14 Search Results for "Erickson, Jeff"


Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Cite as

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2024.95,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{Fully Dynamic Strongly Connected Components in Planar Digraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95},
  URN =		{urn:nbn:de:0030-drops-202388},
  doi =		{10.4230/LIPIcs.ICALP.2024.95},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability, planar graphs}
}
Document
Invited Talk
The Tragedy of Being Almost but Not Quite Planar (Invited Talk)

Authors: Jeff Erickson

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Planar graphs have been fertile grounds for algorithms research for decades, both because they model several types of real-world networks, and because they admit simpler and and faster algorithms than arbitrary graphs. Many important structural properties of planar graphs extend naturally to graphs that embed on more complex surfaces. As a result, efficient algorithms for planar graphs often extend naturally to higher-genus surface graphs with little or no modification. I will describe a few of my favorite exceptions to this rule - classical problems that admit simple, efficient, and practical algorithms for planar graphs, but where algorithms for graphs on other surfaces are significantly slower and/or more complex.

Cite as

Jeff Erickson. The Tragedy of Being Almost but Not Quite Planar (Invited Talk). In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{erickson:LIPIcs.ISAAC.2022.2,
  author =	{Erickson, Jeff},
  title =	{{The Tragedy of Being Almost but Not Quite Planar}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.2},
  URN =		{urn:nbn:de:0030-drops-172875},
  doi =		{10.4230/LIPIcs.ISAAC.2022.2},
  annote =	{Keywords: planar graphs, surface graphs, algorithms, open problems}
}
Document
Chasing Puppies: Mobile Beacon Routing on Closed Curves

Authors: Mikkel Abrahamsen, Jeff Erickson, Irina Kostitsyna, Maarten Löffler, Tillmann Miltzow, Jérôme Urhausen, Jordi Vermeulen, and Giovanni Viglietta

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We solve an open problem posed by Michael Biro at CCCG 2013 that was inspired by his and others’ work on beacon-based routing. Consider a human and a puppy on a simple closed curve in the plane. The human can walk along the curve at bounded speed and change direction as desired. The puppy runs with unbounded speed along the curve as long as the Euclidean straight-line distance to the human is decreasing, so that it is always at a point on the curve where the distance is locally minimal. Assuming that the curve is smooth (with some mild genericity constraints) or a simple polygon, we prove that the human can always catch the puppy in finite time.

Cite as

Mikkel Abrahamsen, Jeff Erickson, Irina Kostitsyna, Maarten Löffler, Tillmann Miltzow, Jérôme Urhausen, Jordi Vermeulen, and Giovanni Viglietta. Chasing Puppies: Mobile Beacon Routing on Closed Curves. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2021.5,
  author =	{Abrahamsen, Mikkel and Erickson, Jeff and Kostitsyna, Irina and L\"{o}ffler, Maarten and Miltzow, Tillmann and Urhausen, J\'{e}r\^{o}me and Vermeulen, Jordi and Viglietta, Giovanni},
  title =	{{Chasing Puppies: Mobile Beacon Routing on Closed Curves}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.5},
  URN =		{urn:nbn:de:0030-drops-138046},
  doi =		{10.4230/LIPIcs.SoCG.2021.5},
  annote =	{Keywords: Beacon routing, navigation, generic smooth curves, puppies}
}
Document
Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries

Authors: Erin Wolf Chambers, Francis Lazarus, Arnaud de Mesmay, and Salman Parsa

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the complexity of the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve γ, and a collection of disjoint normal curves Δ, there is a polynomial-time algorithm to decide if γ lies in the normal subgroup generated by components of Δ in the fundamental group of the surface after attaching the curves to a basepoint.

Cite as

Erin Wolf Chambers, Francis Lazarus, Arnaud de Mesmay, and Salman Parsa. Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chambers_et_al:LIPIcs.SoCG.2021.23,
  author =	{Chambers, Erin Wolf and Lazarus, Francis and de Mesmay, Arnaud and Parsa, Salman},
  title =	{{Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.23},
  URN =		{urn:nbn:de:0030-drops-138223},
  doi =		{10.4230/LIPIcs.SoCG.2021.23},
  annote =	{Keywords: 3-manifolds, surfaces, low-dimensional topology, contractibility, compressed curves}
}
Document
Homotopic Curve Shortening and the Affine Curve-Shortening Flow

Authors: Sergey Avvakumov and Gabriel Nivasch

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We define and study a discrete process that generalizes the convex-layer decomposition of a planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve (which might self-intersect) in the presence of a set P⊂ ℝ² of point obstacles, and evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the curve to its shortest homotopic equivalent. We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between "grid peeling" and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves, and which was studied only for regular grids. We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant under affine transformations, preserves convexity, and does not increase the total absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections between two curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of inflection points (appropriately defined) does not increase.

Cite as

Sergey Avvakumov and Gabriel Nivasch. Homotopic Curve Shortening and the Affine Curve-Shortening Flow. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 12:1-12:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{avvakumov_et_al:LIPIcs.SoCG.2020.12,
  author =	{Avvakumov, Sergey and Nivasch, Gabriel},
  title =	{{Homotopic Curve Shortening and the Affine Curve-Shortening Flow}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.12},
  URN =		{urn:nbn:de:0030-drops-121708},
  doi =		{10.4230/LIPIcs.SoCG.2020.12},
  annote =	{Keywords: affine curve-shortening flow, shortest homotopic path, integer grid, convex-layer decomposition}
}
Document
A Toroidal Maxwell-Cremona-Delaunay Correspondence

Authors: Jeff Erickson and Patrick Lin

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We consider three classes of geodesic embeddings of graphs on Euclidean flat tori: - A torus graph G is equilibrium if it is possible to place positive weights on the edges, such that the weighted edge vectors incident to each vertex of G sum to zero. - A torus graph G is reciprocal if there is a geodesic embedding of the dual graph G^* on the same flat torus, where each edge of G is orthogonal to the corresponding dual edge in G^*. - A torus graph G is coherent if it is possible to assign weights to the vertices, so that G is the (intrinsic) weighted Delaunay graph of its vertices. The classical Maxwell-Cremona correspondence and the well-known correspondence between convex hulls and weighted Delaunay triangulations imply that the analogous concepts for plane graphs (with convex outer faces) are equivalent. Indeed, all three conditions are equivalent to G being the projection of the 1-skeleton of the lower convex hull of points in ℝ³. However, this three-way equivalence does not extend directly to geodesic graphs on flat tori. On any flat torus, reciprocal and coherent graphs are equivalent, and every reciprocal graph is equilibrium, but not every equilibrium graph is reciprocal. We establish a weaker correspondence: Every equilibrium graph on any flat torus is affinely equivalent to a reciprocal/coherent graph on some flat torus.

Cite as

Jeff Erickson and Patrick Lin. A Toroidal Maxwell-Cremona-Delaunay Correspondence. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 40:1-40:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{erickson_et_al:LIPIcs.SoCG.2020.40,
  author =	{Erickson, Jeff and Lin, Patrick},
  title =	{{A Toroidal Maxwell-Cremona-Delaunay Correspondence}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.40},
  URN =		{urn:nbn:de:0030-drops-121984},
  doi =		{10.4230/LIPIcs.SoCG.2020.40},
  annote =	{Keywords: combinatorial topology, geometric graphs, homology, flat torus, spring embedding, intrinsic Delaunay}
}
Document
Computational Geometry (Dagstuhl Seminar 19181)

Authors: Siu-Wing Cheng, Anne Driemel, and Jeff Erickson

Published in: Dagstuhl Reports, Volume 9, Issue 4 (2019)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 19181 "Computational Geometry". The seminar was held from April 28 to May 3, 2019 and 40 participants from various countries attended it. New advances and directions in computational geometry were presented and discussed. The report collects the abstracts of talks and open problems presented in the seminar.

Cite as

Siu-Wing Cheng, Anne Driemel, and Jeff Erickson. Computational Geometry (Dagstuhl Seminar 19181). In Dagstuhl Reports, Volume 9, Issue 4, pp. 107-123, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{cheng_et_al:DagRep.9.4.107,
  author =	{Cheng, Siu-Wing and Driemel, Anne and Erickson, Jeff},
  title =	{{Computational Geometry (Dagstuhl Seminar 19181)}},
  pages =	{107--123},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2019},
  volume =	{9},
  number =	{4},
  editor =	{Cheng, Siu-Wing and Driemel, Anne and Erickson, Jeff},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.9.4.107},
  URN =		{urn:nbn:de:0030-drops-113064},
  doi =		{10.4230/DagRep.9.4.107},
  annote =	{Keywords: Computational geometry, polynomial partition, geometric data structures, approximation}
}
Document
Lower Bounds for Electrical Reduction on Surfaces

Authors: Hsien-Chih Chang, Marcos Cossarini, and Jeff Erickson

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We strengthen the connections between electrical transformations and homotopy from the planar setting - observed and studied since Steinitz - to arbitrary surfaces with punctures. As a result, we improve our earlier lower bound on the number of electrical transformations required to reduce an n-vertex graph on surface in the worst case [SOCG 2016] in two different directions. Our previous Omega(n^{3/2}) lower bound applies only to facial electrical transformations on plane graphs with no terminals. First we provide a stronger Omega(n^2) lower bound when the planar graph has two or more terminals, which follows from a quadratic lower bound on the number of homotopy moves in the annulus. Our second result extends our earlier Omega(n^{3/2}) lower bound to the wider class of planar electrical transformations, which preserve the planarity of the graph but may delete cycles that are not faces of the given embedding. This new lower bound follow from the observation that the defect of the medial graph of a planar graph is the same for all its planar embeddings.

Cite as

Hsien-Chih Chang, Marcos Cossarini, and Jeff Erickson. Lower Bounds for Electrical Reduction on Surfaces. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.SoCG.2019.25,
  author =	{Chang, Hsien-Chih and Cossarini, Marcos and Erickson, Jeff},
  title =	{{Lower Bounds for Electrical Reduction on Surfaces}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{25:1--25:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.25},
  URN =		{urn:nbn:de:0030-drops-104294},
  doi =		{10.4230/LIPIcs.SoCG.2019.25},
  annote =	{Keywords: electrical transformation, Delta-Y-transformation, homotopy, tight, defect, SPQR-tree, smoothings, routing set, 2-flipping}
}
Document
Topologically Trivial Closed Walks in Directed Surface Graphs

Authors: Jeff Erickson and Yipu Wang

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
Let G be a directed graph with n vertices and m edges, embedded on a surface S, possibly with boundary, with first Betti number beta. We consider the complexity of finding closed directed walks in G that are either contractible (trivial in homotopy) or bounding (trivial in integer homology) in S. Specifically, we describe algorithms to determine whether G contains a simple contractible cycle in O(n+m) time, or a contractible closed walk in O(n+m) time, or a bounding closed walk in O(beta (n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in G and in the dual graph G^*; our contractible-closed-walk algorithm also relies on a seminal topological result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard. We also describe three polynomial-time algorithms to compute shortest contractible closed walks, depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with O(g^2L^2) non-terminals that generates all contractible closed walks of length at most L, and only contractible closed walks, in a system of quads of genus g >= 2. Finally, we show that computing shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed walks are all NP-hard.

Cite as

Jeff Erickson and Yipu Wang. Topologically Trivial Closed Walks in Directed Surface Graphs. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{erickson_et_al:LIPIcs.SoCG.2019.34,
  author =	{Erickson, Jeff and Wang, Yipu},
  title =	{{Topologically Trivial Closed Walks in Directed Surface Graphs}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.34},
  URN =		{urn:nbn:de:0030-drops-104383},
  doi =		{10.4230/LIPIcs.SoCG.2019.34},
  annote =	{Keywords: computational topology, surface-embedded graphs, homotopy, homology, strong connectivity, hyperbolic geometry, medial axes, context-free grammars}
}
Document
Computational Geometry (Dagstuhl Seminar 17171)

Authors: Orfried Cheong, Anne Driemel, and Jeff Erickson

Published in: Dagstuhl Reports, Volume 7, Issue 4 (2018)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17171 "Computational Geometry". The seminar was held from 23rd to 28th April 2017 and 47 participants from various countries attended it. Recent advances in computational geometry were presented and new challenges were identified. The report collects the abstracts of talks and open problems presented in the seminar.

Cite as

Orfried Cheong, Anne Driemel, and Jeff Erickson. Computational Geometry (Dagstuhl Seminar 17171). In Dagstuhl Reports, Volume 7, Issue 4, pp. 107-127, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{cheong_et_al:DagRep.7.4.107,
  author =	{Cheong, Orfried and Driemel, Anne and Erickson, Jeff},
  title =	{{Computational Geometry (Dagstuhl Seminar 17171)}},
  pages =	{107--127},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{7},
  number =	{4},
  editor =	{Cheong, Orfried and Driemel, Anne and Erickson, Jeff},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.7.4.107},
  URN =		{urn:nbn:de:0030-drops-82771},
  doi =		{10.4230/DagRep.7.4.107},
  annote =	{Keywords: algorithms, applications, combinatorics, complexity, geometric computing, high-dimensional computational geometry, implementation, monitoring and shape data}
}
Document
Algorithms for Optimization Problems in Planar Graphs (Dagstuhl Seminar 16221)

Authors: Jeff Erickson, Philip N. Klein, Dániel Marx, and Claire Mathieu

Published in: Dagstuhl Reports, Volume 6, Issue 5 (2016)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16221 “Algorithms for Optimization Problems in Planar Graphs”. The seminar was held from May 29 to June 3, 2016. This report contains abstracts for the recent developments in planar graph algorithms discussed during the seminar as well as summaries of open problems in this area of research.

Cite as

Jeff Erickson, Philip N. Klein, Dániel Marx, and Claire Mathieu. Algorithms for Optimization Problems in Planar Graphs (Dagstuhl Seminar 16221). In Dagstuhl Reports, Volume 6, Issue 5, pp. 94-113, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{erickson_et_al:DagRep.6.5.94,
  author =	{Erickson, Jeff and Klein, Philip N. and Marx, D\'{a}niel and Mathieu, Claire},
  title =	{{Algorithms for Optimization Problems in Planar Graphs (Dagstuhl Seminar 16221)}},
  pages =	{94--113},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2016},
  volume =	{6},
  number =	{5},
  editor =	{Erickson, Jeff and Klein, Philip N. and Marx, D\'{a}niel and Mathieu, Claire},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.6.5.94},
  URN =		{urn:nbn:de:0030-drops-67227},
  doi =		{10.4230/DagRep.6.5.94},
  annote =	{Keywords: Algorithms, planar graphs, theory, approximation, fixed-parameter tractable, network flow, network design, kernelization}
}
Document
Recognizing Weakly Simple Polygons

Authors: Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba Tóth

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
We present an O(n log n)-time algorithm that determines whether a given planar n-gon is weakly simple. This improves upon an O(n^2 log n)-time algorithm by [Chang, Erickson, and Xu, SODA, 2015]. Weakly simple polygons are required as input for several geometric algorithms. As such, how to recognize simple or weakly simple polygons is a fundamental question.

Cite as

Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba Tóth. Recognizing Weakly Simple Polygons. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.SoCG.2016.8,
  author =	{Akitaya, Hugo A. and Aloupis, Greg and Erickson, Jeff and T\'{o}th, Csaba},
  title =	{{Recognizing Weakly Simple Polygons}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.8},
  URN =		{urn:nbn:de:0030-drops-59003},
  doi =		{10.4230/LIPIcs.SoCG.2016.8},
  annote =	{Keywords: weakly simple polygon, crossing}
}
Document
Untangling Planar Curves

Authors: Hsien-Chih Chang and Jeff Erickson

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence of local transformations called homotopy moves. We prove that simplifying a planar closed curve with n self-crossings requires Theta(n^{3/2}) homotopy moves in the worst case. Our algorithm improves the best previous upper bound O(n^2), which is already implicit in the classical work of Steinitz; the matching lower bound follows from the construction of closed curves with large defect, a topological invariant of generic closed curves introduced by Aicardi and Arnold. This lower bound also implies that Omega(n^{3/2}) degree-1 reductions, series-parallel reductions, and Delta-Y transformations are required to reduce any planar graph with treewidth Omega(sqrt{n}) to a single edge, matching known upper bounds for rectangular and cylindrical grid graphs. Finally, we prove that Omega(n^2) homotopy moves are required in the worst case to transform one non-contractible closed curve on the torus to another; this lower bound is tight if the curve is homotopic to a simple closed curve.

Cite as

Hsien-Chih Chang and Jeff Erickson. Untangling Planar Curves. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.SoCG.2016.29,
  author =	{Chang, Hsien-Chih and Erickson, Jeff},
  title =	{{Untangling Planar Curves}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.29},
  URN =		{urn:nbn:de:0030-drops-59218},
  doi =		{10.4230/LIPIcs.SoCG.2016.29},
  annote =	{Keywords: computational topology, homotopy, planar graphs, Delta-Y transformations, defect, Reidemeister moves, tangles}
}
Document
Computational Geometry (Dagstuhl Seminar 15111)

Authors: Otfried Cheong, Jeff Erickson, and Monique Teillaud

Published in: Dagstuhl Reports, Volume 5, Issue 3 (2015)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15111 "Computational Geometry". The seminar was held from 8th to 13th March 2015 and 41 senior and young researchers from various countries and continents attended it. Recent developments in the field were presented and new challenges in computational geometry were identified.

Cite as

Otfried Cheong, Jeff Erickson, and Monique Teillaud. Computational Geometry (Dagstuhl Seminar 15111). In Dagstuhl Reports, Volume 5, Issue 3, pp. 41-62, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@Article{cheong_et_al:DagRep.5.3.41,
  author =	{Cheong, Otfried and Erickson, Jeff and Teillaud, Monique},
  title =	{{Computational Geometry (Dagstuhl Seminar 15111)}},
  pages =	{41--62},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2015},
  volume =	{5},
  number =	{3},
  editor =	{Cheong, Otfried and Erickson, Jeff and Teillaud, Monique},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.5.3.41},
  URN =		{urn:nbn:de:0030-drops-52689},
  doi =		{10.4230/DagRep.5.3.41},
  annote =	{Keywords: Algorithms, geometry, theory, approximation, implementation, combinatorics, topology}
}
  • Refine by Author
  • 11 Erickson, Jeff
  • 2 Chang, Hsien-Chih
  • 2 Driemel, Anne
  • 1 Abrahamsen, Mikkel
  • 1 Akitaya, Hugo A.
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Computational geometry
  • 2 Mathematics of computing → Geometric topology
  • 2 Mathematics of computing → Graphs and surfaces
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 4 planar graphs
  • 3 approximation
  • 3 homotopy
  • 2 Algorithms
  • 2 algorithms
  • Show More...

  • Refine by Type
  • 14 document

  • Refine by Publication Year
  • 3 2016
  • 3 2019
  • 2 2020
  • 2 2021
  • 1 2015
  • Show More...