46 Search Results for "Rehof, Jakob"


Volume

LIPIcs, Volume 299

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)

FSCD 2024, July 10-13, 2024, Tallinn, Estonia

Editors: Jakob Rehof

Document
Finite Combinatory Logic with Predicates

Authors: Andrej Dudenhefner, Christoph Stahl, Constantin Chaumet, Felix Laarmann, and Jakob Rehof

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Type inhabitation in extensions of Finite Combinatory Logic (FCL) is the mechanism underlying various component-oriented synthesis frameworks. In FCL inhabitant sets correspond to regular tree languages and vice versa. Therefore, it is not possible to specify non-regular properties of inhabitants, such as (dis)equality of subterms. Additionally, the monomorphic nature of FCL oftentimes hinders concise specification of components. We propose a conservative extension to FCL by quantifiers and predicates, introducing a restricted form of polymorphism. In the proposed type system (FCLP) inhabitant sets correspond to decidable term languages and vice versa. As a consequence, type inhabitation in FCLP is undecidable. Based on results in tree automata theory, we identify a fragment of FCLP with the following two properties. First, the fragment enjoys decidable type inhabitation. Second, it allows for specification of local (dis)equality constraints for subterms of inhabitants. For empirical evaluation, we implement a semi-decision procedure for type inhabitation in FCLP. We compare specification capabilities, scalability, and performance of the implementation to existing FCL-based approaches. Finally, we evaluate practical applicability via a case study, synthesizing mechanically sound robotic arms.

Cite as

Andrej Dudenhefner, Christoph Stahl, Constantin Chaumet, Felix Laarmann, and Jakob Rehof. Finite Combinatory Logic with Predicates. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 2:1-2:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudenhefner_et_al:LIPIcs.TYPES.2023.2,
  author =	{Dudenhefner, Andrej and Stahl, Christoph and Chaumet, Constantin and Laarmann, Felix and Rehof, Jakob},
  title =	{{Finite Combinatory Logic with Predicates}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{2:1--2:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.2},
  URN =		{urn:nbn:de:0030-drops-204808},
  doi =		{10.4230/LIPIcs.TYPES.2023.2},
  annote =	{Keywords: combinatory logic, inhabitation, intersection types, program synthesis}
}
Document
Complete Volume
LIPIcs, Volume 299, FSCD 2024, Complete Volume

Authors: Jakob Rehof

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
LIPIcs, Volume 299, FSCD 2024, Complete Volume

Cite as

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 1-692, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Proceedings{rehof:LIPIcs.FSCD.2024,
  title =	{{LIPIcs, Volume 299, FSCD 2024, Complete Volume}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{1--692},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024},
  URN =		{urn:nbn:de:0030-drops-203287},
  doi =		{10.4230/LIPIcs.FSCD.2024},
  annote =	{Keywords: LIPIcs, Volume 299, FSCD 2024, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Jakob Rehof

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 0:i-0:xviii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rehof:LIPIcs.FSCD.2024.0,
  author =	{Rehof, Jakob},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.0},
  URN =		{urn:nbn:de:0030-drops-203292},
  doi =		{10.4230/LIPIcs.FSCD.2024.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Meaningfulness and Genericity in a Subsuming Framework (Invited Talk)

Authors: Delia Kesner, Victor Arrial, and Giulio Guerrieri

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
This paper studies the notion of meaningfulness for a unifying framework called dBang-calculus, which subsumes both call-by-name (dCBN) and call-by-value (dCBV). We first define meaningfulness in dBang and then characterize it by means of typability and inhabitation in an associated non-idempotent intersection type system previously appearing in the literature. We validate the proposed notion of meaningfulness by showing two properties: (1) consistency of the smallest theory, called ℋ, equating all meaningless terms, and (2) genericity, stating that meaningless subterms have no bearing on the significance of meaningful terms. The theory ℋ is also shown to have a unique consistent and maximal extension ℋ*, which coincides with a well-known notion of observational equivalence. Last but not least, we show that the notions of meaningfulness and genericity in the literature for dCBN and dCBV are subsumed by the corresponding ones proposed here for the dBang-calculus.

Cite as

Delia Kesner, Delia Kesner, Victor Arrial, Victor Arrial, Giulio Guerrieri, and Giulio Guerrieri. Meaningfulness and Genericity in a Subsuming Framework (Invited Talk). In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.FSCD.2024.1,
  author =	{Kesner, Delia and Arrial, Victor and Guerrieri, Giulio},
  title =	{{Meaningfulness and Genericity in a Subsuming Framework}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.1},
  URN =		{urn:nbn:de:0030-drops-203305},
  doi =		{10.4230/LIPIcs.FSCD.2024.1},
  annote =	{Keywords: Lambda calculus, Solvability, Meaningfulness, Inhabitation, Genericity}
}
Document
Invited Talk
Abstraction-Based Decision Making for Statistical Properties (Invited Talk)

Authors: Filip Cano, Thomas A. Henzinger, Bettina Könighofer, Konstantin Kueffner, and Kaushik Mallik

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Sequential decision-making in probabilistic environments is a fundamental problem with many applications in AI and economics. In this paper, we present an algorithm for synthesizing sequential decision-making agents that optimize statistical properties such as maximum and average response times. In the general setting of sequential decision-making, the environment is modeled as a random process that generates inputs. The agent responds to each input, aiming to maximize rewards and minimize costs within a specified time horizon. The corresponding synthesis problem is known to be PSPACE-hard. We consider the special case where the input distribution, reward, and cost depend on input-output statistics specified by counter automata. For such problems, this paper presents the first PTIME synthesis algorithms. We introduce the notion of statistical abstraction, which clusters statistically indistinguishable input-output sequences into equivalence classes. This abstraction allows for a dynamic programming algorithm whose complexity grows polynomially with the considered horizon, making the statistical case exponentially more efficient than the general case. We evaluate our algorithm on three different application scenarios of a client-server protocol, where multiple clients compete via bidding to gain access to the service offered by the server. The synthesized policies optimize profit while guaranteeing that none of the server’s clients is disproportionately starved of the service.

Cite as

Filip Cano, Thomas A. Henzinger, Bettina Könighofer, Konstantin Kueffner, and Kaushik Mallik. Abstraction-Based Decision Making for Statistical Properties (Invited Talk). In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 2:1-2:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cano_et_al:LIPIcs.FSCD.2024.2,
  author =	{Cano, Filip and Henzinger, Thomas A. and K\"{o}nighofer, Bettina and Kueffner, Konstantin and Mallik, Kaushik},
  title =	{{Abstraction-Based Decision Making for Statistical Properties}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.2},
  URN =		{urn:nbn:de:0030-drops-203310},
  doi =		{10.4230/LIPIcs.FSCD.2024.2},
  annote =	{Keywords: Abstract interpretation, Sequential decision making, Counter machines}
}
Document
Invited Talk
Lean: Past, Present, and Future (Invited Talk)

Authors: Sebastian Ullrich

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
The Lean programming language and theorem prover project is celebrating its tenth birthday this year, having been started by Leonardo de Moura at Microsoft Research and first release as Lean 0.1 in 2014. In this invited talk, I will review Lean’s history and unique features and discuss our roadmap for its bright future. Corresponding to its major versions ranging from Lean 0.1 to the current version of Lean 4, the focus of the Lean project has evolved over the years. Initially intended as a platform for developing white-box automation, in contrast to the usual black-box approach of stand-alone SMT solvers [de Moura and Passmore, 2013], the system gathered more conventional features of dependently-typed interactive theorem provers as well as an initial crowd of interested mathematicians and computer scientists with its first official release as Lean 2 in 2015 [Leonardo de Moura et al., 2015]. Lean 3 in 2017 introduced user-extensible automation by extending Lean from a specification language to an accessible metaprogramming language [Gabriel Ebner et al., 2017], further accelerating growth of its mathematical library that was spun out into the separate Mathlib project [{The mathlib Community}, 2020]. Spurred by the success but also limitations of this extensibility, we started work on the next version Lean 4 in 2018 [Leonardo de Moura and Sebastian Ullrich, 2021] with the goal of turning Lean into a general-purpose programming language that would allow us to reimplement Lean in Lean itself and thereby make many more aspects of the system user-extensible, in a more efficient manner [Sebastian Ullrich, 2023]. This to date largest rework of Lean’s implementation was completed in 2023 with the official release of Lean 4.0.0, further supporting Mathlib’s growth to more than 1.5 million lines of code at the time of writing as well as improving support for many other applications such as software verification. In 2023, Lean also saw its largest organizational change when Leo and I created the Lean Focused Research Organization (FRO) to bundle and support development of Lean in a dedicated organization for the first time. Thanks to gracious support from philanthropic sponsors, an unprecedented number of currently twelve people now work on the evolution of Lean at the Lean FRO. And there is much left to do: with our new team size, we can now support development on much more than only core features, such as documentation, a robust standard library, and user interfaces and experience as well as a return to the original topic of advanced proof automation. The Lean FRO is committed to ensuring and extending Lean’s applicability in education, research, and industry and to leading it into the next decade of Lean development and beyond.

Cite as

Sebastian Ullrich. Lean: Past, Present, and Future (Invited Talk). In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ullrich:LIPIcs.FSCD.2024.3,
  author =	{Ullrich, Sebastian},
  title =	{{Lean: Past, Present, and Future}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.3},
  URN =		{urn:nbn:de:0030-drops-203328},
  doi =		{10.4230/LIPIcs.FSCD.2024.3},
  annote =	{Keywords: Lean, interactive theorem proving, focused research organization, history}
}
Document
Univalent Enriched Categories and the Enriched Rezk Completion

Authors: Niels van der Weide

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Enriched categories are categories whose sets of morphisms are enriched with extra structure. Such categories play a prominent role in the study of higher categories, homotopy theory, and the semantics of programming languages. In this paper, we study univalent enriched categories. We prove that all essentially surjective and fully faithful functors between univalent enriched categories are equivalences, and we show that every enriched category admits a Rezk completion. Finally, we use the Rezk completion for enriched categories to construct univalent enriched Kleisli categories.

Cite as

Niels van der Weide. Univalent Enriched Categories and the Enriched Rezk Completion. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderweide:LIPIcs.FSCD.2024.4,
  author =	{van der Weide, Niels},
  title =	{{Univalent Enriched Categories and the Enriched Rezk Completion}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.4},
  URN =		{urn:nbn:de:0030-drops-203337},
  doi =		{10.4230/LIPIcs.FSCD.2024.4},
  annote =	{Keywords: enriched categories, univalent categories, homotopy type theory, univalent foundations, Rezk completion}
}
Document
Machine-Checked Categorical Diagrammatic Reasoning

Authors: Benoît Guillemet, Assia Mahboubi, and Matthieu Piquerez

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
This paper describes a formal proof library, developed using the Coq proof assistant, designed to assist users in writing correct diagrammatic proofs, for 1-categories. This library proposes a deep-embedded, domain-specific formal language, which features dedicated proof commands to automate the synthesis, and the verification, of the technical parts often eluded in the literature.

Cite as

Benoît Guillemet, Assia Mahboubi, and Matthieu Piquerez. Machine-Checked Categorical Diagrammatic Reasoning. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guillemet_et_al:LIPIcs.FSCD.2024.7,
  author =	{Guillemet, Beno\^{i}t and Mahboubi, Assia and Piquerez, Matthieu},
  title =	{{Machine-Checked Categorical Diagrammatic Reasoning}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.7},
  URN =		{urn:nbn:de:0030-drops-203363},
  doi =		{10.4230/LIPIcs.FSCD.2024.7},
  annote =	{Keywords: Interactive theorem proving, categories, diagrams, formal proof automation}
}
Document
Mechanized Subject Expansion in Uniform Intersection Types for Perpetual Reductions

Authors: Andrej Dudenhefner and Daniele Pautasso

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We provide a new, purely syntactical proof of strong normalization for the simply typed λ-calculus. The result relies on a novel proof of the equivalence between typability in the simple type system and typability in the uniform intersection type system (a restriction of the non-idempotent intersection type system). For formal verification, the equivalence is mechanized using the Coq proof assistant. In the present work, strong normalization of a given simply typed term M is shown in four steps. First, M is reduced to a normal form N via a suitable reduction strategy with a decreasing measure. Second, a uniform intersection type for the normal form N is inferred. Third, a uniform intersection type for M is constructed iteratively via subject expansion. Fourth, strong normalization of M is shown by induction on the size of the type derivation. A supplementary contribution is a family of perpetual reduction strategies, i.e. strategies which preserve infinite reduction paths. This family allows for subject expansion in the intersection type systems of interest, and contains a reduction strategy with a decreasing measure in the simple type system. A notable member of this family is Barendregt’s F_∞ reduction strategy.

Cite as

Andrej Dudenhefner and Daniele Pautasso. Mechanized Subject Expansion in Uniform Intersection Types for Perpetual Reductions. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudenhefner_et_al:LIPIcs.FSCD.2024.8,
  author =	{Dudenhefner, Andrej and Pautasso, Daniele},
  title =	{{Mechanized Subject Expansion in Uniform Intersection Types for Perpetual Reductions}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.8},
  URN =		{urn:nbn:de:0030-drops-203371},
  doi =		{10.4230/LIPIcs.FSCD.2024.8},
  annote =	{Keywords: lambda-calculus, simple types, intersection types, strong normalization, mechanization, perpetual reductions}
}
Document
Laplace Distributors and Laplace Transformations for Differential Categories

Authors: Marie Kerjean and Jean-Simon Pacaud Lemay

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
In a differential category and in Differential Linear Logic, the exponential conjunction ! admits structural maps, characterizing quantitative operations and symmetric co-structural maps, characterizing differentiation. In this paper, we introduce the notion of a Laplace distributor, which is an extra structural map which distributes the linear negation operation (_)^∗ over ! and transforms the co-structural rules into the structural rules. Laplace distributors are directly inspired by the well-known Laplace transform, which is all-important in numerical analysis. In the star-autonomous setting, a Laplace distributor induces a natural transformation from ! to the exponential disjunction ?, which we then call a Laplace transformation. According to its semantics, we show that Laplace distributors correspond precisely to the notion of a generalized exponential function e^x on the monoidal unit. We also show that many well-known and important examples have a Laplace distributor/transformation, including (weighted) relations, finiteness spaces, Köthe spaces, and convenient vector spaces.

Cite as

Marie Kerjean and Jean-Simon Pacaud Lemay. Laplace Distributors and Laplace Transformations for Differential Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kerjean_et_al:LIPIcs.FSCD.2024.9,
  author =	{Kerjean, Marie and Lemay, Jean-Simon Pacaud},
  title =	{{Laplace Distributors and Laplace Transformations for Differential Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.9},
  URN =		{urn:nbn:de:0030-drops-203382},
  doi =		{10.4230/LIPIcs.FSCD.2024.9},
  annote =	{Keywords: Differential Categories, Differential Linear Logic, Laplace Distributor, Laplace Transformation, Exponential Function}
}
Document
Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Authors: Ambrus Kaposi and Szumi Xie

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees, well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by conversion). Another aspect is the representation of binding structure for which nominal approaches, De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders are given by the function space of an internal language of presheaves. In this paper, we show how to combine the algebraic approach with the HOAS approach: following Uemura, we define languages as second-order generalised algebraic theories (SOGATs). Through a series of examples we show that non-substructural languages can be naturally defined as SOGATs. We give a formal definition of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on parallel and single substitutions, respectively.

Cite as

Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10,
  author =	{Kaposi, Ambrus and Xie, Szumi},
  title =	{{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10},
  URN =		{urn:nbn:de:0030-drops-203396},
  doi =		{10.4230/LIPIcs.FSCD.2024.10},
  annote =	{Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework}
}
Document
Optimizing a Non-Deterministic Abstract Machine with Environments

Authors: Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Non-deterministic abstract machine (NDAM) is a recent implementation model for programming languages where one must choose among several redexes at each reduction step, like process calculi. These machines can be derived from a zipper semantics, a mix between structural operational semantics and context-based reduction semantics. Such a machine has been generated also for the λ-calculus without a fixed reduction strategy, i.e., with the full non-deterministic β-reduction. In that machine, substitution is an external operation that replaces all the occurrences of a variable at once. Implementing substitution with environments is more low-level and more efficient as variables are replaced only when needed. In this paper, we define a NDAM with environments for the λ-calculus without a fixed reduction strategy. We also introduce other optimizations, including a form of refocusing, and we show that we can restrict our optimized NDAM to recover some of the usual λ-calculus machines, e.g., the Krivine Abstract Machine. Most of the improvements we propose in this work could be applied to other NDAMs as well.

Cite as

Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt. Optimizing a Non-Deterministic Abstract Machine with Environments. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{biernacka_et_al:LIPIcs.FSCD.2024.11,
  author =	{Biernacka, Ma{\l}gorzata and Biernacki, Dariusz and Lenglet, Sergue\"{i} and Schmitt, Alan},
  title =	{{Optimizing a Non-Deterministic Abstract Machine with Environments}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.11},
  URN =		{urn:nbn:de:0030-drops-203409},
  doi =		{10.4230/LIPIcs.FSCD.2024.11},
  annote =	{Keywords: Abstract machine, Explicit substitutions, Refocusing}
}
Document
A Linear Type System for L^p-Metric Sensitivity Analysis

Authors: Victor Sannier and Patrick Baillot

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
When working in optimisation or privacy protection, one may need to estimate the sensitivity of computer programs, i.e., the maximum multiplicative increase in the distance between two inputs and the corresponding two outputs. In particular, differential privacy is a rigorous and widely used notion of privacy that is closely related to sensitivity. Several type systems for sensitivity and differential privacy based on linear logic have been proposed in the literature, starting with the functional language Fuzz. However, they are either limited to certain metrics (L¹ and L^∞), and thus to the associated privacy mechanisms, or they rely on a complex notion of type contexts that does not interact well with operational semantics. We therefore propose a graded linear type system - inspired by Bunched Fuzz [{w}under et al., 2023] - called Plurimetric Fuzz that handles L^p vector metrics (for 1 ≤ p ≤ +∞), uses standard type contexts, gives reasonable bounds on sensitivity, and has good metatheoretical properties. We also provide a denotational semantics in terms of metric complete partial orders, and translation mappings from and to Fuzz.

Cite as

Victor Sannier and Patrick Baillot. A Linear Type System for L^p-Metric Sensitivity Analysis. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sannier_et_al:LIPIcs.FSCD.2024.12,
  author =	{Sannier, Victor and Baillot, Patrick},
  title =	{{A Linear Type System for L^p-Metric Sensitivity Analysis}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.12},
  URN =		{urn:nbn:de:0030-drops-203412},
  doi =		{10.4230/LIPIcs.FSCD.2024.12},
  annote =	{Keywords: type system, linear logic, sensitivity, vector metrics, differential privacy, lambda-calculus, functional programming, denotational semantics}
}
Document
Simulating Dependency Pairs by Semantic Labeling

Authors: Teppei Saito and Nao Hirokawa

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We show that termination proofs by a version of the dependency pair method can be simulated by semantic labeling plus multiset path orders. By incorporating a flattening technique into multiset path orders the simulation result can be extended to the dependency pair method for relative termination, introduced by Iborra et al. This result allows us to improve applicability of their dependency pair method.

Cite as

Teppei Saito and Nao Hirokawa. Simulating Dependency Pairs by Semantic Labeling. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saito_et_al:LIPIcs.FSCD.2024.13,
  author =	{Saito, Teppei and Hirokawa, Nao},
  title =	{{Simulating Dependency Pairs by Semantic Labeling}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.13},
  URN =		{urn:nbn:de:0030-drops-203423},
  doi =		{10.4230/LIPIcs.FSCD.2024.13},
  annote =	{Keywords: Term rewriting, Relative termination, Semantic labeling, Dependency pairs}
}
  • Refine by Author
  • 12 Rehof, Jakob
  • 7 Dudenhefner, Andrej
  • 2 Accattoli, Beniamino
  • 2 Bessai, Jan
  • 2 Düdder, Boris
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 4 Inhabitation
  • 3 Lambda calculus
  • 3 intersection types
  • 2 Complexity
  • 2 Confluence
  • Show More...

  • Refine by Type
  • 45 document
  • 1 volume

  • Refine by Publication Year
  • 37 2024
  • 2 2019
  • 1 2012
  • 1 2014
  • 1 2015
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail