62 Search Results for "Bojanczyk, Mikolaj"


Volume

LIPIcs, Volume 229

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)

ICALP 2022, July 4-8, 2022, Paris, France

Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff

Volume

LIPIcs, Volume 213

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)

FSTTCS 2021, December 15-17, 2021, Virtual Conference

Editors: Mikołaj Bojańczyk and Chandra Chekuri

Document
Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures

Authors: Christel Baier, Jakob Piribauer, and Maximilian Starke

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses objectives tailored to the risk-averse optimization of accumulated rewards in Markov decision processes (MDPs). The studied objectives require maximizing the expected value of the accumulated rewards minus a penalty factor times a deviation measure of the resulting distribution of rewards. Using the variance in this penalty mechanism leads to the variance-penalized expectation (VPE) for which it is known that optimal schedulers have to minimize future expected rewards when a high amount of rewards has been accumulated. This behavior is undesirable as risk-averse behavior should keep the probability of particularly low outcomes low, but not discourage the accumulation of additional rewards on already good executions. The paper investigates the semi-variance, which only takes outcomes below the expected value into account, the mean absolute deviation (MAD), and the semi-MAD as alternative deviation measures. Furthermore, a penalty mechanism that penalizes outcomes below a fixed threshold is studied. For all of these objectives, the properties of optimal schedulers are specified and in particular the question whether these objectives overcome the problem observed for the VPE is answered. Further, the resulting algorithmic problems on MDPs and Markov chains are investigated.

Cite as

Christel Baier, Jakob Piribauer, and Maximilian Starke. Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 9:1-9:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2024.9,
  author =	{Baier, Christel and Piribauer, Jakob and Starke, Maximilian},
  title =	{{Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{9:1--9:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.9},
  URN =		{urn:nbn:de:0030-drops-207816},
  doi =		{10.4230/LIPIcs.CONCUR.2024.9},
  annote =	{Keywords: Markov decision processes, risk-aversion, deviation measures, total reward}
}
Document
Passive Learning of Regular Data Languages in Polynomial Time and Data

Authors: Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A regular data language is a language over an infinite alphabet recognized by a deterministic register automaton (DRA), as defined by Benedikt, Ley and Puppis. The later model, which is expressively equivalent to the deterministic finite-memory automata introduced earlier by Francez and Kaminsky, enjoys unique minimal automata (up to isomorphism), based on a Myhill-Nerode theorem. In this paper, we introduce a polynomial time passive learning algorithm for regular data languages from positive and negative samples. Following Gold’s model for learning languages, we prove that our algorithm can identify in the limit any regular data language L, i.e. it returns a minimal DRA recognizing L if a characteristic sample set for L is provided as input. We prove that there exist characteristic sample sets of polynomial size with respect to the size of the minimal DRA recognizing L. To the best of our knowledge, it is the first passive learning algorithm for data languages, and the first learning algorithm which is fully polynomial, both with respect to time complexity and size of the characteristic sample set.

Cite as

Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini. Passive Learning of Regular Data Languages in Polynomial Time and Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 10:1-10:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balachander_et_al:LIPIcs.CONCUR.2024.10,
  author =	{Balachander, Mrudula and Filiot, Emmanuel and Gentilini, Raffaella},
  title =	{{Passive Learning of Regular Data Languages in Polynomial Time and Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{10:1--10:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.10},
  URN =		{urn:nbn:de:0030-drops-207829},
  doi =		{10.4230/LIPIcs.CONCUR.2024.10},
  annote =	{Keywords: Register automata, passive learning, automata over infinite alphabets}
}
Document
As Soon as Possible but Rationally

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player games played on weighted graphs, where the objective of each player is to minimize the cost of reaching a specific set of target vertices. In these games, one player, referred to as the system, declares his strategy upfront. The other players, composing the environment, then rationally make their moves according to their objectives. The rational behavior of these responding players is captured through two models: they opt for strategies that either represent a Nash equilibrium or lead to a play with a Pareto-optimal cost tuple.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As Soon as Possible but Rationally. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2024.14,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{As Soon as Possible but Rationally}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.14},
  URN =		{urn:nbn:de:0030-drops-207869},
  doi =		{10.4230/LIPIcs.CONCUR.2024.14},
  annote =	{Keywords: Games played on graphs, rational verification, rational synthesis, Nash equilibrium, Pareto-optimality, quantitative reachability objectives}
}
Document
Weighted Basic Parallel Processes and Combinatorial Enumeration

Authors: Lorenzo Clemente

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and language equivalence of unambiguous BPP, with the same complexity. These are long-standing open problems for the related model of weighted context-free grammars. Our second contribution is a connection between WBPP, power series solutions of systems of polynomial differential equations, and combinatorial enumeration. To this end we consider constructible differentially finite power series (CDF), a class of multivariate differentially algebraic series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite (holonomic) series, for which no complexity upper bound for equivalence was known. We show that CDF series correspond to commutative WBPP series. As a consequence of our result on WBPP and commutativity, we show that equivalence of CDF power series can be decided with 2-EXPTIME complexity. In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally arise from combinatorial enumeration, namely as the exponential generating series of constructible species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection, we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of which was not known before. The complexity analysis is based on effective bounds from algebraic geometry, namely on the length of chains of polynomial ideals constructed by repeated application of finitely many, not necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the theory of WBPP series and CDF power series, exposing several of their appealing properties.

Cite as

Lorenzo Clemente. Weighted Basic Parallel Processes and Combinatorial Enumeration. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{clemente:LIPIcs.CONCUR.2024.18,
  author =	{Clemente, Lorenzo},
  title =	{{Weighted Basic Parallel Processes and Combinatorial Enumeration}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.18},
  URN =		{urn:nbn:de:0030-drops-207903},
  doi =		{10.4230/LIPIcs.CONCUR.2024.18},
  annote =	{Keywords: weighted automata, combinatorial enumeration, shuffle, algebraic differential equations, process algebra, basic parallel processes, species of structures}
}
Document
Strategic Dominance: A New Preorder for Nondeterministic Processes

Authors: Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the following refinement relation between nondeterministic state-transition models: model ℬ strategically dominates model 𝒜 iff every deterministic refinement of 𝒜 is language contained in some deterministic refinement of ℬ. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between 𝒜 and ℬ: every strategy that resolves the nondeterminism of 𝒜 is dominated by a strategy that resolves the nondeterminism of ℬ. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Cite as

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Strategic Dominance: A New Preorder for Nondeterministic Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2024.29,
  author =	{Henzinger, Thomas A. and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Strategic Dominance: A New Preorder for Nondeterministic Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.29},
  URN =		{urn:nbn:de:0030-drops-208011},
  doi =		{10.4230/LIPIcs.CONCUR.2024.29},
  annote =	{Keywords: quantitative automata, refinement relation, resolver, strategy, history-determinism}
}
Document
Bi-Reachability in Petri Nets with Data

Authors: Łukasz Kamiński and Sławomir Lasota

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from an infinite data domain, and executability of transitions is conditioned by equalities between data values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its two configurations, we ask if each of the configurations is reachable from the other. This pushes forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem (which is known to be decidable) and is subsumed by the reachability problem (whose decidability status is unknown).

Cite as

Łukasz Kamiński and Sławomir Lasota. Bi-Reachability in Petri Nets with Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaminski_et_al:LIPIcs.CONCUR.2024.31,
  author =	{Kami\'{n}ski, {\L}ukasz and Lasota, S{\l}awomir},
  title =	{{Bi-Reachability in Petri Nets with Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.31},
  URN =		{urn:nbn:de:0030-drops-208038},
  doi =		{10.4230/LIPIcs.CONCUR.2024.31},
  annote =	{Keywords: Petri nets, Petri nets with data, reachability, bi-reachability, reversible reachability, mutual reachability, orbit-finite sets}
}
Document
On Continuous Pushdown VASS in One Dimension

Authors: Guillermo A. Pérez and Shrisha Rao

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition systems with a pushdown stack. The algorithmic analysis of PVASS has applications such as static analysis of recursive programs manipulating integer variables. Unfortunately, reachability analysis, even for one-dimensional PVASS is not known to be decidable. So, we relax the model of one-dimensional PVASS to make the counter updates continuous and show that in this case reachability, coverability, and boundedness are decidable in polynomial time. In addition, for the extension of the model with lower-bound guards on the states, we show that coverability and reachability are NP-complete, and boundedness is coNP-complete.

Cite as

Guillermo A. Pérez and Shrisha Rao. On Continuous Pushdown VASS in One Dimension. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 34:1-34:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{perez_et_al:LIPIcs.CONCUR.2024.34,
  author =	{P\'{e}rez, Guillermo A. and Rao, Shrisha},
  title =	{{On Continuous Pushdown VASS in One Dimension}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{34:1--34:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.34},
  URN =		{urn:nbn:de:0030-drops-208065},
  doi =		{10.4230/LIPIcs.CONCUR.2024.34},
  annote =	{Keywords: Vector addition systems, Pushdown automata, Reachability}
}
Document
Nominal Tree Automata with Name Allocation

Authors: Simon Prucker and Lutz Schröder

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Data trees serve as an abstraction of structured data, such as XML documents. A number of specification formalisms for languages of data trees have been developed, many of them adhering to the paradigm of register automata, which is based on storing data values encountered on the tree in registers for subsequent comparison with further data values. Already on word languages, the expressiveness of such automata models typically increases with the power of control (e.g. deterministic, non-deterministic, alternating). Language inclusion is typically undecidable for non-deterministic or alternating models unless the number of registers is radically restricted, and even then often remains non-elementary. We present an automaton model for data trees that retains a reasonable level of expressiveness, in particular allows non-determinism and any number of registers, while admitting language inclusion checking in elementary complexity, in fact in parametrized exponential time. We phrase the description of our automaton model in the language of nominal sets, building on the recently introduced paradigm of explicit name allocation in nominal automata.

Cite as

Simon Prucker and Lutz Schröder. Nominal Tree Automata with Name Allocation. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{prucker_et_al:LIPIcs.CONCUR.2024.35,
  author =	{Prucker, Simon and Schr\"{o}der, Lutz},
  title =	{{Nominal Tree Automata with Name Allocation}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.35},
  URN =		{urn:nbn:de:0030-drops-208071},
  doi =		{10.4230/LIPIcs.CONCUR.2024.35},
  annote =	{Keywords: Data languages, tree automata, nominal automata, inclusion checking}
}
Document
Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

Authors: Isolde Adler and Eva Fluck

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We study a variation of the cops and robber game characterising treewidth, where in each round at most one cop may be placed and in each play at most q rounds are played, where q is a parameter of the game. We prove that if k cops have a winning strategy in this game, then k cops have a monotone winning strategy. As a corollary we obtain a new characterisation of bounded depth treewidth, and we give a positive answer to an open question by Fluck, Seppelt and Spitzer (2024), thus showing that graph classes of bounded depth treewidth are homomorphism distinguishing closed. Our proof of monotonicity substantially reorganises a winning strategy by first transforming it into a pre-tree decomposition, which is inspired by decompositions of matroids, and then applying an intricate breadth-first "cleaning up" procedure along the pre-tree decomposition (which may temporarily lose the property of representing a strategy), in order to achieve monotonicity while controlling the number of rounds simultaneously across all branches of the decomposition via a vertex exchange argument. We believe this can be useful in future research.

Cite as

Isolde Adler and Eva Fluck. Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adler_et_al:LIPIcs.MFCS.2024.6,
  author =	{Adler, Isolde and Fluck, Eva},
  title =	{{Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.6},
  URN =		{urn:nbn:de:0030-drops-205621},
  doi =		{10.4230/LIPIcs.MFCS.2024.6},
  annote =	{Keywords: tree decompositions, treewidth, treedepth, cops-and-robber game, monotonicity, homomorphism distinguishing closure}
}
Document
C_{2k+1}-Coloring of Bounded-Diameter Graphs

Authors: Marta Piecyk

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph G and we have to determine whether there exists an edge-preserving mapping φ: V(G) → V(H). Note that Hom(C₃), where C₃ is the cycle of length 3, is equivalent to 3-Coloring. The question of whether 3-Coloring is polynomial-time solvable on diameter-2 graphs is a well-known open problem. In this paper we study the Hom(C_{2k+1}) problem on bounded-diameter graphs for k ≥ 2, so we consider all other odd cycles than C₃. We prove that for k ≥ 2, the Hom(C_{2k+1}) problem is polynomial-time solvable on diameter-(k+1) graphs - note that such a result for k = 1 would be precisely a polynomial-time algorithm for 3-Coloring of diameter-2 graphs. Furthermore, we give subexponential-time algorithms for diameter-(k+2) and -(k+3) graphs. We complement these results with a lower bound for diameter-(2k+2) graphs - in this class of graphs the Hom(C_{2k+1}) problem is NP-hard and cannot be solved in subexponential-time, unless the ETH fails. Finally, we consider another direction of generalizing 3-Coloring on diameter-2 graphs. We consider other target graphs H than odd cycles but we restrict ourselves to diameter 2. We show that if H is triangle-free, then Hom(H) is polynomial-time solvable on diameter-2 graphs.

Cite as

Marta Piecyk. C_{2k+1}-Coloring of Bounded-Diameter Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 78:1-78:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{piecyk:LIPIcs.MFCS.2024.78,
  author =	{Piecyk, Marta},
  title =	{{C\underline\{2k+1\}-Coloring of Bounded-Diameter Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{78:1--78:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.78},
  URN =		{urn:nbn:de:0030-drops-206348},
  doi =		{10.4230/LIPIcs.MFCS.2024.78},
  annote =	{Keywords: graph homomorphism, odd cycles, diameter}
}
Document
Demonic Variance and a Non-Determinism Score for Markov Decision Processes

Authors: Jakob Piribauer

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
This paper studies the influence of probabilism and non-determinism on some quantitative aspect X of the execution of a system modeled as a Markov decision process (MDP). To this end, the novel notion of demonic variance is introduced: For a random variable X in an MDP ℳ, it is defined as 1/2 times the maximal expected squared distance of the values of X in two independent execution of ℳ in which also the non-deterministic choices are resolved independently by two distinct schedulers. It is shown that the demonic variance is between 1 and 2 times as large as the maximal variance of X in ℳ that can be achieved by a single scheduler. This allows defining a non-determinism score for ℳ and X measuring how strongly the difference of X in two executions of ℳ can be influenced by the non-deterministic choices. Properties of MDPs ℳ with extremal values of the non-determinism score are established. Further, the algorithmic problems of computing the maximal variance and the demonic variance are investigated for two random variables, namely weighted reachability and accumulated rewards. In the process, also the structure of schedulers maximizing the variance and of scheduler pairs realizing the demonic variance is analyzed.

Cite as

Jakob Piribauer. Demonic Variance and a Non-Determinism Score for Markov Decision Processes. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 79:1-79:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{piribauer:LIPIcs.MFCS.2024.79,
  author =	{Piribauer, Jakob},
  title =	{{Demonic Variance and a Non-Determinism Score for Markov Decision Processes}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{79:1--79:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.79},
  URN =		{urn:nbn:de:0030-drops-206358},
  doi =		{10.4230/LIPIcs.MFCS.2024.79},
  annote =	{Keywords: Markov decision processes, variance, non-determinism, probabilism}
}
Document
An Algorithmic Meta Theorem for Homomorphism Indistinguishability

Authors: Tim Seppelt

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Two graphs G and H are homomorphism indistinguishable over a family of graphs ℱ if for all graphs F ∈ ℱ the number of homomorphisms from F to G is equal to the number of homomorphism from F to H. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, cospectrality, and logical equivalences can be characterised as homomorphism indistinguishability relations over various graph classes. The wealth of such results motivates a more fundamental study of homomorphism indistinguishability. From a computational perspective, the central object of interest is the decision problem HomInd(ℱ) which asks to determine whether two input graphs G and H are homomorphism indistinguishable over a fixed graph class ℱ. The problem HomInd(ℱ) is known to be decidable only for few graph classes ℱ. Due to a conjecture by Roberson (2022) and results by Seppelt (MFCS 2023), homomorphism indistinguishability relations over minor-closed graph classes are of special interest. We show that HomInd(ℱ) admits a randomised polynomial-time algorithm for every minor-closed graph class ℱ of bounded treewidth. This result extends to a version of HomInd where the graph class ℱ is specified by a sentence in counting monadic second-order logic and a bound k on the treewidth, which are given as input. For fixed k, this problem is randomised fixed-parameter tractable. If k is part of the input, then it is coNP- and coW[1]-hard. Addressing a problem posed by Berkholz (2012), we show coNP-hardness by establishing that deciding indistinguishability under the k-dimensional Weisfeiler-Leman algorithm is coNP-hard when k is part of the input.

Cite as

Tim Seppelt. An Algorithmic Meta Theorem for Homomorphism Indistinguishability. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 82:1-82:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{seppelt:LIPIcs.MFCS.2024.82,
  author =	{Seppelt, Tim},
  title =	{{An Algorithmic Meta Theorem for Homomorphism Indistinguishability}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{82:1--82:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.82},
  URN =		{urn:nbn:de:0030-drops-206387},
  doi =		{10.4230/LIPIcs.MFCS.2024.82},
  annote =	{Keywords: homomorphism indistinguishability, graph homomorphism, graph minor, recognisability, randomised algorithm, Courcelle’s Theorem}
}
Document
Baby PIH: Parameterized Inapproximability of Min CSP

Authors: Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only (1-ε)-satisfiable (where the parameter is the number of variables) for some constant 0 < ε < 1. We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well.

Cite as

Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapproximability of Min CSP. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2024.27,
  author =	{Guruswami, Venkatesan and Ren, Xuandi and Sandeep, Sai},
  title =	{{Baby PIH: Parameterized Inapproximability of Min CSP}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.27},
  URN =		{urn:nbn:de:0030-drops-204237},
  doi =		{10.4230/LIPIcs.CCC.2024.27},
  annote =	{Keywords: Parameterized Inapproximability Hypothesis, Constraint Satisfaction Problems}
}
  • Refine by Author
  • 18 Bojanczyk, Mikolaj
  • 10 Bojańczyk, Mikołaj
  • 4 Torunczyk, Szymon
  • 3 Nguyễn, Lê Thành Dũng (Tito)
  • 2 Chekuri, Chandra
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Formal languages and automata theory
  • 5 Theory of computation → Transducers
  • 4 Mathematics of computing → Graph algorithms
  • 4 Theory of computation
  • 4 Theory of computation → Logic and verification
  • Show More...

  • Refine by Keyword
  • 5 Automata
  • 5 automata
  • 4 monadic second-order logic
  • 3 data words
  • 3 graph homomorphism
  • Show More...

  • Refine by Type
  • 60 document
  • 2 volume

  • Refine by Publication Year
  • 30 2024
  • 5 2022
  • 4 2016
  • 4 2017
  • 4 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail