19 Search Results for "Jain, Rahul"


Document
The Entangled Quantum Polynomial Hierarchy Collapses

Authors: Sabee Grewal and Justin Yirka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We introduce the entangled quantum polynomial hierarchy, QEPH, as the class of problems that are efficiently verifiable given alternating quantum proofs that may be entangled with each other. We prove QEPH collapses to its second level. In fact, we show that a polynomial number of alternations collapses to just two. As a consequence, QEPH = QRG(1), the class of problems having one-turn quantum refereed games, which is known to be contained in PSPACE. This is in contrast to the unentangled quantum polynomial hierarchy, QPH, which contains QMA(2). We also introduce DistributionQCPH, a generalization of the quantum-classical polynomial hierarchy QCPH where the provers send probability distributions over strings (instead of strings). We prove DistributionQCPH = QCPH, suggesting that only quantum superposition (not classical probability) increases the computational power of these hierarchies. To prove this equality, we generalize a game-theoretic result of Lipton and Young (1994) which says that, without loss of generality, the provers can send uniform distributions over a polynomial-size support. We also prove the analogous result for the polynomial hierarchy, i.e., DistributionPH = PH. Finally, we show that PH and QCPH are contained in QPH, resolving an open question of Gharibian et al. (2022).

Cite as

Sabee Grewal and Justin Yirka. The Entangled Quantum Polynomial Hierarchy Collapses. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grewal_et_al:LIPIcs.CCC.2024.6,
  author =	{Grewal, Sabee and Yirka, Justin},
  title =	{{The Entangled Quantum Polynomial Hierarchy Collapses}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.6},
  URN =		{urn:nbn:de:0030-drops-204028},
  doi =		{10.4230/LIPIcs.CCC.2024.6},
  annote =	{Keywords: Polynomial hierarchy, Entangled proofs, Correlated proofs, Minimax}
}
Document
Total NP Search Problems with Abundant Solutions

Authors: Jiawei Li

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We define a new complexity class TFAP to capture TFNP problems that possess abundant solutions for each input. We identify several problems across diverse fields that belong to TFAP, including WeakPigeon (finding a collision in a mapping from [2n] pigeons to [n] holes), Yamakawa-Zhandry’s problem [Takashi Yamakawa and Mark Zhandry, 2022], and all problems in TFZPP. Conversely, we introduce the notion of "semi-gluability" to characterize TFNP problems that could have a unique or a very limited number of solutions for certain inputs. We prove that there is no black-box reduction from any "semi-gluable" problems to any TFAP problems. Furthermore, it can be extended to rule out randomized black-box reduction in most cases. We identify that the majority of common TFNP subclasses, including PPA, PPAD, PPADS, PPP, PLS, CLS, SOPL, and UEOPL, are "semi-gluable". This leads to a broad array of oracle separation results within TFNP regime. As a corollary, UEOPL^O ⊈ PWPP^O relative to an oracle O.

Cite as

Jiawei Li. Total NP Search Problems with Abundant Solutions. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 75:1-75:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li:LIPIcs.ITCS.2024.75,
  author =	{Li, Jiawei},
  title =	{{Total NP Search Problems with Abundant Solutions}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{75:1--75:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.75},
  URN =		{urn:nbn:de:0030-drops-196031},
  doi =		{10.4230/LIPIcs.ITCS.2024.75},
  annote =	{Keywords: TFNP, Pigeonhole Principle}
}
Document
On the Geometric Thickness of 2-Degenerate Graphs

Authors: Rahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every 2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is, there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3. This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].

Cite as

Rahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz. On the Geometric Thickness of 2-Degenerate Graphs. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.SoCG.2023.44,
  author =	{Jain, Rahul and Ricci, Marco and Rollin, Jonathan and Schulz, Andr\'{e}},
  title =	{{On the Geometric Thickness of 2-Degenerate Graphs}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.44},
  URN =		{urn:nbn:de:0030-drops-178946},
  doi =		{10.4230/LIPIcs.SoCG.2023.44},
  annote =	{Keywords: Degeneracy, geometric thickness, geometric arboricity}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Dynamic Meta-Theorems for Distance and Matching

Authors: Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Reachability, distance, and matching are some of the most fundamental graph problems that have been of particular interest in dynamic complexity theory in recent years [Samir Datta et al., 2018; Samir Datta et al., 2018; Samir Datta et al., 2020]. Reachability can be maintained with first-order update formulas, or equivalently in DynFO in general graphs with n nodes [Samir Datta et al., 2018], even under O(log(n)/log log(n)) changes per step [Samir Datta et al., 2018]. In the context of how large the number of changes can be handled, it has recently been shown [Samir Datta et al., 2020] that under a polylogarithmic number of changes, reachability is in DynFOpar in planar, bounded treewidth, and related graph classes - in fact in any graph where small non-zero circulation weights can be computed in NC. We continue this line of investigation and extend the meta-theorem for reachability to distance and bipartite maximum matching with the same bounds. These are amongst the most general classes of graphs known where we can maintain these problems deterministically without using a majority quantifier and even maintain witnesses. For the bipartite matching result, modifying the approach from [Stephen A. Fenner et al., 2016], we convert the static non-zero circulation weights to dynamic matching-isolating weights. While reachability is in DynFOar under O(log(n)/log log(n)) changes, no such bound is known for either distance or matching in any non-trivial class of graphs under non-constant changes. We show that, in the same classes of graphs as before, bipartite maximum matching is in DynFOar under O(log(n)/log log(n)) changes per step. En route to showing this we prove that the rank of a matrix can be maintained in DynFOar, also under O(log(n)/log log(n)) entry changes, improving upon the previous O(1) bound [Samir Datta et al., 2018]. This implies a similar extension for the non-uniform DynFO bound for maximum matching in general graphs and an alternate algorithm for maintaining reachability under O(log(n)/log log(n)) changes [Samir Datta et al., 2018].

Cite as

Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari. Dynamic Meta-Theorems for Distance and Matching. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 118:1-118:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.ICALP.2022.118,
  author =	{Datta, Samir and Gupta, Chetan and Jain, Rahul and Mukherjee, Anish and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Dynamic Meta-Theorems for Distance and Matching}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{118:1--118:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.118},
  URN =		{urn:nbn:de:0030-drops-164598},
  doi =		{10.4230/LIPIcs.ICALP.2022.118},
  annote =	{Keywords: Dynamic Complexity, Distance, Matching, Derandomization, Isolation, Matrix Rank}
}
Document
Space-Efficient Algorithms for Reachability in Directed Geometric Graphs

Authors: Sujoy Bhore and Rahul Jain

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal graphs. For each of these graph families, we present space-efficient algorithms for the Reachability problem. For intersection graphs of Jordan regions, we show how to obtain a "good" vertex separator in a space-efficient manner and use it to solve the Reachability in polynomial time and O(m^{1/2} log n) space, where n is the number of Jordan regions, and m is the total number of crossings among the regions. We use a similar approach for chordal graphs and obtain a polynomial time and O(m^{1/2} log n) space algorithm, where n and m are the number of vertices and edges, respectively. However, for unit contact disk graphs (penny graphs), we use a more involved technique and obtain a better algorithm. We show that for every ε > 0, there exists a polynomial time algorithm that can solve Reachability in an n vertex directed penny graph, using O(n^{1/4+ε}) space. We note that the method used to solve penny graphs does not extend naturally to the class of geometric intersection graphs that include arbitrary size cliques.

Cite as

Sujoy Bhore and Rahul Jain. Space-Efficient Algorithms for Reachability in Directed Geometric Graphs. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 63:1-63:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhore_et_al:LIPIcs.ISAAC.2021.63,
  author =	{Bhore, Sujoy and Jain, Rahul},
  title =	{{Space-Efficient Algorithms for Reachability in Directed Geometric Graphs}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{63:1--63:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.63},
  URN =		{urn:nbn:de:0030-drops-154961},
  doi =		{10.4230/LIPIcs.ISAAC.2021.63},
  annote =	{Keywords: Reachablity, Geometric intersection graphs, Space-efficient algorithms}
}
Document
Reachability and Matching in Single Crossing Minor Free Graphs

Authors: Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We show that for each single crossing graph H, a polynomially bounded weight function for all H-minor free graphs G can be constructed in logspace such that it gives nonzero weights to all the cycles in G. This class of graphs subsumes almost all classes of graphs for which such a weight function is known to be constructed in logspace. As a consequence, we obtain that for the class of H-minor free graphs where H is a single crossing graph, reachability can be solved in UL, and bipartite maximum matching can be solved in SPL, which are small subclasses of the parallel complexity class NC. In the restrictive case of bipartite graphs, our maximum matching result improves upon the recent result of Eppstein and Vazirani [David Eppstein and Vijay V. Vazirani, 2021], where they show an NC bound for constructing perfect matching in general single crossing minor free graphs.

Cite as

Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari. Reachability and Matching in Single Crossing Minor Free Graphs. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.FSTTCS.2021.16,
  author =	{Datta, Samir and Gupta, Chetan and Jain, Rahul and Mukherjee, Anish and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Reachability and Matching in Single Crossing Minor Free Graphs}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.16},
  URN =		{urn:nbn:de:0030-drops-155277},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.16},
  annote =	{Keywords: Reachability, Matching, Logspace, Single-crossing minor free graphs}
}
Document
Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

Authors: Chetan Gupta, Rahul Jain, and Raghunath Tewari

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
A graph separator is a subset of vertices of a graph whose removal divides the graph into small components. Computing small graph separators for various classes of graphs is an important computational task. In this paper, we present a polynomial-time algorithm that uses O(g^{1/2} n^{1/2} log n)-space to find an O(g^{1/2} n^{1/2})-sized separator of a graph having n vertices and embedded on an orientable surface of genus g.

Cite as

Chetan Gupta, Rahul Jain, and Raghunath Tewari. Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.FSTTCS.2021.23,
  author =	{Gupta, Chetan and Jain, Rahul and Tewari, Raghunath},
  title =	{{Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.23},
  URN =		{urn:nbn:de:0030-drops-155344},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.23},
  annote =	{Keywords: Graph algorithms, space-bounded algorithms, surface embedded graphs, reachability, Euler genus, algorithmic graph theory, computational complexity theory}
}
Document
A Direct Product Theorem for One-Way Quantum Communication

Authors: Rahul Jain and Srijita Kundu

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We prove a direct product theorem for the one-way entanglement-assisted quantum communication complexity of a general relation f ⊆ 𝒳×𝒴×𝒵. For any 0 < ε < δ < 1/2 and any k≥1, we show that Q¹_{1-(1-ε)^{Ω(k/log|𝒵|)}}(f^k) = Ω(k⋅Q¹_{δ}(f)), where Q¹_{ε}(f) represents the one-way entanglement-assisted quantum communication complexity of f with worst-case error ε and f^k denotes k parallel instances of f. As far as we are aware, this is the first direct product theorem for the quantum communication complexity of a general relation - direct sum theorems were previously known for one-way quantum protocols for general relations, while direct product theorems were only known for special cases. Our techniques are inspired by the parallel repetition theorems for the entangled value of two-player non-local games, under product distributions due to Jain, Pereszlényi and Yao [Rahul Jain et al., 2014], and under anchored distributions due to Bavarian, Vidick and Yuen [Bavarian et al., 2017], as well as message compression for quantum protocols due to Jain, Radhakrishnan and Sen [Rahul Jain et al., 2005]. In particular, we show that a direct product theorem holds for the distributional one-way quantum communication complexity of f under any distribution q on 𝒳×𝒴 that is anchored on one side, i.e., there exists a y^* such that q(y^*) is constant and q(x|y^*) = q(x) for all x. This allows us to show a direct product theorem for general distributions, since for any relation f and any distribution p on its inputs, we can define a modified relation f̃ which has an anchored distribution q close to p, such that a protocol that fails with probability at most ε for f̃ under q can be used to give a protocol that fails with probability at most ε + ζ for f under p. Our techniques also work for entangled non-local games which have input distributions anchored on any one side, i.e., either there exists a y^* as previously specified, or there exists an x^* such that q(x^*) is constant and q(y|x^*) = q(y) for all y. In particular, we show that for any game G = (q, 𝒳×𝒴, 𝒜×ℬ, 𝖵) where q is a distribution on 𝒳×𝒴 anchored on any one side with constant anchoring probability, then ω^*(G^k) = (1 - (1-ω^*(G))⁵) ^{Ω(k/(log(|𝒜|⋅|ℬ|)))} where ω^*(G) represents the entangled value of the game G. This is a generalization of the result of [Bavarian et al., 2017], who proved a parallel repetition theorem for games anchored on both sides, i.e., where both a special x^* and a special y^* exist, and potentially a simplification of their proof.

Cite as

Rahul Jain and Srijita Kundu. A Direct Product Theorem for One-Way Quantum Communication. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 27:1-27:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.CCC.2021.27,
  author =	{Jain, Rahul and Kundu, Srijita},
  title =	{{A Direct Product Theorem for One-Way Quantum Communication}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{27:1--27:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.27},
  URN =		{urn:nbn:de:0030-drops-143017},
  doi =		{10.4230/LIPIcs.CCC.2021.27},
  annote =	{Keywords: Direct product theorem, parallel repetition theorem, quantum communication, one-way protocols, communication complexity}
}
Document
On Query-To-Communication Lifting for Adversary Bounds

Authors: Anurag Anshu, Shalev Ben-David, and Srijita Kundu

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We investigate query-to-communication lifting theorems for models related to the quantum adversary bounds. Our results are as follows: 1) We show that the classical adversary bound lifts to a lower bound on randomized communication complexity with a constant-sized gadget. We also show that the classical adversary bound is a strictly stronger lower bound technique than the previously-lifted measure known as critical block sensitivity, making our lifting theorem one of the strongest lifting theorems for randomized communication complexity using a constant-sized gadget. 2) Turning to quantum models, we show a connection between lifting theorems for quantum adversary bounds and secure 2-party quantum computation in a certain "honest-but-curious" model. Under the assumption that such secure 2-party computation is impossible, we show that a simplified version of the positive-weight adversary bound lifts to a quantum communication lower bound using a constant-sized gadget. We also give an unconditional lifting theorem which lower bounds bounded-round quantum communication protocols. 3) Finally, we give some new results in query complexity. We show that the classical adversary and the positive-weight quantum adversary are quadratically related. We also show that the positive-weight quantum adversary is never larger than the square of the approximate degree. Both relations hold even for partial functions.

Cite as

Anurag Anshu, Shalev Ben-David, and Srijita Kundu. On Query-To-Communication Lifting for Adversary Bounds. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 30:1-30:39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.CCC.2021.30,
  author =	{Anshu, Anurag and Ben-David, Shalev and Kundu, Srijita},
  title =	{{On Query-To-Communication Lifting for Adversary Bounds}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{30:1--30:39},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.30},
  URN =		{urn:nbn:de:0030-drops-143042},
  doi =		{10.4230/LIPIcs.CCC.2021.30},
  annote =	{Keywords: Quantum computing, query complexity, communication complexity, lifting theorems, adversary method}
}
Document
Unambiguous Catalytic Computation

Authors: Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
The catalytic Turing machine is a model of computation defined by Buhrman, Cleve, Koucký, Loff, and Speelman (STOC 2014). Compared to the classical space-bounded Turing machine, this model has an extra space which is filled with arbitrary content in addition to the clean space. In such a model we study if this additional filled space can be used to increase the power of computation or not, with the condition that the initial content of this extra filled space must be restored at the end of the computation. In this paper, we define the notion of unambiguous catalytic Turing machine and prove that under a standard derandomization assumption, the class of problems solved by an unambiguous catalytic Turing machine is same as the class of problems solved by a general nondeterministic catalytic Turing machine in the logspace setting.

Cite as

Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unambiguous Catalytic Computation. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 16:1-16:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.FSTTCS.2019.16,
  author =	{Gupta, Chetan and Jain, Rahul and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Unambiguous Catalytic Computation}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{16:1--16:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.16},
  URN =		{urn:nbn:de:0030-drops-115782},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.16},
  annote =	{Keywords: Catalytic computation, Logspace, Reinhardt-Allender}
}
Document
An O(n^(1/4 +epsilon)) Space and Polynomial Algorithm for Grid Graph Reachability

Authors: Rahul Jain and Raghunath Tewari

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
The reachability problem is to determine if there exists a path from one vertex to another in a graph. Grid graphs are the class of graphs where vertices are present on the lattice points of a two-dimensional grid, and an edge can occur between a vertex and its immediate horizontal or vertical neighbor only. Asano et al. presented the first simultaneous time space bound for reachability in grid graphs by presenting an algorithm that solves the problem in polynomial time and O(n^(1/2 + epsilon)) space. In 2018, the space bound was improved to O~(n^(1/3)) by Ashida and Nakagawa. In this paper, we show that reachability in an n vertex grid graph can be decided by an algorithm using O(n^(1/4 + epsilon)) space and polynomial time simultaneously.

Cite as

Rahul Jain and Raghunath Tewari. An O(n^(1/4 +epsilon)) Space and Polynomial Algorithm for Grid Graph Reachability. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.FSTTCS.2019.19,
  author =	{Jain, Rahul and Tewari, Raghunath},
  title =	{{An O(n^(1/4 +epsilon)) Space and Polynomial Algorithm for Grid Graph Reachability}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.19},
  URN =		{urn:nbn:de:0030-drops-115813},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.19},
  annote =	{Keywords: graph reachability, grid graph, graph algorithm, sublinear space algorithm}
}
Document
Reachability in High Treewidth Graphs

Authors: Rahul Jain and Raghunath Tewari

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Reachability is the problem of deciding whether there is a path from one vertex to the other in the graph. Standard graph traversal algorithms such as DFS and BFS take linear time to decide reachability; however, their space complexity is also linear. On the other hand, Savitch’s algorithm takes quasipolynomial time although the space bound is O(log^2 n). Here, we study space efficient algorithms for deciding reachability that run in polynomial time. In this paper, we show that given an n vertex directed graph of treewidth w along with its tree decomposition, there exists an algorithm running in polynomial time and O(w log n) space that solves the reachability problem.

Cite as

Rahul Jain and Raghunath Tewari. Reachability in High Treewidth Graphs. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.ISAAC.2019.12,
  author =	{Jain, Rahul and Tewari, Raghunath},
  title =	{{Reachability in High Treewidth Graphs}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{12:1--12:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.12},
  URN =		{urn:nbn:de:0030-drops-115087},
  doi =		{10.4230/LIPIcs.ISAAC.2019.12},
  annote =	{Keywords: graph reachability, simultaneous time-space upper bound, tree decomposition}
}
Document
Track A: Algorithms, Complexity and Games
A Composition Theorem for Randomized Query Complexity via Max-Conflict Complexity

Authors: Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
For any relation f subseteq {0,1}^n x S and any partial Boolean function g:{0,1}^m -> {0,1,*}, we show that R_{1/3}(f o g^n) in Omega(R_{4/9}(f) * sqrt{R_{1/3}(g)}) , where R_epsilon(*) stands for the bounded-error randomized query complexity with error at most epsilon, and f o g^n subseteq ({0,1}^m)^n x S denotes the composition of f with n instances of g. The new composition theorem is optimal, at least, for the general case of relational problems: A relation f_0 and a partial Boolean function g_0 are constructed, such that R_{4/9}(f_0) in Theta(sqrt n), R_{1/3}(g_0)in Theta(n) and R_{1/3}(f_0 o g_0^n) in Theta(n). The theorem is proved via introducing a new complexity measure, max-conflict complexity, denoted by bar{chi}(*). Its investigation shows that bar{chi}(g) in Omega(sqrt{R_{1/3}(g)}) for any partial Boolean function g and R_{1/3}(f o g^n) in Omega(R_{4/9}(f) * bar{chi}(g)) for any relation f, which readily implies the composition statement. It is further shown that bar{chi}(g) is always at least as large as the sabotage complexity of g.

Cite as

Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. A Composition Theorem for Randomized Query Complexity via Max-Conflict Complexity. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 64:1-64:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gavinsky_et_al:LIPIcs.ICALP.2019.64,
  author =	{Gavinsky, Dmitry and Lee, Troy and Santha, Miklos and Sanyal, Swagato},
  title =	{{A Composition Theorem for Randomized Query Complexity via Max-Conflict Complexity}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{64:1--64:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.64},
  URN =		{urn:nbn:de:0030-drops-106407},
  doi =		{10.4230/LIPIcs.ICALP.2019.64},
  annote =	{Keywords: query complexity, lower bounds}
}
Document
A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares)

Authors: Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and Aaron Sidford

Published in: LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)


Abstract
This work provides a simplified proof of the statistical minimax optimality of (iterate averaged) stochastic gradient descent (SGD), for the special case of least squares. This result is obtained by analyzing SGD as a stochastic process and by sharply characterizing the stationary covariance matrix of this process. The finite rate optimality characterization captures the constant factors and addresses model mis-specification.

Cite as

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and Aaron Sidford. A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares). In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 2:1-2:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.FSTTCS.2017.2,
  author =	{Jain, Prateek and Kakade, Sham M. and Kidambi, Rahul and Netrapalli, Praneeth and Pillutla, Venkata Krishna and Sidford, Aaron},
  title =	{{A Markov Chain Theory Approach to Characterizing the Minimax Optimality  of Stochastic Gradient Descent  (for Least Squares)}},
  booktitle =	{37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)},
  pages =	{2:1--2:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-055-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{93},
  editor =	{Lokam, Satya and Ramanujam, R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.2},
  URN =		{urn:nbn:de:0030-drops-83941},
  doi =		{10.4230/LIPIcs.FSTTCS.2017.2},
  annote =	{Keywords: Stochastic Gradient Descent, Minimax Optimality, Least Squares Regression}
}
Document
A Composition Theorem for Randomized Query Complexity

Authors: Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay, Miklos Santha, and Swagato Sanyal

Published in: LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)


Abstract
Let the randomized query complexity of a relation for error probability epsilon be denoted by R_epsilon(). We prove that for any relation f contained in {0,1}^n times R and Boolean function g:{0,1}^m -> {0,1}, R_{1/3}(f o g^n) = Omega(R_{4/9}(f).R_{1/2-1/n^4}(g)), where f o g^n is the relation obtained by composing f and g. We also show using an XOR lemma that R_{1/3}(f o (g^{xor}_{O(log n)})^n) = Omega(log n . R_{4/9}(f) . R_{1/3}(g))$, where g^{xor}_{O(log n)} is the function obtained by composing the XOR function on O(log n) bits and g.

Cite as

Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay, Miklos Santha, and Swagato Sanyal. A Composition Theorem for Randomized Query Complexity. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.FSTTCS.2017.10,
  author =	{Anshu, Anurag and Gavinsky, Dmitry and Jain, Rahul and Kundu, Srijita and Lee, Troy and Mukhopadhyay, Priyanka and Santha, Miklos and Sanyal, Swagato},
  title =	{{A Composition Theorem for Randomized Query Complexity}},
  booktitle =	{37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-055-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{93},
  editor =	{Lokam, Satya and Ramanujam, R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.10},
  URN =		{urn:nbn:de:0030-drops-83967},
  doi =		{10.4230/LIPIcs.FSTTCS.2017.10},
  annote =	{Keywords: Query algorithms and complexity, Decision trees, Composition theorem, XOR lemma, Hardness amplification}
}
  • Refine by Author
  • 14 Jain, Rahul
  • 6 Tewari, Raghunath
  • 4 Gupta, Chetan
  • 3 Anshu, Anurag
  • 3 Kundu, Srijita
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 communication complexity
  • 3 query complexity
  • 2 Logspace
  • 2 Matching
  • 2 graph reachability
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 5 2021
  • 4 2019
  • 2 2018
  • 2 2024
  • 1 2013
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail