attaches to its label. Our results provide polynomial-time algorithms for many variants and NP-hardness for others, using a variety of geometric and combinatorial insights.

Cite as

Annika Bonerath, Martin Nöllenburg, Soeren Terziadis, Markus Wallinger, and Jules Wulms. Boundary Labeling in a Circular Orbit. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonerath_et_al:LIPIcs.GD.2024.22,
  author =	{Bonerath, Annika and N\"{o}llenburg, Martin and Terziadis, Soeren and Wallinger, Markus and Wulms, Jules},
  title =	{{Boundary Labeling in a Circular Orbit}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.22},
  URN =		{urn:nbn:de:0030-drops-213060},
  doi =		{10.4230/LIPIcs.GD.2024.22},
  annote =	{Keywords: External labeling, Orthoradial drawing, NP-hardness, Polynomial algorithms}
}
Document
Graph Drawing Contest Report
Graph Drawing Contest Report (Graph Drawing Contest Report)

Authors: Sara Di Bartolomeo, Fabian Klute, Debajyoti Mondal, and Jules Wulms

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
This report describes the 31st Annual Graph Drawing Contest, held in conjunction with the 32nd International Symposium on Graph Drawing and Network Visualization (GD'24) at TU Wien, Vienna, Austria. The mission of the Graph Drawing Contest is to monitor and challenge the current state of the art in graph-drawing technology. This year’s edition featured two categories, a creative track in which participants visualized a dataset based on the Olympic medal track-record of countries and a live challenge held at the conference where participants had to draw a graph on a given point-set with as few crossings as possible.

Cite as

Sara Di Bartolomeo, Fabian Klute, Debajyoti Mondal, and Jules Wulms. Graph Drawing Contest Report (Graph Drawing Contest Report). In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 41:1-41:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dibartolomeo_et_al:LIPIcs.GD.2024.41,
  author =	{Di Bartolomeo, Sara and Klute, Fabian and Mondal, Debajyoti and Wulms, Jules},
  title =	{{Graph Drawing Contest Report}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{41:1--41:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.41},
  URN =		{urn:nbn:de:0030-drops-213256},
  doi =		{10.4230/LIPIcs.GD.2024.41},
  annote =	{Keywords: Information Visualization, Graph Drawing Contest}
}
Document
Capturing the Shape of a Point Set with a Line Segment

Authors: Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann, and Jules Wulms

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Detecting location-correlated groups in point sets is an important task in a wide variety of applications areas. In addition to merely detecting such groups, the group’s shape carries meaning as well. In this paper, we represent a group’s shape using a simple geometric object, a line segment. Specifically, given a radius r, we say a line segment is representative of a point set P of n points if it is within distance r of each point p ∈ P. We aim to find the shortest such line segment. This problem is equivalent to stabbing a set of circles of radius r using the shortest line segment. We describe an algorithm to find the shortest representative segment in O(n log h + h log³h) time, where h is the size of the convex hull of P. Additionally, we show how to maintain a stable approximation of the shortest representative segment when the points in P move.

Cite as

Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann, and Jules Wulms. Capturing the Shape of a Point Set with a Line Segment. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanbeusekom_et_al:LIPIcs.MFCS.2024.26,
  author =	{van Beusekom, Nathan and van Kreveld, Marc and van Mulken, Max and Roeloffzen, Marcel and Speckmann, Bettina and Wulms, Jules},
  title =	{{Capturing the Shape of a Point Set with a Line Segment}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.26},
  URN =		{urn:nbn:de:0030-drops-205820},
  doi =		{10.4230/LIPIcs.MFCS.2024.26},
  annote =	{Keywords: Shape descriptor, Stabbing, Rotating calipers}
}
Document
Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

Authors: Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
A fundamental question is whether one can maintain a maximum independent set (MIS) in polylogarithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate MIS can be maintained with worst-case update time O(log n), and optimal output-sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d, where the approximation ratio depends on the dimension and the fatness parameter. Further, we note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain O(1+ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions. Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al. (ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu (SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010), and quickly yields a "replacement" disk (if any) when a disk in one of our independent sets is deleted.

Cite as

Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms. Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhore_et_al:LIPIcs.SoCG.2024.19,
  author =	{Bhore, Sujoy and N\"{o}llenburg, Martin and T\'{o}th, Csaba D. and Wulms, Jules},
  title =	{{Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.19},
  URN =		{urn:nbn:de:0030-drops-199649},
  doi =		{10.4230/LIPIcs.SoCG.2024.19},
  annote =	{Keywords: Dynamic algorithm, Independent set, Geometric intersection graph}
}
Document
Transitions in Dynamic Point Labeling

Authors: Thomas Depian, Guangping Li, Martin Nöllenburg, and Jules Wulms

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
The labeling of point features on a map is a well-studied topic. In a static setting, the goal is to find a non-overlapping label placement for (a subset of) point features. In a dynamic setting, the set of point features and their corresponding labels change, and the labeling has to adapt to such changes. To aid the user in tracking these changes, we can use morphs, here called transitions, to indicate how a labeling changes. Such transitions have not gained much attention yet, and we investigate different types of transitions for labelings of points, most notably consecutive transitions and simultaneous transitions. We give (tight) bounds on the number of overlaps that can occur during these transitions. When each label has a (non-negative) weight associated to it, and each overlap imposes a penalty proportional to the weight of the overlapping labels, we show that it is NP-complete to decide whether the penalty during a simultaneous transition has weight at most k. Finally, in a case study, we consider geotagged Twitter data on a map, by labeling points with rectangular labels showing tweets. We developed a prototype implementation to evaluate different transition styles in practice, measuring both number of overlaps and transition duration.

Cite as

Thomas Depian, Guangping Li, Martin Nöllenburg, and Jules Wulms. Transitions in Dynamic Point Labeling. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{depian_et_al:LIPIcs.GIScience.2023.2,
  author =	{Depian, Thomas and Li, Guangping and N\"{o}llenburg, Martin and Wulms, Jules},
  title =	{{Transitions in Dynamic Point Labeling}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.2},
  URN =		{urn:nbn:de:0030-drops-188971},
  doi =		{10.4230/LIPIcs.GIScience.2023.2},
  annote =	{Keywords: Dynamic labels, Label overlaps, Morphs, NP-completeness, Case study}
}
Document
Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

Authors: Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
Edge-connected configurations of square modules, which can reconfigure through so-called sliding moves, are a well-established theoretical model for modular robots in two dimensions. Dumitrescu and Pach [Graphs and Combinatorics, 2006] proved that it is always possible to reconfigure one edge-connected configuration of n squares into any other using at most O(n²) sliding moves, while keeping the configuration connected at all times. For certain pairs of configurations, reconfiguration may require Ω(n²) sliding moves. However, significantly fewer moves may be sufficient. We prove that it is NP-hard to minimize the number of sliding moves for a given pair of edge-connected configurations. On the positive side we present Gather&Compact, an input-sensitive in-place algorithm that requires only O( ̄P n) sliding moves to transform one configuration into the other, where ̄P is the maximum perimeter of the two bounding boxes. The squares move within the bounding boxes only, with the exception of at most one square at a time which may move through the positions adjacent to the bounding boxes. The O( ̄P n) bound never exceeds O(n²), and is optimal (up to constant factors) among all bounds parameterized by just n and ̄P. Our algorithm is built on the basic principle that well-connected components of modular robots can be transformed efficiently. Hence we iteratively increase the connectivity within a configuration, to finally arrive at a single solid xy-monotone component. We implemented Gather&Compact and compared it experimentally to the in-place modification by Moreno and Sacristán [EuroCG 2020] of the Dumitrescu and Pach algorithm (MSDP). Our experiments show that Gather&Compact consistently outperforms MSDP by a significant margin, on all types of square configurations.

Cite as

Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.SWAT.2022.4,
  author =	{A. Akitaya, Hugo and Demaine, Erik D. and Korman, Matias and Kostitsyna, Irina and Parada, Irene and Sonke, Willem and Speckmann, Bettina and Uehara, Ryuhei and Wulms, Jules},
  title =	{{Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.4},
  URN =		{urn:nbn:de:0030-drops-161644},
  doi =		{10.4230/LIPIcs.SWAT.2022.4},
  annote =	{Keywords: Sliding cubes, Reconfiguration, Modular robots, NP-hardness}
}
Document
Media Exposition
An Interactive Framework for Reconfiguration in the Sliding Square Model (Media Exposition)

Authors: Willem Sonke and Jules Wulms

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We describe SquareSlider, a software framework for visualizing reconfiguration algorithms of modular robots in the sliding square model. In this model, a robot consists of a configuration of squares in a rectangular grid, which can reconfigure through a fixed set of possible moves. SquareSlider is a web-based tool that implements an easy-to-use interface allowing the user to build a configuration, run a reconfiguration algorithm on it, and examine the results.

Cite as

Willem Sonke and Jules Wulms. An Interactive Framework for Reconfiguration in the Sliding Square Model (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 70:1-70:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{sonke_et_al:LIPIcs.SoCG.2022.70,
  author =	{Sonke, Willem and Wulms, Jules},
  title =	{{An Interactive Framework for Reconfiguration in the Sliding Square Model}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{70:1--70:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.70},
  URN =		{urn:nbn:de:0030-drops-160781},
  doi =		{10.4230/LIPIcs.SoCG.2022.70},
  annote =	{Keywords: Modular robots, Implementation, Visualization}
}
Document
Media Exposition
Hiding Sliding Cubes: Why Reconfiguring Modular Robots Is Not Easy (Media Exposition)

Authors: Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Face-connected configurations of cubes are a common model for modular robots in three dimensions. In this abstract and the accompanying video we study reconfigurations of such modular robots using so-called sliding moves. Using sliding moves, it is always possible to reconfigure one face-connected configuration of n cubes into any other, while keeping the robot connected at all stages of the reconfiguration. For certain configurations Ω(n²) sliding moves are necessary. In contrast, the best current upper bound is O(n³). It has been conjectured that there is always a cube on the outside of any face-connected configuration of cubes which can be moved without breaking connectivity. The existence of such a cube would immediately imply a straight-forward O(n²) reconfiguration algorithm. However, we present a configuration of cubes such that no cube on the outside can move without breaking connectivity. In other words, we show that this particular avenue towards an O(n²) reconfiguration algorithm for face-connected cubes is blocked.

Cite as

Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms. Hiding Sliding Cubes: Why Reconfiguring Modular Robots Is Not Easy (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 78:1-78:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{miltzow_et_al:LIPIcs.SoCG.2020.78,
  author =	{Miltzow, Tillmann and Parada, Irene and Sonke, Willem and Speckmann, Bettina and Wulms, Jules},
  title =	{{Hiding Sliding Cubes: Why Reconfiguring Modular Robots Is Not Easy}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{78:1--78:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.78},
  URN =		{urn:nbn:de:0030-drops-122363},
  doi =		{10.4230/LIPIcs.SoCG.2020.78},
  annote =	{Keywords: Sliding cubes, Reconfiguration, Modular robots}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail