21 Search Results for "Arunachalam, Srinivasan"


Document
Track A: Algorithms, Complexity and Games
Learning Low-Degree Quantum Objects

Authors: Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of learning low-degree quantum objects up to ε-error in 𝓁₂-distance. We show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels and unitaries can be learned using O(1/ε^d) queries (which is independent of n), (ii) polynomials p:{-1,1}ⁿ → [-1,1] arising from d-query quantum algorithms can be learned from O((1/ε)^d ⋅ log n) many random examples (x,p(x)) (which implies learnability even for d = O(log n)), and (iii) degree-d polynomials p:{-1,1}ⁿ → [-1,1] can be learned through O(1/ε^d) queries to a quantum unitary U_p that block-encodes p. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded polynomials.

Cite as

Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos. Learning Low-Degree Quantum Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ICALP.2024.13,
  author =	{Arunachalam, Srinivasan and Dutt, Arkopal and Escudero Guti\'{e}rrez, Francisco and Palazuelos, Carlos},
  title =	{{Learning Low-Degree Quantum Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.13},
  URN =		{urn:nbn:de:0030-drops-201563},
  doi =		{10.4230/LIPIcs.ICALP.2024.13},
  annote =	{Keywords: Tomography}
}
Document
Quantum Merlin-Arthur and Proofs Without Relative Phase

Authors: Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study a variant of QMA where quantum proofs have no relative phase (i.e. non-negative amplitudes, up to a global phase). If only completeness is modified, this class is equal to QMA [Grilo et al., 2014]; but if both completeness and soundness are modified, the class (named QMA+ by Jeronimo and Wu [Jeronimo and Wu, 2023]) can be much more powerful. We show that QMA+ with some constant gap is equal to NEXP, yet QMA+ with some other constant gap is equal to QMA. One interpretation is that Merlin’s ability to "deceive" originates from relative phase at least as much as from entanglement, since QMA(2) ⊆ NEXP.

Cite as

Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. Quantum Merlin-Arthur and Proofs Without Relative Phase. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bassirian_et_al:LIPIcs.ITCS.2024.9,
  author =	{Bassirian, Roozbeh and Fefferman, Bill and Marwaha, Kunal},
  title =	{{Quantum Merlin-Arthur and Proofs Without Relative Phase}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.9},
  URN =		{urn:nbn:de:0030-drops-195370},
  doi =		{10.4230/LIPIcs.ITCS.2024.9},
  annote =	{Keywords: quantum complexity, QMA(2), PCPs}
}
Document
Classical Verification of Quantum Learning

Authors: Matthias C. Caro, Marcel Hinsche, Marios Ioannou, Alexander Nietner, and Ryan Sweke

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Quantum data access and quantum processing can make certain classically intractable learning tasks feasible. However, quantum capabilities will only be available to a select few in the near future. Thus, reliable schemes that allow classical clients to delegate learning to untrusted quantum servers are required to facilitate widespread access to quantum learning advantages. Building on a recently introduced framework of interactive proof systems for classical machine learning, we develop a framework for classical verification of quantum learning. We exhibit learning problems that a classical learner cannot efficiently solve on their own, but that they can efficiently and reliably solve when interacting with an untrusted quantum prover. Concretely, we consider the problems of agnostic learning parities and Fourier-sparse functions with respect to distributions with uniform input marginal. We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples, based on which we give efficient quantum learning algorithms for these tasks. Moreover, we prove that agnostic quantum parity and Fourier-sparse learning can be efficiently verified by a classical verifier with only random example or statistical query access. Finally, we showcase two general scenarios in learning and verification in which quantum mixture-of-superpositions examples do not lead to sample complexity improvements over classical data. Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents through interaction with untrusted quantum entities.

Cite as

Matthias C. Caro, Marcel Hinsche, Marios Ioannou, Alexander Nietner, and Ryan Sweke. Classical Verification of Quantum Learning. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 24:1-24:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{caro_et_al:LIPIcs.ITCS.2024.24,
  author =	{Caro, Matthias C. and Hinsche, Marcel and Ioannou, Marios and Nietner, Alexander and Sweke, Ryan},
  title =	{{Classical Verification of Quantum Learning}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{24:1--24:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.24},
  URN =		{urn:nbn:de:0030-drops-195524},
  doi =		{10.4230/LIPIcs.ITCS.2024.24},
  annote =	{Keywords: computational learning theory, quantum learning theory, interactive proofs, quantum oracles, agnostic learning}
}
Document
Improved Quantum Boosting

Authors: Adam Izdebski and Ronald de Wolf

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Boosting is a general method to convert a weak learner (which generates hypotheses that are just slightly better than random) into a strong learner (which generates hypotheses that are much better than random). Recently, Arunachalam and Maity [Srinivasan Arunachalam and Reevu Maity, 2020] gave the first quantum improvement for boosting, by combining Freund and Schapire’s AdaBoost algorithm with a quantum algorithm for approximate counting. Their booster is faster than classical boosting as a function of the VC-dimension of the weak learner’s hypothesis class, but worse as a function of the quality of the weak learner. In this paper we give a substantially faster and simpler quantum boosting algorithm, based on Servedio’s SmoothBoost algorithm [Servedio, 2003].

Cite as

Adam Izdebski and Ronald de Wolf. Improved Quantum Boosting. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 64:1-64:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{izdebski_et_al:LIPIcs.ESA.2023.64,
  author =	{Izdebski, Adam and de Wolf, Ronald},
  title =	{{Improved Quantum Boosting}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{64:1--64:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.64},
  URN =		{urn:nbn:de:0030-drops-187178},
  doi =		{10.4230/LIPIcs.ESA.2023.64},
  annote =	{Keywords: Learning theory, Boosting algorithms, Quantum computing}
}
Document
Optimal Algorithms for Learning Quantum Phase States

Authors: Srinivasan Arunachalam, Sergey Bravyi, Arkopal Dutt, and Theodore J. Yoder

Published in: LIPIcs, Volume 266, 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)


Abstract
We analyze the complexity of learning n-qubit quantum phase states. A degree-d phase state is defined as a superposition of all 2ⁿ basis vectors x with amplitudes proportional to (-1)^{f(x)}, where f is a degree-d Boolean polynomial over n variables. We show that the sample complexity of learning an unknown degree-d phase state is Θ(n^d) if we allow separable measurements and Θ(n^{d-1}) if we allow entangled measurements. Our learning algorithm based on separable measurements has runtime poly(n) (for constant d) and is well-suited for near-term demonstrations as it requires only single-qubit measurements in the Pauli X and Z bases. We show similar bounds on the sample complexity for learning generalized phase states with complex-valued amplitudes. We further consider learning phase states when f has sparsity-s, degree-d in its 𝔽₂ representation (with sample complexity O(2^d sn)), f has Fourier-degree-t (with sample complexity O(2^{2t})), and learning quadratic phase states with ε-global depolarizing noise (with sample complexity O(n^{1+ε})). These learning algorithms give us a procedure to learn the diagonal unitaries of the Clifford hierarchy and IQP circuits.

Cite as

Srinivasan Arunachalam, Sergey Bravyi, Arkopal Dutt, and Theodore J. Yoder. Optimal Algorithms for Learning Quantum Phase States. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 266, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.TQC.2023.3,
  author =	{Arunachalam, Srinivasan and Bravyi, Sergey and Dutt, Arkopal and Yoder, Theodore J.},
  title =	{{Optimal Algorithms for Learning Quantum Phase States}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{3:1--3:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2023.3},
  URN =		{urn:nbn:de:0030-drops-183139},
  doi =		{10.4230/LIPIcs.TQC.2023.3},
  annote =	{Keywords: Tomography, binary phase states, generalized phase states, IQP circuits}
}
Document
A Distribution Testing Oracle Separating QMA and QCMA

Authors: Anand Natarajan and Chinmay Nirkhe

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
It is a long-standing open question in quantum complexity theory whether the definition of non-deterministic quantum computation requires quantum witnesses (QMA) or if classical witnesses suffice (QCMA). We make progress on this question by constructing a randomized classical oracle separating the respective computational complexity classes. Previous separations [Aaronson and Kuperberg, 2007; Bill Fefferman and Shelby Kimmel, 2018] required a quantum unitary oracle. The separating problem is deciding whether a distribution supported on regular un-directed graphs either consists of multiple connected components (yes instances) or consists of one expanding connected component (no instances) where the graph is given in an adjacency-list format by the oracle. Therefore, the oracle is a distribution over n-bit boolean functions.

Cite as

Anand Natarajan and Chinmay Nirkhe. A Distribution Testing Oracle Separating QMA and QCMA. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 22:1-22:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{natarajan_et_al:LIPIcs.CCC.2023.22,
  author =	{Natarajan, Anand and Nirkhe, Chinmay},
  title =	{{A Distribution Testing Oracle Separating QMA and QCMA}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{22:1--22:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.22},
  URN =		{urn:nbn:de:0030-drops-182928},
  doi =		{10.4230/LIPIcs.CCC.2023.22},
  annote =	{Keywords: quantum non-determinism, complexity theory}
}
Document
Trade-Offs Between Entanglement and Communication

Authors: Srinivasan Arunachalam and Uma Girish

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We study the advantages of quantum communication models over classical communication models that are equipped with a limited number of qubits of entanglement. In this direction, we give explicit partial functions on n bits for which reducing the entanglement increases the classical communication complexity exponentially. Our separations are as follows. For every k ≥ ~1: Q‖^* versus R2^*: We show that quantum simultaneous protocols with Θ̃(k⁵log³n) qubits of entanglement can exponentially outperform two-way randomized protocols with O(k) qubits of entanglement. This resolves an open problem from [Dmitry Gavinsky, 2008] and improves the state-of-the-art separations between quantum simultaneous protocols with entanglement and two-way randomized protocols without entanglement [Gavinsky, 2019; Girish et al., 2022]. R‖^* versus Q‖^*: We show that classical simultaneous protocols with Θ̃(k log n) qubits of entanglement can exponentially outperform quantum simultaneous protocols with O(k) qubits of entanglement, resolving an open question from [Gavinsky et al., 2006; Gavinsky, 2019]. The best result prior to our work was a relational separation against protocols without entanglement [Gavinsky et al., 2006]. R‖^* versus R1^*: We show that classical simultaneous protocols with Θ̃(k log n) qubits of entanglement can exponentially outperform randomized one-way protocols with O(k) qubits of entanglement. Prior to our work, only a relational separation was known [Dmitry Gavinsky, 2008].

Cite as

Srinivasan Arunachalam and Uma Girish. Trade-Offs Between Entanglement and Communication. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 25:1-25:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.CCC.2023.25,
  author =	{Arunachalam, Srinivasan and Girish, Uma},
  title =	{{Trade-Offs Between Entanglement and Communication}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{25:1--25:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.25},
  URN =		{urn:nbn:de:0030-drops-182957},
  doi =		{10.4230/LIPIcs.CCC.2023.25},
  annote =	{Keywords: quantum, communication complexity, exponential separation, boolean hidden matching, forrelation, xor lemma}
}
Document
Influence in Completely Bounded Block-Multilinear Forms and Classical Simulation of Quantum Algorithms

Authors: Nikhil Bansal, Makrand Sinha, and Ronald de Wolf

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
The Aaronson-Ambainis conjecture (Theory of Computing '14) says that every low-degree bounded polynomial on the Boolean hypercube has an influential variable. This conjecture, if true, would imply that the acceptance probability of every d-query quantum algorithm can be well-approximated almost everywhere (i.e., on almost all inputs) by a poly(d)-query classical algorithm. We prove a special case of the conjecture: in every completely bounded degree-d block-multilinear form with constant variance, there always exists a variable with influence at least 1/poly(d). In a certain sense, such polynomials characterize the acceptance probability of quantum query algorithms, as shown by Arunachalam, Briët and Palazuelos (SICOMP '19). As a corollary we obtain efficient classical almost-everywhere simulation for a particular class of quantum algorithms that includes for instance k-fold Forrelation. Our main technical result relies on connections to free probability theory.

Cite as

Nikhil Bansal, Makrand Sinha, and Ronald de Wolf. Influence in Completely Bounded Block-Multilinear Forms and Classical Simulation of Quantum Algorithms. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 28:1-28:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.CCC.2022.28,
  author =	{Bansal, Nikhil and Sinha, Makrand and de Wolf, Ronald},
  title =	{{Influence in Completely Bounded Block-Multilinear Forms and Classical Simulation of Quantum Algorithms}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{28:1--28:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.28},
  URN =		{urn:nbn:de:0030-drops-165908},
  doi =		{10.4230/LIPIcs.CCC.2022.28},
  annote =	{Keywords: Aaronson-Ambainis conjecture, Quantum query complexity, Classical query complexity, Free probability, Completely bounded norm, Analysis of Boolean functions, Influence}
}
Document
The Parametrized Complexity of Quantum Verification

Authors: Srinivasan Arunachalam, Sergey Bravyi, Chinmay Nirkhe, and Bryan O'Gorman

Published in: LIPIcs, Volume 232, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)


Abstract
We initiate the study of parameterized complexity of QMA problems in terms of the number of non-Clifford gates in the problem description. We show that for the problem of parameterized quantum circuit satisfiability, there exists a classical algorithm solving the problem with a runtime scaling exponentially in the number of non-Clifford gates but only polynomially with the system size. This result follows from our main result, that for any Clifford + t T-gate quantum circuit satisfiability problem, the search space of optimal witnesses can be reduced to a stabilizer subspace isomorphic to at most t qubits (independent of the system size). Furthermore, we derive new lower bounds on the T-count of circuit satisfiability instances and the T-count of the W-state assuming the classical exponential time hypothesis (ETH). Lastly, we explore the parameterized complexity of the quantum non-identity check problem.

Cite as

Srinivasan Arunachalam, Sergey Bravyi, Chinmay Nirkhe, and Bryan O'Gorman. The Parametrized Complexity of Quantum Verification. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 232, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.TQC.2022.3,
  author =	{Arunachalam, Srinivasan and Bravyi, Sergey and Nirkhe, Chinmay and O'Gorman, Bryan},
  title =	{{The Parametrized Complexity of Quantum Verification}},
  booktitle =	{17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)},
  pages =	{3:1--3:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-237-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{232},
  editor =	{Le Gall, Fran\c{c}ois and Morimae, Tomoyuki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.3},
  URN =		{urn:nbn:de:0030-drops-165104},
  doi =		{10.4230/LIPIcs.TQC.2022.3},
  annote =	{Keywords: parametrized complexity, quantum verification, QMA}
}
Document
On Converses to the Polynomial Method

Authors: Jop Briët and Francisco Escudero Gutiérrez

Published in: LIPIcs, Volume 232, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)


Abstract
A surprising "converse to the polynomial method" of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. A natural question posed there asks if bounded quartic polynomials can be approximated by 2-query quantum algorithms. Arunachalam, Palazuelos and the first author showed that there is no direct analogue of the result of Aaronson et al. in this case. We improve on this result in the following ways: First, we point out and fix a small error in the construction that has to do with a translation from cubic to quartic polynomials. Second, we give a completely explicit example based on techniques from additive combinatorics. Third, we show that the result still holds when we allow for a small additive error. For this, we apply an SDP characterization of Gribling and Laurent (QIP'19) for the completely-bounded approximate degree.

Cite as

Jop Briët and Francisco Escudero Gutiérrez. On Converses to the Polynomial Method. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 232, pp. 6:1-6:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{briet_et_al:LIPIcs.TQC.2022.6,
  author =	{Bri\"{e}t, Jop and Escudero Guti\'{e}rrez, Francisco},
  title =	{{On Converses to the Polynomial Method}},
  booktitle =	{17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-237-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{232},
  editor =	{Le Gall, Fran\c{c}ois and Morimae, Tomoyuki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.6},
  URN =		{urn:nbn:de:0030-drops-165139},
  doi =		{10.4230/LIPIcs.TQC.2022.6},
  annote =	{Keywords: Quantum query complexity, polynomial method, completely bounded polynomials}
}
Document
Quantum Probability Oracles & Multidimensional Amplitude Estimation

Authors: Joran van Apeldoorn

Published in: LIPIcs, Volume 197, 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)


Abstract
We give a multidimensional version of amplitude estimation. Let p be an n-dimensional probability distribution which can be sampled from using a quantum circuit U_p. We show that all coordinates of p can be estimated up to error ε per coordinate using Õ(1/(ε)) applications of U_p and its inverse. This generalizes the normal amplitude estimation algorithm, which solves the problem for n = 2. Our results also imply a Õ(n/ε) query algorithm for 𝓁₁-norm (the total variation distance) estimation and a Õ(√n/ε) query algorithm for 𝓁₂-norm. We also show that these results are optimal up to logarithmic factors.

Cite as

Joran van Apeldoorn. Quantum Probability Oracles & Multidimensional Amplitude Estimation. In 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 197, pp. 9:1-9:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{vanapeldoorn:LIPIcs.TQC.2021.9,
  author =	{van Apeldoorn, Joran},
  title =	{{Quantum Probability Oracles \& Multidimensional Amplitude Estimation}},
  booktitle =	{16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)},
  pages =	{9:1--9:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-198-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{197},
  editor =	{Hsieh, Min-Hsiu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2021.9},
  URN =		{urn:nbn:de:0030-drops-140046},
  doi =		{10.4230/LIPIcs.TQC.2021.9},
  annote =	{Keywords: quantum algorithms, amplitude estimation, monte carlo}
}
Document
Bounds on the QAC^0 Complexity of Approximating Parity

Authors: Gregory Rosenthal

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
QAC circuits are quantum circuits with one-qubit gates and Toffoli gates of arbitrary arity. QAC^0 circuits are QAC circuits of constant depth, and are quantum analogues of AC^0 circuits. We prove the following: - For all d ≥ 7 and ε > 0 there is a depth-d QAC circuit of size exp(poly(n^{1/d}) log(n/ε)) that approximates the n-qubit parity function to within error ε on worst-case quantum inputs. Previously it was unknown whether QAC circuits of sublogarithmic depth could approximate parity regardless of size. - We introduce a class of "mostly classical" QAC circuits, including a major component of our circuit from the above upper bound, and prove a tight lower bound on the size of low-depth, mostly classical QAC circuits that approximate this component. - Arbitrary depth-d QAC circuits require at least Ω(n/d) multi-qubit gates to achieve a 1/2 + exp(-o(n/d)) approximation of parity. When d = Θ(log n) this nearly matches an easy O(n) size upper bound for computing parity exactly. - QAC circuits with at most two layers of multi-qubit gates cannot achieve a 1/2 + exp(-o(n)) approximation of parity, even non-cleanly. Previously it was known only that such circuits could not cleanly compute parity exactly for sufficiently large n. The proofs use a new normal form for quantum circuits which may be of independent interest, and are based on reductions to the problem of constructing certain generalizations of the cat state which we name "nekomata" after an analogous cat yōkai.

Cite as

Gregory Rosenthal. Bounds on the QAC^0 Complexity of Approximating Parity. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 32:1-32:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{rosenthal:LIPIcs.ITCS.2021.32,
  author =	{Rosenthal, Gregory},
  title =	{{Bounds on the QAC^0 Complexity of Approximating Parity}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{32:1--32:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.32},
  URN =		{urn:nbn:de:0030-drops-135713},
  doi =		{10.4230/LIPIcs.ITCS.2021.32},
  annote =	{Keywords: quantum circuit complexity, QAC^0, fanout, parity, nekomata}
}
Document
Communication Memento: Memoryless Communication Complexity

Authors: Srinivasan Arunachalam and Supartha Podder

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We study the communication complexity of computing functions F: {0,1}ⁿ × {0,1}ⁿ → {0,1} in the memoryless communication model. Here, Alice is given x ∈ {0,1}ⁿ, Bob is given y ∈ {0,1}ⁿ and their goal is to compute F(x,y) subject to the following constraint: at every round, Alice receives a message from Bob and her reply to Bob solely depends on the message received and her input x (in particular, her reply is independent of the information from the previous rounds); the same applies to Bob. The cost of computing F in this model is the maximum number of bits exchanged in any round between Alice and Bob (on the worst case input x,y). In this paper, we also consider variants of our memoryless model wherein one party is allowed to have memory, the parties are allowed to communicate quantum bits, only one player is allowed to send messages. We show that some of these different variants of our memoryless communication model capture the garden-hose model of computation by Buhrman et al. (ITCS'13), space-bounded communication complexity by Brody et al. (ITCS'13) and the overlay communication complexity by Papakonstantinou et al. (CCC'14). Thus the memoryless communication complexity model provides a unified framework to study all these space-bounded communication complexity models. We establish the following main results: (1) We show that the memoryless communication complexity of F equals the logarithm of the size of the smallest bipartite branching program computing F (up to a factor 2); (2) We show that memoryless communication complexity equals garden-hose model of computation; (3) We exhibit various exponential separations between these memoryless communication models. We end with an intriguing open question: can we find an explicit function F and universal constant c > 1 for which the memoryless communication complexity is at least c log n? Note that c ≥ 2+ε would imply a Ω(n^{2+ε}) lower bound for general formula size, improving upon the best lower bound by [Nečiporuk, 1966].

Cite as

Srinivasan Arunachalam and Supartha Podder. Communication Memento: Memoryless Communication Complexity. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ITCS.2021.61,
  author =	{Arunachalam, Srinivasan and Podder, Supartha},
  title =	{{Communication Memento: Memoryless Communication Complexity}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.61},
  URN =		{urn:nbn:de:0030-drops-136007},
  doi =		{10.4230/LIPIcs.ITCS.2021.61},
  annote =	{Keywords: Communication complexity, space complexity, branching programs, garden-hose model, quantum computing}
}
Document
Quantum Query-To-Communication Simulation Needs a Logarithmic Overhead

Authors: Sourav Chakraborty, Arkadev Chattopadhyay, Nikhil S. Mande, and Manaswi Paraashar

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
Buhrman, Cleve and Wigderson (STOC'98) observed that for every Boolean function f:{-1,1}ⁿ → {-1,1} and •:{-1,1}² → {-1,1} the two-party bounded-error quantum communication complexity of (f ∘ •) is O(Q(f) log n), where Q(f) is the bounded-error quantum query complexity of f. Note that the bounded-error randomized communication complexity of (f ∘ •) is bounded by O(R(f)), where R(f) denotes the bounded-error randomized query complexity of f. Thus, the BCW simulation has an extra O(log n) factor appearing that is absent in classical simulation. A natural question is if this factor can be avoided. Razborov (IZV MATH'03) showed that the bounded-error quantum communication complexity of Set-Disjointness is Ω(√n). The BCW simulation yields an upper bound of O(√n log n). Høyer and de Wolf (STACS'02) showed that this can be reduced to c^(log^* n) for some constant c, and subsequently Aaronson and Ambainis (FOCS'03) showed that this factor can be made a constant. That is, the quantum communication complexity of the Set-Disjointness function (which is NOR_n ∘ ∧) is O(Q(NOR_n)). Perhaps somewhat surprisingly, we show that when • = ⊕, then the extra log n factor in the BCW simulation is unavoidable. In other words, we exhibit a total function F:{-1,1}ⁿ → {-1,1} such that Q^{cc}(F ∘ ⊕) = Θ(Q(F) log n). To the best of our knowledge, it was not even known prior to this work whether there existed a total function F and 2-bit function •, such that Q^{cc}(F ∘ •) = ω(Q(F)).

Cite as

Sourav Chakraborty, Arkadev Chattopadhyay, Nikhil S. Mande, and Manaswi Paraashar. Quantum Query-To-Communication Simulation Needs a Logarithmic Overhead. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 32:1-32:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.CCC.2020.32,
  author =	{Chakraborty, Sourav and Chattopadhyay, Arkadev and Mande, Nikhil S. and Paraashar, Manaswi},
  title =	{{Quantum Query-To-Communication Simulation Needs a Logarithmic Overhead}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{32:1--32:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.32},
  URN =		{urn:nbn:de:0030-drops-125842},
  doi =		{10.4230/LIPIcs.CCC.2020.32},
  annote =	{Keywords: Quantum query complexity, quantum communication complexity, approximate degree, approximate spectral norm}
}
Document
Quantum Coupon Collector

Authors: Srinivasan Arunachalam, Aleksandrs Belovs, Andrew M. Childs, Robin Kothari, Ansis Rosmanis, and Ronald de Wolf

Published in: LIPIcs, Volume 158, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)


Abstract
We study how efficiently a k-element set S⊆[n] can be learned from a uniform superposition |S> of its elements. One can think of |S>=∑_{i∈S}|i>/√|S| as the quantum version of a uniformly random sample over S, as in the classical analysis of the "coupon collector problem." We show that if k is close to n, then we can learn S using asymptotically fewer quantum samples than random samples. In particular, if there are n-k=O(1) missing elements then O(k) copies of |S> suffice, in contrast to the Θ(k log k) random samples needed by a classical coupon collector. On the other hand, if n-k=Ω(k), then Ω(k log k) quantum samples are necessary. More generally, we give tight bounds on the number of quantum samples needed for every k and n, and we give efficient quantum learning algorithms. We also give tight bounds in the model where we can additionally reflect through |S>. Finally, we relate coupon collection to a known example separating proper and improper PAC learning that turns out to show no separation in the quantum case.

Cite as

Srinivasan Arunachalam, Aleksandrs Belovs, Andrew M. Childs, Robin Kothari, Ansis Rosmanis, and Ronald de Wolf. Quantum Coupon Collector. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 158, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.TQC.2020.10,
  author =	{Arunachalam, Srinivasan and Belovs, Aleksandrs and Childs, Andrew M. and Kothari, Robin and Rosmanis, Ansis and de Wolf, Ronald},
  title =	{{Quantum Coupon Collector}},
  booktitle =	{15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-146-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{158},
  editor =	{Flammia, Steven T.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2020.10},
  URN =		{urn:nbn:de:0030-drops-120692},
  doi =		{10.4230/LIPIcs.TQC.2020.10},
  annote =	{Keywords: Quantum algorithms, Adversary method, Coupon collector, Quantum learning theory}
}
  • Refine by Author
  • 12 Arunachalam, Srinivasan
  • 6 de Wolf, Ronald
  • 3 Chakraborty, Sourav
  • 2 Bravyi, Sergey
  • 2 Briët, Jop
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 Quantum query complexity
  • 2 Quantum computing
  • 2 Tomography
  • 2 agnostic learning
  • 2 approximate degree
  • Show More...

  • Refine by Type
  • 21 document

  • Refine by Publication Year
  • 4 2023
  • 3 2020
  • 3 2021
  • 3 2022
  • 3 2024
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail